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Abstract. We consider the max-size popular matching problem in a roommates instance
G = (V,E) with strict preference lists. A matching M is popular if there is no matching M ′

in G such that the vertices that prefer M ′ to M outnumber those that prefer M to M ′. We
show it is NP-hard to compute a max-size popular matching in G. This is in contrast to the
tractability of this problem in bipartite graphs where a max-size popular matching can be
computed in linear time. We define a subclass of max-size popular matchings called strongly
dominant matchings and show a linear time algorithm to solve the strongly dominant matching
problem in a roommates instance.
We consider a generalization of the max-size popular matching problem in bipartite graphs: this
is the max-weight popular matching problem where there is also a weight function w : E → R
and we seek a popular matching of largest weight. We show this is an NP-hard problem and
this is so even when w(e) ∈ {1, 2} for every e ∈ E. We also show an algorithm with running
time O∗(2n/4) to find a max-weight popular matching matching in G = (A ∪ B,E) on n
vertices.

1 Introduction

Consider a matching problem in G = (A ∪ B,E) where each vertex has a strict ranking of its
neighbors. The goal is to find an optimal way of pairing up vertices: stability is the usual notion of
optimality in such a setting. A matching M is stable if M admits no blocking edge, i.e., an edge (a, b)
such that a and b prefer each other to their respective assignments in M . Stable matchings always
exist in G and can be computed in linear time [11].

In applications such as matching students to advisers or applicants to training posts, we would
like to replace the notion of “no blocking edges” with a more relaxed notion of “global stability” for
the sake of obtaining a matching that is better in a social sense, for instance, a matching of larger size.
For this, we need to formalize the notion of a globally stable matching; roughly speaking, a globally
stable matching should be one such that there is no matching where more people are happier.

This is precisely the notion of popularity introduced by Gärdenfors [13] in 1975. We say a vertex
u ∈ A ∪ B prefers matching M to matching M ′ if either (i) u is matched in M and unmatched in
M ′ or (ii) u is matched in both M,M ′ and u prefers M(u) to M ′(u). For any two matchings M and
M ′, let φ(M,M ′) be the number of vertices that prefer M to M ′.

Definition 1. A matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for every matching M ′ in G,
i.e., ∆(M,M ′) ≥ 0 where ∆(M,M ′) = φ(M,M ′)− φ(M ′,M).

In an election between M and M ′ where vertices cast votes, φ(M,M ′) is the number of votes
for M versus M ′ and φ(M ′,M) is the number of votes for M ′ versus M . A popular matching never
loses an election to another matching: thus it is a weak Condorcet winner [4] in the corresponding
voting instance. Although (weak) Condorcet winners need not exist in a general voting instance,
popular matchings always exist in a bipartite graph with strict preference lists, since every stable
matching is popular [13].

All stable matchings match the same subset of vertices [12] and the size of a stable matching can
be as low as |Mmax|/2, where Mmax is a max-size matching in G. One of the main motivations to
relax stability to popularity is to obtain larger matchings and it is known that a max-size popular
matching has size at least 2|Mmax|/3. Polynomial time algorithms to compute a max-size popular
matching in G = (A ∪B,E) are known [16,22].
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A roommates instance is a graph G = (V,E), that is not necessarily bipartite, with strict pref-
erence lists. Stable matchings need not always exist in G and there are several polynomial time
algorithms [19,26,27] to determine if a stable matching exists or not. The definition of popularity
(Definition 1) carries over to roommates instances — though popular matchings need not exist in
G, popular mixed matchings, i.e., probability distribution over matchings, always exist in G and
can be efficiently computed [21]. Observe that stable mixed matchings need not always exist in a
roommates instance (see the Appendix).

We currently do not know the complexity of the popular matching problem in a roommates
instance, i.e., does G admit a popular matching? The complexity of finding a max-size popular
matching in G was also an open problem so far and we show its hardness here.

Theorem 1. The max-size popular matching problem in a roommates instance G = (V,E) with
strict preference lists is NP-hard.

We show the above problem is NP-hard even in instances that admit stable matchings. Note
that a stable matching is a min-size popular matching [16]. All the polynomial time algorithms
that compute popular matchings in bipartite graphs [11,16,22] compute either stable matchings or
dominant matchings. A popular matching M is dominant if M is more popular than every larger
matching [7], thus M is a max-size popular matching.

Though the name “dominant” was given to this class of matchings in [7], dominant matchings
in bipartite graphs first appeared in [16], which gave the first polynomial time max-size popular
matching algorithm in bipartite graphs. More precisely, a matching satisfying Definition 2 was con-
structed in the given bipartite graph. For any matching M , call an edge (u, v) negative to M if both
u and v prefer their assignments in M to each other.

Definition 2. A matching M is strongly dominant in G = (V,E) if there is a partition (L,R) of
the vertex set V such that (i) M ⊆ L×R, (ii) M matches all vertices in R, (iii) every blocking edge
to M is in R×R, and (iv) every edge in L× L is negative to M .

Consider the complete graph on 4 vertices a, b, c, d where a’s preference list is b � c � d (i.e., top
choice b, followed by c and then d), b’s preference list is c � a � d, c’s preference list is a � b � d,
and d’s preference list is a � b � c. This instance has no stable matching. M1 = {(a, d), (b, c)} and
M2 = {(a, c), (b, d)} are two strongly dominant matchings here: the corresponding partitions are
L1 = {b, d}, R1 = {a, c} and L2 = {c, d}, R2 = {a, b}.

A strongly dominant matching M with vertex partition (L,R) is an R-perfect stable matching in
the bipartite graph with L on the left, R on the right and edge set E ∩ (L×R). It is also important
to note that any blocking edge to M in G is in R×R and all edges in L× L are negative to M .

It was shown in [7] that a popular matching M is dominant if and only if there is no augmenting
path with respect to M in the subgraph obtained by deleting all negative edges with respect to
M . In bipartite graphs, dominant matchings and strongly dominant matchings are equivalent [7].
Moreover, such a matching always exists in a bipartite graph and can be computed in linear time [22].

It can also be shown [22] that every strongly dominant matching in G = (V,E) is dominant.
However in non-bipartite graphs, not every dominant matching is strongly dominant. The complex-
ity of the dominant matching problem in a roommates instance is currently not known. Here we
efficiently solve the strongly dominant matching problem.

Theorem 2. There is a linear time algorithm to determine if an instance G = (V,E) with strict
preference lists admits a strongly dominant matching or not and if so, return one.

1.1 Bipartite instances

A natural generalization of the max-size popular matching problem in a bipartite instance G =
(A∪B,E) is the max-weight popular matching problem, where there is a weight function w : E → R
and we seek a popular matching of largest weight. Several natural popular matching problems can
be formulated with the help of edge weights: these include computing a popular matching with as

2



many of our “favorite edges” as possible or an egalitarian popular matching (one that minimizes the
sum of ranks of partners of all vertices). Thus a max-weight popular matching problem is a generic
problem that captures several optimization problems in popular matchings.

The max-weight stable matching problem is well-studied and there are several polynomial time
algorithms [8,9,10,20,25,27,28] to compute such a matching or its variants in a bipartite graph with
strict preference lists. We show the following result here.

Theorem 3. The max-weight popular matching problem in G = (A ∪ B,E) with strict preference
lists and a weight function w : E → {1, 2} is NP-hard.

A 2-approximate max-weight popular matching in G = (A ∪ B,E) with strict preference lists
and non-negative edge weights can be computed in polynomial time. We also show the following fast
exponential time algorithm, where n = |A ∪B|.

Theorem 4. A max-weight popular matching in G = (A ∪ B,E) with strict preference lists and a
weight function w : E → R can be computed in O∗(cn) time, where c = 21/4 ≈ 1.19.

1.2 Background and Related results

Algorithmic questions for popular matchings were first studied in the domain of one-sided preference
lists [1] in a bipartite instance G = (A∪B,E) where it is only vertices in A that have preferences over
their neighbors. Popular matchings need not always exist here, however popular mixed matchings
always exist [21]. This proof extends to the domain of two-sided preference lists (with ties) and to
non-bipartite graphs.

Popular matchings always exist in G = (A ∪ B,E) with two-sided strict preference lists. An
O(mn0) algorithm to compute a max-size popular matching here was shown in [16], where m = |E|
and n0 = min(|A|, |B|). A linear time algorithm for the max-size popular matching problem in such
an instance G was shown in [22].

A linear time algorithm was shown in [7] to determine if there is a popular matching in G =
(A ∪ B,E) that contains a given edge e. It was also shown in [7] that dominant matchings in
G = (A ∪ B,E) are equivalent to stable matchings in a larger bipartite graph. This equivalence
implies a polynomial time algorithm to solve the max-weight popular matching problem in a complete
bipartite graph.

A description of the popular half-integral matching polytope of G = (A ∪ B,E) with strict
preference lists was given in [23]. It was shown in [18] that the popular fractional matching polytope
(from [21]) for such an instance G = (A ∪ B,E) is half-integral. The half-integrality of the popular
fractional matching polytope also holds for roommates instances [18].

When preference lists admit ties, the problem of determining if a bipartite instance admits a
popular matching or not is NP-hard [2,6]. It is NP-hard to compute a least unpopularity factor
matching in a roommates instance [17]. It was shown in [18] that it is NP-hard to compute a max-
weight popular matching problem in a roommates instance with strict preference lists and it is
UGC-hard to compute a Θ(1)-approximation.

The complexity of finding a max-weight popular matching in a bipartite instance with strict
preference lists was left as an open problem in [18]. This problem along with the complexity of
finding a max-size popular matching in a roommates instance are two of the three open problems in
popular matchings listed in [5] and we answer these two questions here.

1.3 Techniques

Our results are based on LP-duality. Every popular matching M in an instance G = (V,E) is a
max-cost perfect matching in the graph G with self-loops added and with edge costs given by a
function costM (these costs depend on the matching M). Any optimal solution to the dual LP will
be called a witness to M ’s popularity.

Our hardness results. Witnesses for popular matchings in bipartite graphs first appeared in [21] and
they were used in [23,18,3]. Roughly speaking, these algorithms dealt with matchings that had an
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element in {±1}n as a witness. Note that a stable matching has 0n as a witness. For general popular
matchings, there is no such “parity agreement” among the coordinates of any witness and we use
this to show that the max-weight popular matching problem in bipartite graphs is NP-hard.

All max-size popular matchings in a bipartite instance match the same subset of vertices [15],
however the rural hospitals theorem does not necessarily hold for max-size popular matchings in
roommates instances. Such an instance forms the main gadget in the proof of NP-hardness for
max-size popular matchings in a roommates instance.

Our algorithms. We generalize the max-size popular matching algorithm for bipartite graphs [22] to
solve the strongly dominant matching problem in all graphs. We show a surprisingly simple reduction
from the strongly dominant matching problem in G = (V,E) to the stable matching problem in a
new roommates instance G′ = (V,E′). Thus Irving’s stable matching algorithm [19] in G′ solves our
problem in linear time.

Our reduction is similar to an analogous correspondence in the bipartite case from [7]. However
the graph G′ in [7] on 3|A| + |B| vertices is asymmetric with respect to vertices in A and B of
G = (A ∪ B,E). Now our new graph G′ may be regarded as the bidirected version of G, i.e., each
edge (u, v) in G is replaced by two edges (u+, v−) and (u−, v+) in G′.

Our fast exponential time algorithm for max-weight popular matchings in G = (A ∪ B,E)
formulates the convex hull P(r) of all popular matchings with at least 1 witness whose parities
agree with a given vector r ∈ {0, 1}k. Here k is the number of components of size 4 or more in a
subgraph FG, whose edge set is the union of all popular matchings in G.

Our formulation of P(r) is based on the popular fractional matching polytope PG [21]. We use r
to tighten several of the constraints in the formulation of PG and introduce new variables sandwiched
between 0 and 1 to denote fractional parities and formulate a polytope. We use methods from [18,27]
along with some new ideas to show that our polytope is integral, more precisely, it is P(r). This
leads to the O∗(2k) (where k ≤ n/4) algorithm.

Organization of the paper. Witness vectors for popular matchings in bipartite and roommates in-
stances are defined in Section 2. Our algorithm for the strongly dominant matching problem in a
roommates instance G = (V,E) is given in Section 3. Section 4 shows that finding a max-size popular
matching in G is NP-hard. Section 5 shows the NP-hardness of the max-weight popular matching
problem in a bipartite instance G = (A∪B,E). Our fast exponential time algorithm for this problem
is given in Section 6.

2 Witness of a popular matching

Let M be any matching in our input instance G = (V,E). In order to determine if M is popular
or not, we need to check if ∆(N,M) ≤ 0 for all matchings N in G (see Definition 1). Computing
maxN ∆(N,M) reduces to computing a max-cost perfect matching in a graph G̃ with edge costs
that are defined below.

The graph G̃ is the graph G augmented with self-loops — we assume that every vertex is at the
bottom of its own preference list. Adding self-loops allows us to view any matching M in G as a
perfect matching M̃ in G̃ by including self-loops for all vertices left unmatched in M . We now define
a function costM on the edge set of G̃. For any edge (u, v) ∈ E, define:

costM (u, v) =


2 if (u, v) is a blocking edge to M̃

−2 if (u, v) is a negative edge to M̃

0 otherwise

Recall that an edge (u, v) is negative to M̃ if both u and v prefer their partners in M̃ to each other.
Thus costM (u, v) is the sum of votes of u and v for each other over M̃(u) and M̃(v), respectively,
where for any vertex u and neighbors v, v′ of u: u’s vote for v versus v′ is 1 if u prefers v to v′, it is
−1 if u prefers v′ to v, else it is 0 (i.e. v = v′). Observe that costM (u, v) = 0 for any edge (u, v) ∈M .

We now define costM for self-loops as well. For any u ∈ V , costM (u, u) = 0 if u is unmatched in
M , else costM (u, u) = −1. Thus costM (u, u) is u’s vote for itself versus M̃(u).
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Claim 1 For any matching N in G, ∆(N,M) = costM (Ñ).

Proof. We will use the function vote(·, ·) here. For any vertex u and neighbors v, v′ of u in G̃, recall
that voteu(v, v′) is 1 if u prefers v to v′, it is -1 if u prefers v′ to v, it is 0 otherwise (i.e., v = v′).

Let M̃(u) be u’s partner in M̃ . Observe that costM (a, b) = votea(b, M̃(a))+voteb(a, M̃(b)). Also,
costM (u, u) = voteu(u, M̃(u)). We have the following equality from the definitions of ∆(·, ·) and
vote(·, ·).

∆(N,M) =
∑

u∈A∪B
voteu(Ñ(u), M̃(u))

=
∑

(a,b)∈N

(votea(b, M̃(a)) + voteb(a, M̃(b))) +
∑

(u,u)∈Ñ

voteu(u, M̃(u)).

This sum is exactly
∑

(a,b)∈N costM (a, b) +
∑

(u,u)∈Ñ costM (u, u), which is costM (Ñ). ut

Thus M is popular if and only if every perfect matching in G̃ has cost at most 0.

2.1 Bipartite instances

Let G = (A∪B,E) be a bipartite instance with strict preference lists. Consider the max-cost perfect
matching LP in G̃: this is LP1 given below. The set Ẽ is the edge set of G̃ and Ẽ(u) is the set of
edges incident to u in G̃. The linear program LP2 is the dual of LP1.

max
∑
e∈Ẽ

costM (e) · xe (LP1)

s.t.
∑

e∈Ẽ(u)

xe = 1 ∀u ∈ A ∪B

xe ≥ 0 ∀ e ∈ Ẽ.

min
∑

u∈A∪B

αu (LP2)

s.t. αa + αb ≥ costM (a, b) ∀ (a, b) ∈ E
αu ≥ costM (u, u) ∀u ∈ A ∪B.

M is popular if and only if the optimal value of LP1 is at most 0 (by Claim 1); in fact, the
optimal value is exactly 0 since M̃ is a perfect matching in G̃ and costM (M̃) = 0. Thus M is popular
if and only if the optimal value of LP2 is 0 (by LP-duality).

Definition 3. For any popular matching M , an optimal solution α to LP2 above is called a witness
of M .

A popular matching M may have several witnesses. For any witness α,
∑
u∈A∪B αu = 0 since α

is an optimal solution to LP2 and the optimal value of LP2 is 0. Let n = |A ∪B|.

Lemma 1 ([23]). Every popular matching M in G = (A ∪B,E) has a witness in {0,±1}n.

2.2 Roommates instances

Here our input is a graph G = (V,E) with strict preference lists. As done earlier, we will formulate
the max-cost perfect matching problem in G̃ with cost function costM as our primal LP.

The dual LP (LP3 given below) will be useful to us. Here Ω is the collection of all odd subsets
S of V of size at least 3 and E[S] is the set of all (u, v) ∈ E such that u, v ∈ S. A matching M is
popular in G = (V,E) if and only if the optimal value of LP3 is 0.

minimize
∑
u∈V

αu +
∑
S∈Ω
b |S|/2 c · zS (LP3)
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subject to

αu + αv +
∑

S∈Ω
u,v∈S

zS ≥ costM (u, v) ∀ (u, v) ∈ E

zS ≥ 0 ∀S ∈ Ω and αu ≥ costM (u, u) ∀u ∈ V.

Definition 4. For any popular matching M , an optimal solution (α, z) to LP3 is called a witness
of M .

For any witness (α, z), we have
∑
u∈V αu+

∑
S∈Ωb|S|/2c·zS = 0. Note that any stable matching

in G has (0,0) as witness.

Theorem 5 gives a characterization of strongly dominant matchings in terms of a special witness
(α, z). We will use this characterization of strongly dominant matchings in Section 3.

Theorem 5. A matching M is strongly dominant in G if and only if there exists a feasible solution
(α, z) to LP3 such that αu = ±1 for all vertices u matched in M , αu = 0 for all u unmatched in M ,
zS = 0 for all S ∈ Ω, and

∑
u∈V αu = 0.

Proof. Let M be a strongly dominant matching in G = (V,E). So V can be partitioned into L ∪R
such that properties (i)-(iv) in Definition 2 are satisfied. Set zS = 0 for all S ∈ Ω. We will now
construct α as follows. For u ∈ V :

– if u ∈ R then set αu = 1

– else if u is matched in M then set αu = −1 else set αu = 0.

Since M matches all vertices in R, all vertices unmatched in M are in L. Thus αu = 0 for all u
unmatched in M and αu = ±1 for all u matched in M . For any edge (u, v) ∈M , since M ⊆ L×R,
(αu, αv) ∈ {(1,−1), (−1, 1)} and so αu + αv = 0. Thus

∑
u∈V αu = 0.

We will now show that (α,0) satisfies the constraints of LP3. We have αu ≥ costM (u, u). This is
because αu = 0 = costM (u, u) for u left unmatched in M and αu ≥ −1 = costM (u, u) for u matched
in M . We will now show that all edge covering constraints are obeyed.

– Since costM (e) ≤ 2 for any edge e and αu = 1 for all u ∈ R, all edges in R×R are covered.

– We also know that any edge in L × L is a negative edge to M , i.e., costM (u, v) = −2 for any
edge (u, v) ∈ L× L. Since αu ≥ −1 for any u ∈ L, edges in L× L are covered.

– We also know that all blocking edges to M are in R ×R and so costM (u, v) ≤ 0 for all (u, v) ∈
L×R. Since αu ≥ −1 and αv = 1, all edges in L×R are covered.

We will now show the converse. Let M be a matching with a witness (α,0) as given in the
statement of the theorem. To begin with, M is popular since the objective function of LP3 evaluates
to 0. We will now show that M is strongly dominant.

For that, we will obtain a partition (L,R) of V as follows: R = {u : αu = 1} and L = {u :
αu is either 0 or -1}. Since M̃ is an optimal solution of the max-cost perfect matching problem in
G̃, complementary slackness conditions imply that if (u, v) ∈ M then αu + αv = costM (u, v) = 0.
Since u, v are matched, αu, αv ∈ {±1}; so one of u, v is in L and the other is in R. Thus M ⊆ L×R.

We have costM (u, v) ≤ αu + αv for every (u, v) ∈ E. There cannot be any edge between 2
vertices left unmatched in M as that would contradict M ’s popularity. So costM (u, v) ≤ −1 for all
(u, v) ∈ E ∩ (L× L). Since costM (u, v) ∈ {0,±2}, costM (u, v) = −2 for all edges (u, v) in L× L. In
other words, every edge in L× L is negative to M .

Moreover, any blocking edge can be present only in R × R since costM (u, v) ≤ 1 for all edges
(u, v) ∈ L × R. Finally, since αu = costM (u, u) = 0 for all u unmatched in M (by complementary
slackness conditions on LP3) and every vertex u ∈ R satisfies αu = 1, it means that all vertices in
R are matched in M . ut
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3 Strongly dominant matchings

In this section we show an algorithm to determine if a roommates instance G = (V,E) admits a
strongly dominant matching or not. We will build a new roommates instance G′ = (V,E′) and
show that any stable matching in G′ can be projected to a strongly dominant matching in G and
conversely, any strongly dominant matching in G = (V,E) can be mapped to a stable matching in
G′.

The vertex set of G′ is the same as that of G. Though there is only one copy of each vertex u
in G′, for every (u, v) ∈ E, there will be 2 parallel edges in G′ between u and v; we will call one of
these edges (u+, v−) and the other (u−, v+). Thus E′ = {(u+, v−), (u−, v+) : (u, v) ∈ E}. A vertex
v appears in 2 forms, as v+ and v−, to each of its neighbors.

We will now define preference lists in G′. For any u ∈ V , if u’s preference list in G is v1 � v2 �
· · · � vk then u’s preference list in G′ is v−1 � v

−
2 � · · · � v

−
k � v

+
1 � v

+
2 � · · · � v

+
k . Thus u prefers

any neighbor in “− form” to any neighbor in “+ form”.
As an example, consider the roommates instance on 4 vertices a, b, c, d described in Section 1,

where d was the least preferred vertex of a, b, c. Preference lists in the instance G′ are as follows:

a : b− � c− � d− � b+ � c+ � d+ b : c− � a− � d− � c+ � a+ � d+

c : a− � b− � d− � a+ � b+ � d+ d : a− � b− � c− � a+ � b+ � c+

– A matching M ′ in G′ is a subset of E′ such that for each u ∈ V , M ′ contains at most one edge
incident to u, i.e., at most one edge in {(u+, v−), (u−, v+) : v ∈ Nbr(u)} is in M ′, where Nbr(u)
is the set of u’s neighbors in G.

– For any matching M ′ in G′, define the projection M of M ′ as follows:

M = {(u, v) : (u+, v−) or (u−, v+) is in M ′}.

It is easy to see that M is a matching in G.

Definition 5. A matching M ′ is stable in G′ if for every edge (u+, v−) ∈ E′ \M ′: either (i) u is
matched in M ′ to a neighbor ranked better than v− or (ii) v is matched in M ′ to a neighbor ranked
better than u+.

We now present our algorithm to find a strongly dominant matching in G = (V,E).

1. Build the corresponding roommates instance G′ = (V,E′).
2. Run Irving’s stable matching algorithm in G′.
3. If a stable matching M ′ is found in G′ then return the projection M of M ′.

Else return “G has no strongly dominant matching”.

In Irving’s algorithm in G′, it is possible that a vertex u proposes to some neighbor vt twice:
first to v−t and later to v+t . During u’s first proposal, vt receives a proposal from u+ and during u’s
second proposal, vt receives a proposal from u−. We describe Irving’s stable matching algorithm [19]
along with an example in the Appendix.

We will now prove the correctness of the above algorithm. We will first show that if our algorithm
returns a matching M , then M is a strongly dominant matching in G.

Lemma 2. If M ′ is a stable matching in G′ then the projection of M ′ is a strongly dominant
matching in G.

Proof. Let M be the projection of M ′. In order to show that M is a strongly dominant matching in
G, we will construct a witness (α,0) as given in Theorem 5. That is, we will construct α as shown
below such that (α,0) is a feasible solution to LP3 and

∑
u∈V αu = 0.

Set αu = 0 for all vertices u left unmatched in M . For each vertex u matched in M :

– if (u+, ∗) ∈M ′ then set αu = 1; else set αu = −1.

7



Note that
∑
u∈V αu = 0 since for each edge (a, b) ∈M , we have αa +αb = 0 and for each vertex

u that is unmatched in M , we have αu = 0 . We also have αu ≥ costM (u, u) for all u ∈ V since
(i) αu = 0 = costM (u, u) for all u left unmatched in M and (ii) αu ≥ −1 = costM (u, u) for all u
matched in M .

We will now show that for every (a, b) ∈ E, αa + αb ≥ costM (a, b). Recall that costM (a, b) is the
sum of votes of a and b for each other over their respective assignments in M .

1. Suppose (a+, ∗) ∈M ′. So αa = 1. We will consider 3 subcases here.

– The first subcase is that (b+, ∗) ∈ M ′. So αb = 1. Since costM (a, b) ≤ 2, it follows that
αa + αb = 2 ≥ costM (a, b).

– The second subcase is that (b−, ∗) ∈ M ′. So αb = −1. If (a+, b−) ∈ M ′ then costM (a, b) =
0 = αa + αb. So assume (a+, c−) and (b−, d+) belong to M ′. Since M ′ is stable, the edge
(a+, b−) does not block M ′. Thus either (i) a prefers c− to b− or (ii) b prefers d+ to a+.
Hence costM (a, b) ≤ 0 and so αa + αb = 0 ≥ costM (a, b).

– The third subcase is that b is unmatched in M . So αb = 0. Since M ′ is stable, the edge
(a+, b−) does not block M ′. Thus a prefers its partner c− in M ′ to b− and so costM (a, b) =
0 < αa + αb.

2. Suppose (a−, ∗) ∈M . There are 3 subcases here as before. The case where (b+, ∗) ∈M is totally
analogous to the case where (a+, ∗) and (b−, ∗) are in M . So we will consider the remaining 2
subcases here.

– The first subcase is that (b−, ∗) ∈ M ′. So αb = −1. Let (a−, c+) and (b−, d+) belong
to M ′. Since M ′ is stable, the edge (a+, b−) does not block M ′. So b prefers d+ to a+.
Similarly, the edge (a−, b+) does not block M ′. Hence a prefers c+ to b+. Thus both a and
b prefer their respective partners in M to each other, i.e., costM (a, b) = −2. So we have
αa + αb = −2 = costM (a, b).

– The second subcase is that b is unmatched in M . Then the edge (a+, b−) blocks M ′ since
a prefers b− to c+ (for any neighbor c) and b prefers to be matched to a+ than be left
unmatched. Since M ′ is stable and has no blocking edge, this means that this subcase does
not arise.

3. Suppose a is unmatched in M . Then (b+, ∗) ∈ M ′ (otherwise (a−, b+) blocks M ′); moreover, b
prefers its partner d− in M ′ to a−. So we have costM (a, b) = 0 < αa + αb.

Thus we always have αa+αb ≥ costM (a, b) and hence (α,0) is a valid witness of M . Since α satisfies
the conditions in Theorem 5, M is a strongly dominant matching in G.

We will now show that if G′ has no stable matching, then G has no strongly dominant matching.

Lemma 3. If G admits a strongly dominant matching then G′ admits a stable matching.

Proof. Let M be a strongly dominant matching in G = (V,E). Let (α,0) be a witness of M as given
in Theorem 5. That is, αu = 0 for u unmatched in M and αu = ±1 for u matched in M . Moreover,
for each (u, v) ∈ M , αu + αv = costM (u, v) = 0 by complementary slackness on LP3; so (αu, αv) is
either (1,−1) or (−1, 1).

We will construct a stable matching M ′ in G′ as follows. For each (u, v) ∈M :

– if (αu, αv) = (1,−1) then add (u+, v−) to M ′; else add (u−, v+) to M ′.

We will show that no edge in E′ \M ′ blocks M ′. Let (a+, b−) /∈ M ′. We consider the following
cases here:

Case 1. Suppose αb = 1. Then (b+, d−) ∈ M ′ where d = M(b). Since b prefers d− to a+, (a+, b−)
is not a blocking edge to M ′.

Case 2. Suppose αb = −1. Then (b−, d+) ∈ M ′ where d = M(b). We have 2 sub-cases here:
(i) αa = 1 and (ii) αa = −1. Note that αa 6= 0 as the edge (a, b) would not be covered by αa + αb
then. This is because if αa = 0 then a is unmatched in M and costM (a, b) = 0 while αa + αb = −1.
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– In sub-case (i), some edge (a+, c−) belongs to M ′. We know that costM (a, b) ≤ αa + αb = 0, so
either (1) a prefers M(a) = c to b or (2) b prefers M(b) = d to a. Hence either (1) a prefers c−

to b− or (2) b prefers d+ to a+. Thus (a+, b−) is not a blocking edge to M ′.
– In sub-case (ii), some edge (a−, c+) belongs to M ′. We know that costM (a, b) ≤ αa + αb = −2,

so a prefers M(a) = c to b and b prefers M(b) = d to a. Thus b prefers d+ to a+, hence (a+, b−)
is not a blocking edge to M ′.

Case 3. Suppose αb = 0. Thus b was unmatched in M . Each of b’s neighbors has to be matched
in M to a neighbor that it prefers to b, otherwise M would be unpopular. We have αa + αb ≥
costM (a, b) = 0, hence it follows that αa = 1. Thus (a+, c−) ∈ M ′ where c is a neighbor that a
prefers to b. So (a+, b−) is not a blocking edge to M ′. ut

Lemmas 2 and 3 show that a strongly dominant matching is present in G if and only if a stable
matching is present in G′. This finishes the proof of correctness of our algorithm. Since Irving’s
stable matching algorithm in G′ can be implemented to run in linear time [19], we can conclude
Theorem 2 stated in Section 1.

4 The max-size popular matching problem in a roommates instance

In this section we prove the NP-hardness of the max-size popular matching problem in a roommates
instance. We will show a reduction from the vertex cover problem.

Let H = (VH , EH) be an instance of the vertex cover problem and let VH = {1, . . . , nH}, i.e.,
VH = [nH ]. We will build a roommates instance G as follows: (see Fig. 1)

– corresponding to every vertex i ∈ VH , there will be 4 vertices ai, bi, ci, di in G and
– corresponding to every edge e = (i, j) ∈ EH , there will be 2 vertices uei and uej in G.
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cjbi ci bj

aj

1 2
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Fig. 1. The graph G restricted to the adjacent vertices i and j in H: the vertices at, bt, ct, dt in G
correspond to vertex t ∈ {i, j} in H and the vertices uei and uej in G correspond to the edge e = (i, j)
in H. Vertex preferences in G are indicated on the edges.

The preferences of the vertices ai, bi, ci, di are as follows, where e1, . . . , ek are all the edges in H
with vertex i as an endpoint.

ai : bi � ci � di bi : ai � ue1i · · · � u
ek
i � ci ci : ai � bi di : ai.

The order among the vertices ue1i , . . . , u
ek
i in the preference list of bi is arbitrary. The preference list

of vertex uei is uej � bi, where e = (i, j) (see Fig. 1).
Observe thatG admits a stable matching S = {(ai, bi) : 1 ≤ i ≤ nH}∪{(uei , uej) : e = (i, j) ∈ EH}.

This is the set of blue edges in Fig. 1.

Lemma 4. Let M be a popular matching in G.

– For any i ∈ [nH ], either (ai, bi) ∈M or {(ai, di), (bi, ci)} ⊆M .
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– The set C = {i ∈ [nH ] : (ai, bi) ∈M} is a vertex cover of H.

Proof. The vertex ai is the top choice neighbor of all its neighbors bi, ci, di. Thus ai has to be
matched in the popular matching M .

1. If ai is matched to bi then (ai, bi) ∈M .
2. If (ai, di) ∈ M , then ci also has to be matched — otherwise we get a more popular matching

by replacing the edge (ai, di) with (ai, ci). Since ci has degree 2, it has to be the case that
{(ai, di), (bi, ci)} ⊆M .

3. Suppose (ai, ci) ∈M . Since ai prefers bi to ci, this means that bi has to be matched in M . Other
than ai and ci (which are matched to each other), bi’s neighbors are uei for all edges e incident
to i in H. So (bi, u

e
i ) ∈M for some e = (i, j) ∈ EH . We will now construct a new matching M ′

as follows:
– replace the edges (ai, ci), (bi, u

e
i ), (u

e
j ,M(uej)) in M with the edges (ai, bi) and (uei , u

e
j). So

ci and M(uej) are unmatched in M ′, hence these 2 vertices prefer M to M ′; however the 4
vertices ai, bi, u

e
i , u

e
j prefer M ′ to M . Thus M ′ is more popular than M , a contradiction to

the popularity of M . Hence (ai, ci) /∈M .

We now show the second part of the lemma. Let (i, j) ∈ EH . We need to show that either
(ai, bi) ∈ M or (aj , bj) ∈ M . Suppose not. Then by the first part of this lemma, (ai, di), (bi, ci) are
in M and similarly, (aj , dj), (bj , cj) are in M . Also (uei , u

e
j) ∈M .

Consider the matching M ′ obtained by replacing the 5 edges (ai, di), (bi, ci), (aj , dj), (bj , cj),
and (uei , u

e
j) in M with the 4 edges (ai, ci), (bi, u

e
i ), (aj , cj), and (bj , u

e
j) (see Fig. 1). Among the 10

vertices involved here, the 6 vertices ai, bi, ci and aj , bj , cj prefer M ′ to M while the 4 vertices di, u
e
i

and dj , u
e
j prefer M to M ′. Thus M ′ is more popular than M , a contradiction to the popularity of

M .
Hence for each edge (i, j) ∈ EH either (ai, bi) ∈ M or (aj , bj) ∈ M . In other words, the set

U = {i ∈ [nH ] : (ai, bi) ∈M} is a vertex cover of H. ut

Theorem 6. For any 1 ≤ k ≤ nH , the graph H = (VH , EH) admits a vertex cover of size k if and
only if G has a popular matching of size at least mH + 2nH − k, where |EH | = mH .

Proof. Suppose H = (VH , EH) admits a vertex cover U of size k. We will now build a popular
matching M in G of size mH + 2nH − k.

– Add all edges (uei , u
e
j) in G to M .

– For every i ∈ U , add the edge (ai, bi) to M .
– For every i /∈ U , add the edges (ai, di), (bi, ci) to M .

The size of M is mH + |U | + 2(nH − |U |) = mH + 2nH − k. We will prove M is popular by
showing a witness (α, z) for it. To begin with, initialize zS = 0 for all S ∈ Ω.

– For every i ∈ U : set αai = αbi = αci = αdi = 0.
– For every i /∈ U : set αai = 1 and αbi = αci = αdi = −1; also set zSi = 2 where Si = {ai, bi, ci}.
– For every edge e = (i, j) ∈ EH : if i ∈ U then set αue

i
= −1 and αue

j
= 1; else set αue

i
= 1 and

αue
j

= −1.

It is easy to check that the above setting of (α, z) covers all edges of G. In particular, for i ∈ U ,
we have costM (bi, u

e
i ) = −1− 1 = −2 while αbi = 0 and αue

i
= −1, thus αbi + αue

i
≥ costM (bi, u

e
i ).

Similarly, when i /∈ U , costM (bi, u
e
i ) = 1− 1 = 0 and we have αbi = −1 and αue

i
= 1 here. Moreover,∑

v∈V
αv +

∑
S∈Ω
b|S|/2c · zS =

∑
i/∈U

−2 +
∑
i/∈U

2 = 0. (1)

This is because αv = 0 for all vertices v unmatched in M and αu+αv = 0 for all edges (u, v) ∈M
except the edges (bi, ci) where i /∈ U . For each i /∈ U , we have αbi + αci = −2 and we also have
zSi = 2 where Si = {ai, bi, ci}. The sum in Equation (1) is 0 and so M is a popular matching. Hence
G has a popular matching of size mH + 2nH − k.
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We will now show the converse. Let M be a popular matching in G of size at least mH +2nH−k.
We know that U = {i ∈ [nH ] : (ai, bi) ∈ M} is a vertex cover of H (by Lemma 4). We will show
that |U | ≤ k.

It follows from Lemma 4 that all edges (uei , u
e
j) belong to any popular matching. So these ac-

count for mH many edges in M . We also know that for every i ∈ VH , either (ai, bi) ∈ M or
{(ai, di), (bi, ci)} ⊆M (by Lemma 4). Thus |M | = mH+|U |+2(nH−|U |). Since |M | ≥ mH+2nH−k,
it follows that |U | ≤ k. Thus the graph G has a vertex cover of size k. ut

We can now conclude Theorem 1 stated in Section 1.

Remark. The rural hospitals theorem [24] for stable matchings in a roommates instance G says
that every stable matching in G matches the same subset of vertices. Such a statement is not true
for max-size popular matchings in a roommates instance as seen in the instance on 10 vertices in
Fig. 1. This instance has two max-size popular matchings (these are of size 4): one leaves ci and di
unmatched while another leaves cj and dj unmatched.

5 Max-weight popular matchings in bipartite instances

In this section we will prove the NP-hardness of the max-weight popular matching problem in a
bipartite instance G = (A ∪ B,E) on n vertices and with edge weights. Call any e ∈ E a popular
edge if there is a popular matching N in G such that e ∈ N .

Let M be a popular matching in G = (A ∪ B,E). Observe that for any popular matching N in
G, the perfect matching Ñ in G̃ is an optimal solution of LP1 (see Section 2) and a witness α of M
is an optimal solution of LP2. Lemma 5 follows from complementary slackness conditions on LP1.

Lemma 5. Let M be a popular matching in G and let α ∈ {0,±1}n be a witness of M .

1. For any popular edge (a, b) ∈ E, the parities of αa and αb have to be the same.
2. If u is a vertex in G that is left unmatched in a stable matching in G (call u unstable) then

αu = costM (u, u); thus αu = 0 if u is left unmatched in M , otherwise αu = −1.

Proof. Let (a, b) be a popular edge. So (a, b) ∈ N for some popular matching N . Since N is popular,
∆(N,M) = 0 and the perfect matching Ñ is an optimal solution to the max-cost perfect matching
LP in the graph G̃ with cost function costM (see LP1 from Section 2). Since α is an optimal solution
to the dual LP (see LP2), it follows from complementary slackness that αa + αb = costM (a, b).
Observe that costM (a, b) ∈ {±2, 0} (an even number). Hence the integers αa and αb have the same
parity. This proves part 1.

Part 2 also follows from complementary slackness. Let S be a stable matching in G and let u
be a vertex left unmatched in S. So the perfect matching S̃ contains the edge (u, u). Since S̃ is an
optimal solution to LP1, we have αu = costM (u, u) by complementary slackness. Thus when u is
left unmatched in M , αu = 0, else αu = −1. ut

The popular subgraph. We will define a subgraph FG = (A∪B,EF ) called the popular subgraph
of G, where EF is the set of popular edges in E. The subgraph FG need not be connected: let
C = {C1, . . . , Ch} be the set of connected components in FG.

Each component Cj that is a singleton set consists of a single unpopular vertex, i.e., one left
unmatched in all popular matchings. Every non-singleton component Ci has an even number of
vertices. This is because a max-size popular matching matches all vertices except the ones in singleton
sets in C and vertices in Ci are matched to each other [15].

It is also known that all stable vertices (those matched in stable matchings in G) have to be
matched in every popular matching [16]. Let M be any popular matching in G and let α ∈ {0,±1}n
be a witness of M ’s popularity. The following lemma will be useful to us.

Lemma 6. For any connected component Ci in FG, either αu = 0 for all vertices u ∈ Ci or αu = ±1
for all vertices u ∈ Ci. Moreover, if Ci contains one or more unstable vertices, either all the unstable
vertices in Ci are matched in M or none of them is matched in M .
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Proof. Let u and v be any 2 vertices in Ci. Since u, v are in the same connected component in FG,
there is a u-v path ρ in G such that every edge in ρ is a popular edge. The endpoints of each popular
edge have the same parity in α (by part 1 of Lemma 5), hence αu and αv have the same parity.
Thus either αu = αv = 0 or both αu, αv ∈ {±1}.

Let Ci be a connected component with one or more unstable vertices, i.e., those left unmatched
in a stable matching. Since all α-values in Ci have the same parity, either (i) all vertices v in Ci
satisfy αv = 0 or (ii) all vertices v in Ci satisfy αv = ±1. For any unstable vertex u, we have
αu = costM (u, u) (by part 2 of Lemma 5), hence in case (i), all unstable vertices in Ci are left
unmatched in M and in case (ii), all unstable vertices in Ci are matched in M . ut

The NP-hardness reduction. Given a graph H = (VH , EH) which is an instance of the vertex
cover problem, we will now build an instance G = (A ∪ B,E) with strict preference lists such that
the vertex cover problem in H reduces to the max-weight popular matching problem in G. Let
VH = {1, . . . , nH}.

– For every edge e ∈ EH , there will be a gadget De in G on 6 vertices se, te, s
′
e, t
′
e, s
′′
e , t
′′
e .

– For every vertex i ∈ VH , there will be a gadget Ci in G on 4 vertices ai, bi, a
′
i, b
′
i.

– There are 2 more vertices in G: these are a0 and b0.

Thus A = {a0} ∪ {ai, a′i : i ∈ VH} ∪ {se, s′e, s′′e : e ∈ EH} and B = {b0} ∪ {bi, b′i : i ∈ VH}∪
{te, t′e, t′′e : e ∈ EH}. We now describe the edge set of G. We first describe the preference lists of the
6 vertices in De, where e = (i, j) and i < j (see Fig. 2).

s′e : t′e � te s′′e : t′′e � te se : t′e � bj � t′′e
t′e : s′e � se t′′e : s′′e � se te : s′′e � ai � s′e

Here s′e and t′e are each other’s top choices and similarly, s′′e and t′′e are each other’s top choices.
The vertex se’s top choice is t′e, second choice is bj , and third choice is t′′e . For te, the order is s′′e ,
followed by ai, and then s′e. Recall that e = (i, j) and i < j.

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�a0

bi

b′i

b0

a′i

ai

t′′es′′e

te

t′e

se

s′e

Fig. 2. To the left is the gadget Ci on vertices ai, bi, a
′
i, b
′
i and to the right is the gadget De on

vertices se, te, s
′
e, t
′
e, s
′′
e , t
′′
e ; the vertices a0 and b0 are adjacent to bi and ai, respectively.

We now describe the preference lists of the 4 vertices ai, bi, a
′
i, b
′
i in Ci (see Fig. 2).

a′i : bi � b′i ai : bi � b′i � b0 � · · ·
b′i : ai � a′i bi : ai � a′i � a0 � · · ·

– Both a′i and ai have bi as their top choice and b′i as their second choice. Similarly, both b′i and
bi have ai as their top choice and a′i as their second choice.

– The vertex ai has other neighbors: its third choice is b0 followed by all the vertices te1 , te2 , . . .
where i is the lower-indexed endpoint of e1, e2, . . .. Similarly, bi has a0 as its third choice followed
by all the vertices se′1 , se′2 , . . . where i is the higher-indexed endpoint of e′1, e

′
2, . . .
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– The order among the vertices te1 , te2 , . . . (similarly, se′1 , se′2 , . . .) in the preference list of ai (resp.,
bi) does not matter; hence these are represented as · · · in these preference lists.

The vertex a0 has b1, . . . , bnH
as its neighbors and its preference list is some arbitrary permutation

of these vertices. Similarly, the vertex b0 has a1, . . . , anH
as its neighbors and its preference list is

some arbitrary permutation of these vertices.

Lemma 7. No popular matching in G matches either a0 or b0.

Proof. We will first show that M = {(ai, b′i), (a′i, bi) : i ∈ VH} ∪{(s′e, t′e), (s′′e , t′′e ) : e ∈ EH} is a
popular matching in G. We prove the popularity of M by showing a vector α ∈ {0,±1}n that will
be a witness to M ’s popularity.

– For vertices in Ci, where i ∈ VH : let αai = αbi = 1, αa′i = αb′i = −1.
– For any vertex u in De, where e ∈ EH : let αu = 0.
– Let αa0 = αb0 = 0.

It can be checked that αu + αv ≥ costM (u, v) for all edges (u, v) in G. Also, αu ≥ costM (u, u)
for all u ∈ A ∪ B. Since αu = 0 for all vertices u unmatched in M and αu + αv = 0 for every edge
(u, v) in M ,

∑
u∈A∪B αu = 0.

Suppose a0 is matched in some popular matching N , i.e., (a0, bi) ∈ N for some i ∈ [nH ]. Then
(a0, bi) is a popular edge. So it follows from part 1 of Lemma 5 that the parities of βa0 and βbi have
to be the same, for any witness β of the popular matching M . However αa0 = 0 while αbi = 1 for
the witness α described above. This is a contradiction to (a0, bi) being a popular edge and hence no
popular matching in G matches a0 (similarly, b0). ut

Lemma 8. Let N be any popular matching in G. For each i ∈ {1, . . . , nH}: either (ai, bi) and (a′i, b
′
i)

are in N or (ai, b
′
i) and (a′i, bi) are in N .

Proof. We know from Lemma 7 that in the popular subgraph FG, the vertices a0 and b0 are sin-
gleton sets. We now claim that each Ci forms a maximal connected component in FG. This im-
plies that ai has only 2 possible partners in any popular matching N : either bi or b′i. Thus either
(1) {(ai, bi), (a′i, b′i)} ⊂ N or (2) {(ai, b′i), (a′i, bi)} ⊂ N .

It is easy to see that the 4 vertices of Ci belong to the same connected component in FG: this is
because all the 4 edges (ai, bi), (a

′
i, b
′
i), (ai, b

′
i) ,(a′i, bi) are popular. The former 2 edges belong to the

stable matching S = {(ai, bi), (a′i, b′i) : i ∈ VH} ∪{(s′e, t′e), (s′′e , t′′e ) : e ∈ EH} while the latter 2 edges
belong to the popular matching M defined in Lemma 7.

Consider the matching M and its witness α defined in the proof of Lemma 7: the parities of αai
and αte for any i ∈ VH and e ∈ EH are different. Hence it follows from part 1 of Lemma 5 that the
edge (ai, te) is not a popular edge. Similarly, the edge (se, bj) is not a popular edge. Thus each Ci
forms a maximal connected component in FG. ut

Lemma 8 will be important in our reduction. Let α be any witness of N .

– In the first possibility of Lemma 8, i.e., when (ai, bi), (a
′
i, b
′
i) are in N , we have αu = 0 for all

u ∈ Ci. This is because a0 and b0 are unmatched in N , so αai + αb0 ≥ costN (ai, b0) = 0 and
αa0 + αbi ≥ costN (a0, bi) = 0. Also αa0 = αb0 = 0 (by Lemma 5). So αai ≥ 0 and αbi ≥ 0. We
also have αai + αbi = costN (ai, bi) = 0. Thus αai = αbi = 0.

– In the second possibility of Lemma 8, i.e., when (ai, b
′
i), (a

′
i, bi) are in N , we have αu = ±1 for

all u ∈ Ci. This is because costN (ai, bi) = 2, thus αai = αbi = 1.

Edge weights. We now assign weights to the edges in G. For all e ∈ EH , let w(se, t
′
e) = w(se, t

′′
e ) =

w(s′e, te) = w(s′′e , te) = 2, i.e., all the edges between se, te and their neighbors in De have weight 2.
For all i ∈ [nH ], let w(ai, bi) = w(a′i, b

′
i) = 2. Set w(e) = 1 for all other edges e in G.

Let N be a max-weight popular matching in G and let α ∈ {0,±1}n be a witness of N ’s
popularity. Let UN be the set of those indices i ⊆ [nH ] such that αu = ±1 for all u ∈ Ci.
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Lemma 9. The set UN is a vertex cover of the graph H.

Proof. Edge weights were assigned in G such that the following claim (proof given below) holds for
any max-weight popular matching N .

Claim 2 For every e ∈ EH , both se and te have to be matched in N .

Consider any edge e = (i, j) ∈ EH , let i < j. It follows from Claim 2 and Lemma 8 that either
the pair (se, t

′
e), (s

′
e, te) or the pair (se, t

′′
e ), (s′′e , te) is in N .

– If (se, t
′
e) and (s′e, te) are in N , then costN (ai, te) = 0 since te prefers ai to s′e while ai prefers

both bi and b′i (its possible partners in N) to te. It follows from part 2 of Lemma 5 that αte = −1,
thus αai has to be 1 so that αai + αte ≥ 0. Recall that α is a witness of N ’s popularity.

– If (se, t
′′
e ) and (s′′e , te) are in N , then costN (se, bj) = 0 since se prefers bj to t′′e while bj prefers

both aj and a′j (its possible partners in N) to se. It follows from part 2 of Lemma 5 that
αse = −1, thus αbj has to be 1 so that αse + αbj ≥ 0.

Thus at least one of Ci, Cj assigns the α-values of its vertices to ±1. Hence for every edge
(i, j) ∈ EH , at least one of i, j is in UN , in other words, UN is a vertex cover of H. ut

Proof of Claim 2. Consider any e ∈ EH . Since s′e, t
′
e, s
′′
e , and t′′e are stable vertices in G, they have

to be matched in every popular matching in G. Thus any popular matching in G either matches both
se, te or neither se nor te. Recall from the proof of Lemma 8 that there is no popular edge between
De and either Ci or Cj .

Let N be a max-weight popular matching in G. We now need to show that N matches both se
and te. Suppose N matches neither se nor te. Thus (s′e, t

′
e) and (s′′e , t

′′
e ) are in N . Hence the weight

contributed by vertices in De to w(N) is 2.
Let e = (i, j) where i < j. We know from Lemma 8 that either (ai, b

′
i), (a

′
i, bi) are in N or

(ai, bi), (a
′
i, b
′
i) are in N .

Case 1: Suppose {(ai, b′i), (a′i, bi)} ⊂ N . This means costN (ai, bi) = 2 and hence αai = αbi = 1 in
any witness α of N .

Consider the matching N ′ = N ∪ {(se, t′e), (s′e, te)} \ {(s′e, t′e)}. That is, we replace the edge
(s′e, t

′
e) in N with the edges (se, t

′
e) and (s′e, te). It is easy to prove that N ′ is also popular; we will

show a witness β to prove the popularity of N ′. Let α be a witness of N and let βu = αu for all
u ∈ A ∪ B except for the vertices in De. For the vertices in De, let βse = βte = βt′′e = −1 and
βs′e = βt′e = βs′′e = 1.

It can be checked that
∑
u∈A∪B βu = 0 and βu + βv ≥ costN ′(u, v) for all (u, v) ∈ E and

βu ≥ costN ′(u, u) for all u ∈ A ∪ B. In particular, costN ′(ai, te) = 0 = βai + βte . Moreover, we
have w(N ′) = w(N) + 3. Thus there is a popular matching N ′ in G with a larger weight than N , a
contradiction to our assumption that N is a max-weight popular matching in G.

Case 2: Suppose {(ai, bi), (a′i, b′i)} ⊂ N . Consider the matching N ′′ which is exactly the same as
N except that the edges (s′e, t

′
e), (ai, bi) and (a′i, b

′
i) are deleted from N and the new edges are

(se, t
′
e), (s

′
e, te), (ai, b

′
i), and (a′i, bi).

We claim that N ′′ is also popular and we prove this by showing a witness γ. Let γu = αu for all
u ∈ A ∪ B (α is a witness of N) except for the vertices in Ci ∪De. For the vertices in Ci ∪De, let
γse = γte = γt′′e = −1, γs′e = γt′e = γs′′e = 1, and γai = γbi = 1, γa′i = γb′i = −1.

It can be checked that
∑
u∈A∪B γu = 0 and γu + γv ≥ costN ′′(u, v) for all (u, v) ∈ E and

γu ≥ costN ′′(u, u) for all u ∈ A ∪ B. Thus N ′′ is a popular matching. Moreover, we have w(N ′′) =
w(N) + 3− 2 = w(N) + 1. Thus there is a popular matching N ′′ in G with a larger weight than N ,
a contradiction again. Hence we can conclude that both se and te have to be matched in N . ut

Theorem 7. For any integer 1 ≤ k ≤ nH , the graph H = (VH , EH) admits a vertex cover of size k
if and only if G admits a popular matching of weight at least 5mH + 4nH − 2k, where |EH | = mH .

Proof. Let U be a vertex cover of size k in H. Using U , we will construct a matching M in G of
weight 5mH + 4nH − 2k and a witness α to M ’s popularity as follows. For every i ∈ [nH ]:

14



– if i ∈ U then include edges (ai, b
′
i) and (a′i, bi) in M ; set αai = αbi = 1 and set αa′i = αb′i = −1.

– else include edges (ai, bi) and (a′i, b
′
i) in M and set αu = 0 for all u ∈ Ci.

For every e = (i, j) ∈ EH , where i < j, we do as follows:

– if i ∈ U then include the edges (se, t
′
e), (s

′
e, te), and (s′′e , t

′′
e ) in M ; set αse = αte = αt′′e = −1 and

αs′e = αt′e = αs′′e = 1.
– else (so j ∈ U) include the edges (se, t

′′
e ), (s′e, t

′
e), and (s′′e , te) in M ; set αse = αte = αs′e = −1

and αt′e = αs′′e = αt′′e = 1.

Set αa0 = αb0 = 0. It can be checked that αu+αv = 0 for every (u, v) ∈M , hence
∑
u∈A∪B αu =

0. Also αu + αv ≥ costM (u, v) for every edge (u, v) in G and αu ≥ costM (u, u) for all u ∈ A ∪ B.
Thus α is a witness to M ’s popularity.

We will now calculate w(M). The sum of edge weights in M from vertices in De is 5, so this adds
up to 5mH for all e ∈ EH . For i ∈ U , the sum of edge weights in M from vertices in Ci is 2, so this
adds up to 2k over all i ∈ UH . For j /∈ U , the sum of edge weights in M from vertices in Cj is 4, so
this adds adds up to 4(nH − k) over all j /∈ UH . Thus f(M) = 5mH + 4nH − 2k.

We will now show the converse. Suppose G has a popular matching of weight at least 5mH +
4nH − 2k. Let N be a max-weight popular matching in G. So w(N) ≥ 5mH + 4nH − 2k. Let α be
a witness of N ’s popularity and let UN = {i ⊆ [nH ] : αu = ±1 ∀u ∈ Ci}. We know from Lemma 9
that UN is a vertex cover of H. We will now show that |UN | ≤ k.

We know from Claim 2 that for every e ∈ EH , both se and te have to be matched in N . So each
gadget De contributes a weight of 5 towards w(N). Each gadget Ci, for i ∈ UN , contributes a weight
of 2 towards w(N) while each gadget Cj , for j /∈ UN , contributes a weight of 4 towards w(N). Hence
w(N) = 5mH + 2|UN |+ 4(nH − |UN |). Since 5mH + 2|UN |+ 4(nH − |UN |) ≥ 5mH + 4nH − 2k, we
get |UN | ≤ k. Thus H has a vertex cover of size k. ut

Theorem 3 stated in Section 1 now follows. It is easy to see that Theorem 7 holds even if “popular
matching of weight at least 5mH + 4nH − 2k” is replaced by “max-size popular matching of weight
at least 5mH + 4nH − 2k”. Thus the problem of computing a max-size popular matching problem
in G = (A ∪B,E) of largest weight is also NP-hard.

6 Max-weight popular matchings: exact and approximate solutions

Let G = (A ∪ B,E) be an instance with a weight function w : E → R≥0. We will now show that
a popular matching in G of weight at least OPT/2 can be computed in polynomial time, where
OPT = w(M∗) and M∗ is a max-weight popular matching in G. The following decomposition
theorem for any popular matching M in G = (A ∪B,E) is known.

Theorem 8 ([7]). M can be partitioned into M0 ∪M1 such that M0 ⊆ S and M1 ⊆ D, where S is
a stable matching and D is a (strongly) dominant matching in G.

Any popular matching M has a witness α ∈ {0,±1}n: let M0 (similarly, M1) be the set of edges
of M on vertices u with αu = 0 (resp., αu = ±1). Since αa +αb = 0 for all (a, b) ∈M , the matching
M is a disjoint union of M0 and M1. If M is a max-weight popular matching in G, then one of
M0,M1 has weight at least w(M)/2.

What the above result from [7] shows is that M0 can be extended to a stable matching in G and
M1 can be extended to a dominant matching in G. Consider the following algorithm.

1. Compute a max-weight stable matching S∗ in G.
2. Compute a max-weight dominant matching D∗ in G.
3. Return the matching in {S∗, D∗} with larger weight.

Since all edge weights are non-negative, either the max-weight stable matching in G or the max-
weight dominant matching in G has weight at least w(M∗)/2 = OPT/2. Thus Steps 1-3 compute a
2-approximation for max-weight popular matching in G = (A ∪B,E).

Regarding the implementation of this algorithm, both S∗ and D∗ can be computed in polynomial
time [25,7]. We also show descriptions of the stable matching polytope and the dominant matching
polytope below. Thus the above algorithm runs in polynomial time.
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6.1 A fast exponential time algorithm

We will now show an algorithm to compute a max-weight popular matching in G = (A ∪ B,E)
with w : E → R. We will use an extended formulation from [21] of the popular fractional matching
polytope PG. This is obtained by generalizing LP2 from Section 2 to all fractional matchings x in
G, i.e.,

∑
e∈Ẽ(u) xe = 1 for all vertices u and xe ≥ 0 for all e ∈ Ẽ. So costx(a, b), which is the sum

of votes of a and b for each other over their respective assignments in x, replaces costM (a, b). Thus
costx(a, b) =

∑
b′:b′≺ab

xab′ −
∑
b′:b′�ab

xab′ +
∑
a′:a′≺ba

xa′b −
∑
a′:a′�ba

xa′b.

Recall the subgraph FG = (A ∪ B,EF ) where EF is the set of popular edges in G. The set EF
can be efficiently computed as follows: call an edge stable if it belongs to some stable matching in
G. It was shown in [7] that every popular edge in G = (A ∪B,E) is a stable edge either in G or in
a larger bipartite graph G′ on O(n) vertices and O(m + n) edges. All stable edges in G and in G′

can be identified in linear time [14].
Let C = {C1, . . . , Ch} be the set of connected components in FG and let ` be the number of non-

singleton sets in C. Let us assume that components C1, . . . , C` have size at least 2. For any popular
matching M with a witness α ∈ {0,±1}n, Lemma 6 tells us that α defines a natural function (we
will call this function α) from C to {0, 1}, where α(Ci) = 0 if αu = 0 for all u ∈ Ci and α(Ci) = 1 if
αu = ±1 for all u ∈ Ci. Note that α(Ci) = 0 for `+ 1 ≤ i ≤ h.

Definition 6. For r = (r1, . . . , r`) ∈ {0, 1}`, let P(r) be the convex hull of all popular matchings
M in G such that M has a witness α with α(Ci) = ri for all 1 ≤ i ≤ `.

P(0) is the stable matching polytope and P(1) is the dominant matching polytope. We will now
show an extended formulation of P(r) for any r ∈ {0, 1}`. First augment r with r`+1 = · · · = rh = 0
so that r ∈ {0, 1}h.

Our constraints. Let U be the set of all unstable vertices in ∪iCi where i ∈ {1, . . . , h} is such
that ri = 0. Let A′ = A \ U and B′ = B \ U . It follows from Lemma 6 that all vertices in U are
left unmatched in any popular matching M in P(r) while all vertices in A′ ∪B′ are matched in M
(recall that all stable vertices of G are matched in M). Consider constraints (2)-(6) given below.

αa + αb ≥ costx(a, b) + |ri − rj | ∀(a, b) ∈ E ∩ (Ci × Cj), 1 ≤ i, j ≤ h (2)

αa + αb = costx(a, b) ∀(a, b) ∈ EF (3)∑
u∈A∪B

αu = 0 and − ri ≤ αu ≤ ri ∀u ∈ Ci, 1 ≤ i ≤ h (4)

x(u,u) = 1 ∀u ∈ U and x(u,u) = 0 ∀u ∈ A′ ∪B′ (5)∑
e∈Ẽ(u)

xe = 1 ∀u ∈ A ∪B, xe ≥ 0 ∀e ∈ EF , and xe = 0 ∀e ∈ E \ EF (6)

The variables in the constraints above are xe for e ∈ E and αu for u ∈ A ∪ B. Constraint (2)
tightens the edge covering constraint αa + αb ≥ costx(a, b) for edges in Ci × Cj with ri 6= rj .
Consider any popular matching M with witness α such that α(Ci) 6= α(Cj). So M and α satisfy
αa + αb ≥ costM (a, b). Since αa + αb ∈ {±1} while costM (a, b) ∈ {±2, 0}, M and α have to satisfy
αa + αb ≥ costM (a, b) + 1 = costM (a, b) + |ri − rj |.

Constraint (3) makes the edge covering constraint tight for all popular edges (a, b). This is because
for any popular matching M and witness α, we have αa + αb = costM (a, b) for any popular edge
(a, b) (see the proof of Lemma 5).

Constraint (6) is clearly satisfied by any popular matching M and any witness α satisfies∑
u∈A∪B αu = 0. The other constraints in (4) and (5) are consequences of the parity ri of the

component Ci that a vertex belongs to. We will prove the following theorem in Section 6.2.

Theorem 9. Constraints (2)-(6) define an extended formulation of the polytope P(r).

Thus a max-weight popular matching in P(r) can be computed in polynomial time and hence a
max-weight popular matching in G can be computed in O∗(2`) time by going through all r ∈ {0, 1}`.
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Recall that ` is the number of components in FG of size at least 2. Since ` ≤ n/2, this is an O∗(2n/2)
algorithm for computing a max-weight popular matching.

A faster exponential time algorithm. We will show in Section 6.3 that it is enough to go
through all r ∈ {0, 1}k, where k is the number of components in FG of size at least 4. We do this
by introducing a new variable pi, where 0 ≤ pi ≤ 1, to replace ri and represent the parity of Ci, for
each Ci ∈ C of size 2.

We will show that the resulting polytope is an extended formulation of the convex hull of all
popular matchings M in G such that M has a witness α with α(Ci) = ri for 1 ≤ i ≤ k. This yields an
O∗(2k) algorithm for a max-weight popular matching in G = (A∪B,E). Since k ≤ n/4, this proves
Theorem 4 stated in Section 1. Also, when k = O(log n), we have a polynomial time algorithm to
compute a max-weight popular matching in G.

6.2 Proof of Theorem 9

Let Q′(r) ⊆ Rm+n be the polytope defined by constraints (2)-(6), where |E| = m. Let Q(r) denote
the polytope Q′(r) projected on to its first m coordinates (those corresponding to e ∈ E). Our goal
is to show that Q(r) is the polytope P(r).

We will first show that every popular matching M with at least one witness α ∈ {0,±1}n such
that α(Ci) = ri for i = 1, . . . , ` belongs to Q(r). It is easy to see that M and α satisfy constraints (3)-
(6). Regarding constraint (2), for any edge (a, b) ∈ Ci×Cj such that ri 6= rj , we have αa+αb ∈ {±1}
while costM (a, b) ∈ {±2, 0}. Thus αa + αb ≥ costM (a, b) implies that αa + αb ≥ costM (a, b) + 1.
Hence (M,α) ∈ Q′(r), i.e., M ∈ Q(r). Thus P(r) ⊆ Q(r).

Let (x,α) ∈ Q′(r). We will now use the techniques and results from [27,18] to show that x is a
convex combination of some popular matchings in P(r). This will prove Q(r) = P(r).

The polytope P(0) is the stable matching polytope and a simple proof of integrality of Rothblum’s
formulation [25] of this polytope was given in [27]. When G admits a perfect stable matching, the
polytope P(1) is the same as PG and a proof of integrality of PG in this case was given in [18]. Note
that r1, . . . , rh are all 0 in [27] and r1, . . . , rh are all 1 for this result in [18], i.e., the integrality of
PG when G admits a perfect stable matching.

We will build a table T of width 1 (as done in [27,18]) with n′ = |A′∪B′| rows: one corresponding
to each vertex u ∈ A′ ∪B′. The row corresponding to u will be called Tu.

Form an array Xu of length 1 as follows: if x(u,v) > 0 then there is a cell of length x(u,v) in
Xu with entry v in it. The entries in Xu will be sorted in increasing order of preference for u ∈ A′
and in decreasing order of preference for u ∈ B′. This was the order used in [27]. If u ∈ Ci where
i ∈ {1, . . . , `} with ri = 1, then reorder Xu as done in [18].

For any a ∈ A′ that belongs to such a component Ci, the initial or least preferred (1 + αa)/2
fraction of Xa will be called the positive or blue sub-array of Xa and the remaining part, which is
the most preferred (1−αa)/2 fraction of Xa, will be called the negative or red sub-array of Xa. The
array Xa will be reordered as shown in Fig. 3, i.e., the positive and negative sub-arrays of Xa are
swapped. Call the reordered array Ta.

Xa Ta

Increasing order of a’s preference

1− qa qa1− qaqa

Fig. 3. The array Xa (on the left) will be reordered by swapping the positive and negative sub-arrays
as shown above. The value qa = (1 + αa)/2, so 1− qa = (1− αa)/2.

A similar transformation from Xb to Tb was shown in [18] for each b ∈ B′ that belongs to a
component Ci where i ∈ {1, . . . , `} and ri = 1. The initial or most preferred (1 − αb)/2 fraction of
Xb will be called the negative sub-array of Xb and the remaining part, which is the least preferred
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(1 + αb)/2 fraction of Xb, will be called the positive sub-array of Xb. As before, swap the positive
and negative sub-arrays of Xb and call this reordered array Tb.

If u ∈ A′∪B′ is in a component Ci with ri = 0, then we leave Xu as it is. That is, we set Tu = Xu

(see Fig. 4). There are no positive or negative sub-arrays in Tu.

Tu = Xu

Fig. 4. The entries in Tu are sorted in increasing order of preference for u ∈ A and in decreasing
order of preference for u ∈ B.

Finding the popular matchings that x is a convex combination of. Let T be the table with
rows Tu, for u ∈ A′ ∪B′. For any t ∈ [0, 1), define the matching Mt as follows:

– let L(t) be the vertical line at distance t from the left boundary of T ;
– L(t) intersects (or touches the left boundary of) some cell in Tu, call this cell Tu[t], for each
u ∈ A′ ∪B′;

define Mt = {(u, v) : u ∈ A′ ∪B′ and v is in cell Tu[t]}. (7)

Validity of Mt. We need to prove that Mt is a valid matching in G. That is, for any vertex
u ∈ A′ ∪ B′, we need to show that if v belongs to cell Tu[t], then u belongs to cell Tv[t]. Note that
both u and v have to belong to the same component in the subgraph FG since xuv = 0 otherwise
(since xe = 0 for e ∈ E \ EF ). Let Ci be the connected component in F containing u and v. There
are 2 cases here: (i) ri = 1 and (ii) ri = 0.

The proof in case (i) follows directly from Theorem 3.2 in [18]. The proof in case (ii) is given in
the proof of Theorem 1 in [27]. Both these proofs are based on the “tightness” of the edge (u, v),
i.e., αu +αv = costx(u, v) in case (i) and costx(u, v) = 0 in case (ii). The tightness of (u, v) holds for
us as well: since xuv > 0, (u, v) ∈ EF , so αu + αv = costx(u, v) by constraint (3) in case (i); and in
case (ii), we have αu = αv = 0 by constraint (4) and so costx(u, v) = 0 by constraint (3).

Popularity of Mt. We will now show that Mt is popular. Define a vector αt ∈ {0,±1}n:

– For 1 ≤ i ≤ h: if ri = 0 then set αtu = 0 for each u ∈ Ci; else for each u ∈ Ci
∗ if the cell Tu[t] is positive (or blue) then set αtu = 1, else set αtu = −1.

We will now show that αt is a witness of Mt. Thus Mt will be a popular matching in G, in
fact, Mt will be in P(r). This is because by our assignment of αt-values above, αt(Ci) = ri for
i ∈ {1, . . . , h}. Our first claim is that

∑
u∈A∪B α

t
u = 0.

To prove the above claim, observe that for every vertex u that is left unmatched in Mt (all these
vertices belong to U), we have αtu = 0. We now show that for every (a, b) in Mt, we have αta+αtb = 0.
Since (a, b) ∈ EF , the vertices a and b belong to the same component Ci. If ri = 0 then αta = αtb = 0
and hence αta + αtb = 0. If ri = 1 then αta, α

t
b ∈ {±1} and the proof that αta + αtb = 0 was shown in

[18] (see Corollary 3.1). Thus
∑
u∈A∪B α

t
u = 0.

We will now show that αtu ≥ costMt(u, u) for all u ∈ A∪B. Every vertex u ∈ A′ ∪B′ is matched
in Mt and so costMt

(u, u) = −1. Since αtu ≥ −1 for all u ∈ A′ ∪ B′, we have αtu ≥ costMt
(u, u) for

these vertices. For u ∈ U , we have αtu = 0 = costMt
(u, u).

What is left to show is that αta + αtb ≥ costMt
(a, b) for all (a, b) ∈ E. Lemma 10 below shows

this. Hence we can conclude that Mt is a popular matching in G, in particular, Mt ∈ P(r).
It is now easy to show that x is a convex combination of matchings that belong to P(r). To

obtain these matchings, as done in [27], sweep a vertical line from the left boundary of table T to
its right boundary: whenever the line hits the left wall of one or more new cells, a new matching
is obtained. If the left wall of the i-th leftmost cell(s) in the table T is at distance ti from the left
boundary of T , then we obtain the matching Mti defined analogous to Mt in (7).

Let M0,Mt1 , . . . ,Mtd−1
be all the matchings obtained by sweeping a vertical line through the

table T . This means that x = t1 ·M0 + (t2 − t1) ·Mt1 + · · ·+ (1− td−1) ·Mtd−1
. Thus x is a convex

combination of matchings in P(r). This finishes the proof that Q(r) = P(r).
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Lemma 10. For any (a, b) ∈ E, we have αta + αtb ≥ costMt
(a, b).

Proof. Let a ∈ Ci and b ∈ Cj , where 1 ≤ i, j ≤ h. The proof that αta + αtb ≥ costMt(a, b) when
ri = rj follows from [18,27]. When ri = rj = 1, it was shown in [18] (see Lemma 3.5) that αta +αtb ≥
costMt

(a, b). When ri = rj = 0, it was shown in [27] (see Theorem 1) that costMt
(a, b) ≤ αta+αtb = 0.

We need to show αta +αtb ≥ costMt
(a, b) when ri 6= rj . Assume without loss of generality that ri = 1

and rj = 0. So αb = 0.
The constraint corresponding to edge (a, b) is αa +αb ≥ costx(a, b) + |ri− rj | which simplifies to

αa ≥ costx(a, b) + 1. If b ∈ U then costx(a, b) ≥ 0 since b prefers a to itself. So αa ≥ costx(a, b) + 1
along with αa ≤ 1 (by constraint (4)) implies that αa = 1 and costx(a, b) = 0. This means that
αta = 1 and a prefers all the entries in the array Ta to b. Hence costMt(a, b) = 0 and thus we have
αta + αtb = 1 + 0 ≥ costMt

(a, b).
Hence let us assume that b ∈ B′. Since

∑
e∈Ẽ(u) xe = 1 for all u, costx(a, b) equals

∑
b′≺ab

xab′ −
∑
b′�ab

xab′ +
∑
a′≺ba

xa′b −
∑
a′�ba

xa′b = 2

(∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b + xab − 1

)
.

Here xab = 0 since a and b belong to distinct components in FG. So the constraint αa ≥ costx(a, b)+1
simplifies to:

2qa − 1 ≥ 2

(∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b − 1

)
+ 1, where αa = 2qa − 1.

This becomes qa ≥
∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b. See Fig. 5.

order of a’s preference
Increasing

order of b’s preference
Increasing

Ta

Tb

1− qa qa

αb = 0

αa = −1 αa = 1

Fig. 5. The cells where either a or b gets matched to a neighbor worse than the other is restricted to
the blue sub-array of Ta and the sub-array of Tb exactly below this (between the two dashed vertical
lines). The sum of lengths of such cells added up over both Ta and Tb is at most qa.

The neighbors with which a gets paired in x start in increasing order of a’s preference from the
dashed line separating the red sub-array and blue sub-array in Ta and this wraps around in left to
right orientation (see Fig. 5). For b, the neighbors with which b gets paired in x start in increasing
order of b’s preference from the right end of its array Tb and this order is from right to left. Thus b
is matched in x to its worst neighbor at the right end of Tb and to its best neighbor at the left end
of Tb.

Since
∑
b′≺ab

xab′+
∑
a′≺ba

xa′b ≤ qa, this implies that the subarray where either a is matched to a
worse neighbor than b (this subarray has length

∑
b′≺ab

xab′) or b is matched to a worse neighbor than
a (this subarray has length

∑
a′≺ba

xa′b) is confined to within the dashed line separating the red and
blue subarrays of Ta and the rightmost wall of Tb (see Fig. 5). Also, there is no cell where both a and b
are matched to worse neighbors than each other as this would make

∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b > qa.
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If Ta[t] is positive or blue, then αta = 1. We have costMt
(a, b) ≤ 0 here since when one of a, b

is getting matched to a worse neighbor than the other, the other is getting matched to a better
neighbor. Since αtb = 0 in the entire array, we have αta + αtb = 1 > costMt

(a, b).

If Ta[t] is negative or red, then Ta[t] contains a neighbor that a prefers to b and similarly, Tb[t]
contains a neighbor that b prefers to a. That is, costMt(a, b) = −2 and here we have αta = −1 and
αtb = 0. Thus we have αta+αtb = −1 > costMt(a, b). This shows that the edge (a, b) is always covered
by the sum of αt-values of a and b. ut

6.3 A faster exponential time algorithm

Recall the popular subgraph FG = (A∪B,EF ) and the set C = {C1, . . . , Ch} of connected components
in FG. Assume without loss of generality that C1, . . . , Ck have size at least 4 and Ck+1, . . . , C` have
size 2. Let us define the polytope P ′(r) as follows.

Definition 7. For r = (r1, . . . , rk) ∈ {0, 1}k, let P ′(r) be the convex hull of all popular matchings
M in G such that M has a witness α with α(Ci) = ri for all 1 ≤ i ≤ k.

Consider constraints (2)-(6) from Section 6. Regarding constraint (2), r1, . . . , rk are the coordi-
nates in the vector r ∈ {0, 1}k while r`+1 = · · · = rh = 0 as before, and ri = pi for k + 1 ≤ i ≤ `,
where pk+1, . . . , p` are variables. So in constraint (2):

– |ri − rj | ∈ {0, 1} for i, j ∈ {1, . . . , k} ∪ {`+ 1, . . . , h}.
– when one of i, j (say, i) is in {k+1, . . . , `} and j ∈ {1, . . . , k}∪{`+1, . . . , h} then |ri−rj | = 1−pi

if rj = 1 and |ri − rj | = pi if rj = 0.

– when both i, j are in {k + 1, . . . , `}, we replace constraint (2) with two constraints: one where
|ri − rj | is replaced by pi − pj and another where |ri − rj | is replaced by pj − pi.

Similarly, in constraint (4), −ri ≤ αu ≤ ri now becomes −pi ≤ αu ≤ pi, for u ∈ Ci where
i ∈ {k + 1, . . . , `}. Constraints (3), (5), and (6) remain the same as before. Also, the sets U,A′, B′

are the same as before since all in Ck+1 ∪ · · · ∪ C` are stable vertices. We will show the following
theorem here. The proof of Theorem 10 will follow the same outline as the proof of Theorem 9.

Theorem 10. The revised constraints (2)-(6) along with the constraints 0 ≤ pi ≤ 1 for k+1 ≤ i ≤ `
define an extended formulation of the polytope P ′(r).

Proof. Let S ′(r) be the polytope defined by the revised constraints (2)-(6) along with 0 ≤ pi ≤ 1
for k+ 1 ≤ i ≤ `. Let S(r) denote the polytope S ′(r) projected on to the coordinates corresponding
to e ∈ E. We will now show that S(r) is the polytope P ′(r).

It is easy to see that every popular matching M with at least one witness α such that α(Ci) = ri
for i = 1, . . . , ` belongs to S(r). Thus P ′(r) ⊆ S(r). Let (x,α,p) ∈ S ′(r). We will now show that x
is a convex combination of matchings in P ′(r).

As done in the proof of Theorem 9, we will construct a table T with n′ = |A′∪B′| rows. The rows
of vertices outside Ck+1∪· · ·∪C` will be the same as before. Recall that |Ci| = 2 for k+1 ≤ i ≤ ` and
for any i ∈ {k + 1, . . . , `}: every vertex u ∈ Ci is matched to its only neighbor v ∈ Ci with xuv = 1.
So we do not reorder Xu as it consists of just a single entry, i.e., Tu = Xu. However we partition Tu
into 3 cells: (i) the positive or blue cell, (ii) the negative or red cell, and (iii) the zero or green cell.

– for a ∈ Ci, compute 2si = 1 − pi. Since pi ≤ 1, we have si ≥ 0. Also pi ≥ ±αu since αu
is sandwiched between −pi and pi. So 1 − 2si ≥ ±αa, i.e., si ≤ qa and si ≤ 1 − qa where
qa = (1 + αa)/2. The array Ta gets divided into three cells as shown in Fig. 6.

The leftmost 1− qa− si part of Ta is its “negative” (or red) cell and the rightmost qa− si part is
its “positive” (or blue) cell. The part left in between the positive and negative parts, which is of
length 2si, is its “zero” (or green) cell. All 3 cells contain the same vertex b∗ where Ci = {a, b∗}.
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si si

Ta

1− qa qa

Fig. 6. The red part (of length 1 − qa − si) is the negative cell of Ta and the blue part (of length
qa − si) is the positive cell of Ta. The middle or green part (of length 2si) is its zero cell.

si si

Tb

1− qb qb

Fig. 7. The blue part (of length 1 − qb − si) is the positive cell of Tb and the red part (of length
qb − si) is the negative cell of Tb. The middle or green part (of length 2si) is its zero cell.

– for b ∈ Ci, compute 2si = 1−pi. Since ±αb ≤ pi ≤ 1, we have si ≥ 0; also si ≤ qb and si ≤ 1−qb
where qb = (1− αb)/2. The array Tb gets divided into three cells as shown in Fig. 7.
The leftmost 1− qb − si part of Tb is its “positive” (or blue) cell and the rightmost qb − si part
is its “negative” (or red) cell. The part left in between these two parts, which is of length 2si, is
its “zero” (or green) cell. All 3 cells contain the same vertex a∗ where Ci = {a∗, b}.

In order to find the popular matchings that x is a convex combination of, we build the table T
and define Mt exactly as done in the proof of Theorem 9. It follows from the same arguments as
before that Mt is a matching. In particular, for k+ 1 ≤ i ≤ `, we have |Ci| = 2, say Ci = {u, v}, and
so v is the only entry in the entire array Tu and similarly, u is the only entry in the entire array Tv.

We now need to show that Mt is popular. For this, we define a vector αt ∈ {0,±1}n: for
i ∈ {1, . . . , k} ∪ {` + 1, . . . , h}, the assignment of αtu-values is exactly the same as in the proof of
Theorem 9. For i ∈ {k + 1, . . . , `} and each u ∈ Ci do:

– set αtu = 1 if the cell Tu[t] is positive (or blue)
– set αtu = 0 if the cell Tu[t] is zero (or green)
– set αtu = −1 if the cell Tu[t] is negative (or red)

We will now show that
∑
u∈A∪B α

t
u = 0. The only new step is to show that αta + αtb = 0 for

(a, b) ∈ Mt, where Ci = {a, b}, i.e., i ∈ {k + 1, . . . , `}. Here we have αa + αb = costx(a, b) = 0 and
this is because xab = 1.

So qa = (1 + αa)/2 = (1− αb)/2 = qb and this implies the length of the positive (or blue) cell in
Ta, which is qa− si (see Fig. 6), equals the length of the negative (or red) cell in Tb, which is qb− si,
(see Fig. 7).

– Hence the positive cell of Ta is perfectly aligned with the negative cell of Tb. So if L(t) goes
through the positive cell of Ta, i.e. if αta = 1, then αtb = −1.

– Similarly, the negative cell of Ta, which is of length 1 − qa − si, is perfectly aligned with the
positive cell of Tb, which is of length 1− qb − si. So if L(t) goes through the negative cell of Ta,
i.e. if αta = −1, then αtb = 1.

– Thus the zero cells in Ta and Tb are perfectly aligned with each other. So if L(t) goes through
the zero cell of Ta, i.e. if αta = 0, then αtb = 0.

Hence αta + αtb = 0 for all (a, b) ∈Mt and so
∑
u∈A∪B α

t
u = 0.

It is easy to see that αtu ≥ costMt
(u, u) for all u ∈ A∪B. What is left to show is that αta + αtb ≥

costMt(a, b) for all (a, b) ∈ E. Let a ∈ Ci and b ∈ Cj . When both i and j are in {1, . . . , k} ∪ {` +
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1, . . . , h}, the proof of Lemma 10 shows that the edge covering constraint holds. Lemmas 11 and 12
below show that the edge covering constraint holds when one or both the indices are in {k+1, . . . , `}.

This completes the proof that Mt is a popular matching in G, in particular, Mt ∈ P ′(r). The
rest of the argument that x is a convex combination of matchings that belong to P ′(r) is exactly
the same as given in the proof of Theorem 9. Thus we can conclude that S(r) = P ′(r). ut

Lemma 11. Let (a, b) ∈ E with a ∈ Ci and b ∈ Cj. Suppose one of i, j is in {1, . . . , k}∪{`+1, . . . , h}
and the other is in {k + 1, . . . , `}. Then αta + αtb ≥ costMt(a, b).

Proof. Assume without loss of generality that i ∈ {k + 1, . . . , `}. So Ci = {a, b∗}. Since a and b are
in different components in FG, the edge (a, b) /∈ EF and so xab = 0. The index j ∈ {1, . . . , k} ∪ {`+
1, . . . , h}, so rj is 0 or 1.

Case 1. Suppose rj = 0. So αb = 0. Suppose b ∈ U , i.e., b is unmatched in x. Then the constraint
αa+αb ≥ costx(a, b)+ |ri−rj | for (a, b) becomes αa ≥ pi since costx(a, b) = 0. We also have αa ≤ pi
(the revised constraint (4)). Hence αa = pi and this means 2si = 1−αa, i.e., si = (1−αa)/2 = 1−qa
(see Fig. 6). Then there is no negative (or red) cell in the entire array Ta. In other words, αta ≥ 0
throughout the array Ta and so αta + αtb ≥ 0 = costMt

(a, b).

Hence let us assume that b ∈ B′. So costx(a, b) = 2(
∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b − 1). Thus the
constraint αa + αb − |ri − rj | ≥ costx(a, b) becomes: (where αa = 2qa − 1)

(2qa − 1)− pi ≥ 2

(∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b − 1

)
qa + (1− pi)/2 ≥

∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b

qa + si ≥
∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b (since si = (1− pi)/2)

Note that qa + si is the sum of lengths of the positive (or blue) and zero (or green) cells of Ta
(see Fig. 8) and so qa + si ≤ 1. In these two cells of Ta, αta is either 1 or 0.

si si

Increasing
order of b’s preference

Tb

Ta

1− qa qa

Fig. 8. The vertex a is matched to the same partner in the entire array Ta and b’s increasing order
of partners in x starts from the right end of its array Tb.

Suppose a prefers b∗ to b. Then
∑
b′≺ab

xab′ = 0, so qa + si ≥
∑
a′≺ba

xa′b. So while b is matched
to a neighbor worse than a, αta ≥ 0. Note that αtb = 0 throughout the array Tb. Thus αta +αtb ≥ 0 ≥
costMt

(a, b).

Suppose a prefers b to b∗. Then
∑
b′≺ab

xab′ = 1 and so qa+si ≥ 1. This means qa+si = 1 and so∑
a′≺ba

xa′b = 0. That is, b prefers each of its partners in the array Tb to a and so costMt
(a, b) = 0.

Also qa + si = 1 implies that there is no negative (or red) cell in Ta. Thus αta ≥ 0 throughout the
array Ta and so αta + αtb ≥ 0 = costMt

(a, b).
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Case 2. Suppose rj = 1. So αb = 1−2qb and the constraint αa+αb−|ri− rj | ≥ costx(a, b) becomes:

(2qa − 1) + (1− 2qb)− (1− pi) ≥ 2

(∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b − 1

)
qa − qb − (1− pi)/2 ≥

∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b − 1

(qa − si) + (1− qb) ≥
∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b.

Note that qa − si is the length of the positive (or blue) cell in Ta (see Fig. 9). Similarly, 1− qb is
the length of the blue sub-array of Tb.

Suppose a prefers b∗ to b. Then
∑
b′≺ab

xab′ = 0 and so
∑
a′≺ba

xa′b ≤ (qa − si) + (1 − qb) and
this is the sum of lengths of blue sub-arrays of Ta and Tb. Consider traversing the array Tb starting
from the dashed line separating its blue sub-array from its red sub-array in a right-to-left orientation
that wraps around. The sum of length of the cells where b is matched to neighbors worse than a
is
∑
a′≺ba

xa′b. This is at most the sum of lengths of blue sub-arrays in Ta and Tb. Thus while b is
matched to a neighbor worse than a, we have αta + αtb ≥ 0 = costMt(a, b) and when b is matched to
a neighbor better than a, we have αta + αtb ≥ −2 = costMt(a, b) since αta ≥ −1 and αtb ≥ −1.

sisi

order of b’s preference
Increasing

Ta

Tb

1− qa qa

qb1− qb

Fig. 9. The vertex a is matched to the same partner in the entire array Ta and b’s increasing order
of partners in Tb starts from the dashed line in right to left orientation.

Suppose a prefers b to b∗. Then
∑
b′≺ab

xab′ = 1 and so
∑
a′≺ba

xa′b ≤ (qa − si) + (1 − qb) − 1.
Since

∑
a′≺ba

xa′b ≥ 0, this means the sum of lengths of blue sub-arrays in Ta and Tb is at least 1
and

∑
a′≺ba

xa′b is bounded by how much (qa−si)+(1−qb) exceeds 1. Since the blue sub-array in Tb
begins from its left end and the blue cell in Ta starts from its right end, for any t ∈ [0, 1), at least one
of the cells Ta[t], Tb[t] is blue. Moreover, when b prefers a to its neighbors in Tb, then both Ta[t] and
Tb[t] are blue. So while b is matched to a neighbor better than a, we have αta+αtb ≥ 0 = costMt(a, b)
and when b is matched to a neighbor worse than a, we have αta + αtb = 2 = costMt

(a, b). ut

Lemma 12. Let (a, b) be an edge in Ci×Cj, where i, j ∈ {k+1, . . . , `}. Then αta+αtb ≥ costMt
(a, b).

Proof. Here both Ci and Cj have size 2. When i = j, we showed that αta + αtb = 0 = costMt
(a, b) in

the proof of
∑
u∈A∪B α

t
u = 0.

So we now assume i 6= j and so xab = 0. The constraint αa +αb− |ri− rj | ≥ costx(a, b) becomes
the following two constraints, where αa = 2qa − 1 and αb = 1− 2qb.

(2qa − 1) + (1− 2qb)− (pi − pj) ≥ 2 (
∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b − 1) and

(2qa − 1) + (1− 2qb) + (pi − pj) ≥ 2 (
∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b − 1).
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Let si = (1−pi)/2 and sj = (1−pj)/2. The above two constraints imply the following two constraints
respectively:

(qa + si) + (1− qb − sj) ≥
∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b (8)

(qa − si) + (1− qb + sj) ≥
∑
b′≺ab

xab′ +
∑
a′≺ba

xa′b (9)

Note that the length of the blue cell in Ta is qa− si while qa + si is the sum of the lengths of the
blue and green cells in Ta (see the top 2 arrays in Fig. 10). Similarly, the length of the blue cell in
Tb is 1− qb − sj while 1− qb + sj is the sum of the lengths of the blue and green cells in Tb (see the
bottom 2 arrays in Fig. 10). We will consider 3 cases here.

Case 1. Both a and b prefer their partners in x to each other. This is the easiest case. Here
costMt

(a, b) = −2 and since αtu ≥ −1 for all vertices u, we have αta + αtb ≥ −2 = costMt
(a, b).

Ta

Tb

1− qb − sj

qa + si qa − si

1− qb + sj

Fig. 10. The length of the blue cell in Ta (similarly, Tb) is qa − si (resp., 1− qb − sj). The length of
the blue + green cells in Ta (similarly, Tb) is qa + si (resp., 1− qb + sj).

Case 2. Exactly one of a, b prefers its partner in x to the other. So costMt
(a, b) = 0 and the right

side of constraints (8) and (9) is 1.
Constraint (8) means that the length of the (blue + green) cells of Ta added to the length of the

blue cell of Tb is at least 1. Hence the length of the blue cell of Tb is at least the length of the red
cell in Ta (see Fig. 10).

Constraint (9) means that the length of the (blue + green) cells of Tb added to the length of the
blue cell of Ta is at least 1. Hence the length of the blue cell of Ta is at least the length of the red
cell in Tb (see Fig. 10).

Thus for any t ∈ [0, 1), it is the case that either (i) at least one of Ta[t], Tb[t] is blue or (ii) both
the cells Ta[t] and Tb[t] are green. Thus we have αta + αtb ≥ 0 = costMt(a, b).

Case 3. Both a and b prefer each other to their partners in x. So costMt
(a, b) = 2 and the right side

of constraints (8) and (9) is also 2.
Since each of (qa + si), (qa− si), (1− qb + sj), (1− qb− sj) is at most 1, it follows that qa− si = 1

and 1− qb − sj = 1. Thus the entire array Ta is blue and similarly, the entire array Tb is also blue.
Hence αta = αtb = 1. Thus we have αta + αtb = 2 = costMt

(a, b). ut

Acknowledgment. Thanks to Chien-Chung Huang for useful discussions on strongly dominant match-
ings.
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5. Á. Cseh. Popular Matchings. In Trends in Computational Social Choice, Edited by Ulle Endriss, COST
(European Cooperation in Science and Technology): 105–122, 2017.
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Appendix

Mixed matchings. Consider the roommates instance G that is a triangle on the 3 vertices a, b, c
with the following preference lists: a prefers b to c while b prefers c to a and c prefers a to b. This
instance has no mixed matching that is stable. A mixed matching Π is equivalent to a point x in
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the matching polytope of G. A mixed matching Π is stable if the corresponding point x satisfies the
following stability constraint for every edge (u, v):

xuv +
∑

v′:v′�uv

xuv′ +
∑

u′:u′�vu

xu′v ≥ 1.

It can be checked that there is no point x in the matching polytope of G that satisfies the stability
constraints for all edges. The mixed matching Π = {(M1, 1/3), (M2, 1/3), (M3, 1/3)}, where M1 =
{(a, b)}, M2 = {(b, c)}, M3 = {(c, a)}, is popular in this instance.

Irving’s algorithm

Given a roommates instance G = (V,E) with strict preferences, Irving’s algorithm [19] determines
if G admits a stable matching or not and if so, returns one. Irving’s algorithm assumed G to be a
complete graph, however the algorithm easily generalizes to non-complete graphs as well and hence
we will not assume G to be complete.

Irving’s algorithm consists of 2 phases:

1. In the first phase, we consider the bipartite graph G∗ = (V ∪ V ′, E′) where V ′ = {u′ : u ∈ V }.
So G∗ has 2 copies u and u′ of each vertex u ∈ V , one on either side of the graph. The edge set
E′ = {(u, v′) : (u, v) ∈ E}.
Run Gale-Shapley algorithm on G∗ with vertices in V proposing and those in V ′ disposing. Let
M∗ be the resulting matching. If (u, v′) ∈M∗ then prune the edge set E of G as follows:
– delete all neighbors ranked worse than u from the preference list of v
– make the adjacency lists symmetric so that if v deletes u from its list then u also deletes v

from its list.
2. If the reduced adjacency list of every vertex which received at least 1 proposal consists of a single

neighbor then the resulting edge set E defines a stable matching M . Else the adjacency lists are
further reduced by eliminating “rotations”.
– A rotation R = {(a0, b0), (a1, b1), . . . , (ak−1, bk−1)} is a set of edges such that for all i ∈
{0, . . . , k − 1}, the vertex bi is ai’s most preferred neighbor in its reduced preference list
(thus ai would be bi’s least preferred neighbor in its reduced preference list); moreover, the
second person on ai’s reduced preference list is bi+1 (here bk = b0).

– The second phase of Irving’s algorithm identifies such rotations and deletes them. The crucial
observation here is that if G admits a stable matching then so does G \R.

– This step of eliminating rotations continues till either the updated reduced adjacency list
of every vertex consists of a single neighbor or the updated reduced adjacency list of some
vertex that received at least 1 proposal in the first phase is empty. In the former case, the
resulting edge set is a stable matching and in the latter case, G has no stable matching.

Consider Irving’s algorithm in the roommates instance G′ that corresponds to the instance G on
4 vertices a, b, c, d described in Section 1. The reduced adjacency lists at the end of the first phase
are as follows:

a : c− � d− b : d− � c+ c : b− � a+ d : a+ � b+

Eliminating the rotation {(a+, c−), (b+, d−)} yields the matching M ′1 = {(a+, d−), (b−, c+)}. In-
stead, we could have eliminated the rotation {(c+, b−), (d−, a+)}. This yields the matching M ′2 =
{(a+, c−), (b+, d−)}.
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