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Abstract

Recently, in the community of Neural Style Transfer, sev-
eral algorithms are proposed to transfer an artistic style in
real-time, which is known as Fast Style Transfer. However,
controlling the stroke size in stylized results still remains an
open challenge. To achieve controllable stroke sizes, sev-
eral attempts were made including training multiple models
and resizing the input image in a variety of scales, respec-
tively. However, their results are not promising regarding
the efficiency and quality. In this paper, we present a stroke
controllable style transfer network that incorporates differ-
ent stroke sizes into one single model. Firstly, by analyz-
ing the factors that influence the stroke size, we adopt the
idea that both the receptive field and the style image scale
should be taken into consideration for most cases. Then
we propose a StrokePyramid module to endow the network
with adaptive receptive fields, and two training strategies
to achieve faster convergence and augment new stroke sizes
upon a trained model respectively. Finally, by combining
the proposed runtime control techniques, our network can
produce distinct stroke sizes in different output images or
different spatial regions within the same output image. The
experimental results demonstrate that with almost the same
number of parameters as the previous Fast Style Transfer
algorithm, our network can transfer an artistic style in a
stroke controllable manner.

1. Introduction
Rendering a photograph with a given artwork style has

been a long-standing research topic [12, 30, 28, 13]. Con-
ventionally, the task of style transfer is usually studied as
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(a) Content (b) Stroke Size #1 (c) Stroke Size #2

(d) Style (e) Stroke Size #3 (f) Mixed Stroke Size

Figure 1. Stylized results with different stroke sizes. All these re-
sults are produced by one single model in real-time using our pro-
posed algorithm. We did not do any image pre- or post-processing
before and after forwarding.

a generalization of texture synthesis [6, 8, 7]. Based on
the recent progress in visual texture modelling [9], Gatys
et al. firstly propose an algorithm that exploits Convolu-
tional Neural Network (CNN) to recombine the content of
a given photograph and the style of an artwork, and recon-
struct a visually plausible stylized image, which is known
as the process of Neural Style Transfer [10]. Since the sem-
inal work of Gatys et al., Neural Style Transfer has been
attracting wide attention from both academia and industry
[20, 24, 27]. However, the algorithm of Gatys et al. is based
on iterative image optimizations and it requires a slow op-
timization process for each pair of content and style. To
tackle this issue, several algorithms are proposed to speed
up the style transfer process, which is called Fast Style
Transfer in the literature [11, 26].

Currently, there are three categories of Fast Style Trans-
fer [15], namely Per-Style-Per-Model (PSPM) [31, 32, 16,
21], Multiple-Style-Per-Model (MSPM) [5, 36, 22, 2] and
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Arbitrary-Style-Per-Model (ASPM) [14, 23]. The gist of
the PSPM is to train a feed-forward style-specific genera-
tor and produces a corresponding stylized result with a for-
ward pass. The MSPM improves the efficiency by further
incorporating multiple styles into one single generator. The
ASPM tries to transfer an arbitrary style through only one
single model.

For these Fast Style Transfer algorithms, there is a trade-
off between efficiency and quality [14, 23]. In terms of
the quality, the PSPM is usually regarded to produce more
appealing stylized results [32, 14]. However, the PSPM
is not flexible in terms of controlling perceptual factors
(e.g., style-content tradeoff, color control, spatial control).
Among these perceptual factors, strokes are one of the most
important geometric primitives to characterize an artwork,
as is shown in Figure 1. In reality, for the same texture, dif-
ferent artists have their own way to place different sizes of
strokes as a reflection of their unique “styles” (e.g., Monet
and Pollock). To achieve different stroke sizes with the
PSPM, one possible solution is to train multiple models,
which is time and space consuming. Another solution is
to resize the input image to different scales, which will in-
evitably hurt the quality of stylization.

In this paper, we propose a stroke controllable Fast Style
Transfer algorithm that can incorporate multiple stroke
sizes into one single model. Firstly, by analyzing the fac-
tors that influence the stroke size in stylized results, we
adopt the idea that both the receptive field and the style
image scale should be considered for most cases. Based
on this idea, we propose a StrokePyramid module to en-
dow the network with adaptive receptive fields and different
stroke sizes are learned with different receptive fields. Then
a progressive training strategy is introduced to make the net-
work converge faster, and an incremental training strategy
is presented to learn new stroke sizes upon a trained model.
Finally, by combining two proposed runtime control tech-
niques which are stroke interpolation and spatial stroke con-
trol, our network can produce distinct stroke sizes in dif-
ferent outputs or different spatial regions within the same
output image.

In summary, the contributions of this work are threefold:
• We analyze the factors that influence the stroke size

in stylized results. Based on our analysis, we propose
that both the receptive field and the style image scale
should be considered for stroke size control in most
cases.
• We propose a stroke controllable style transfer network

and two corresponding training strategies in order to
achieve faster convergence and augment new stroke
sizes upon a trained model respectively. To the best
of our knowledge, this is the first style transfer network
that can transfer an artistic style in a stroke controllable
manner.

• We present two runtime control techniques to empower
the network with the ability of producing more di-
verse stroke sizes in different output images and dis-
tinct stroke sizes in different spatial regions within the
same output image.

2. Related Work
Controlling perceptual factors in Fast Style Transfer.
Stroke size control belongs to the domain of controlling per-
ceptual factors during stylization. In this field, several sig-
nificant works are recently presented. However, there are
few efforts devoted to controlling stroke size during Fast
Style Transfer. In [11], Gatys et al. study the color control
and spatial control for Fast Style Transfer. Lu et al. further
extend Gatys et al.’s work to meaningful spatial control by
incorporating semantic content, achieving the so-called Fast
Semantic Style Transfer [26]. Another related work is Wang
et al.’s algorithm which aims to learn large brush strokes
for high-resolution images [33]. They find that current Fast
Style Transfer algorithms fail to paint large strokes in high-
resolution images and propose a coarse-to-fine architecture
to solve this problem. Note that the work in [33] is intrin-
sically different from this paper as one single pre-trained
model in [33] still produces one stroke size for the same
input image.

Regulating receptive field in neural network. The re-
ceptive field is one of the basic concepts in convolutional
neural networks, which refers to a region of the input im-
age that one neuron is responsive to. It can affect the per-
formance of the networks and becomes a critical issue in
many tasks (e.g., semantic segmentation, image parsing).
To regulate the receptive field, [35] proposes the opera-
tion of dilated convolution (also called atrous convolution
in [3]), which supports the expansion of receptive field by
setting different dilation values. Another work in [4] fur-
ther proposes a deformable convolution which augments the
sampling locations in regular convolution with additional
offsets. Furthermore, Wei et al. [34] propose a learning-
based receptive field regulating method which is to inflate
or shrink feature maps automatically on the basis of the
learned knowledge.

3. Pre-analysis
Before our pre-analysis, we model the concept of the

stroke size firstly. Consider an image in style transfer as
a composition of a series of small stroke textons, which are
referred as the fundamental geometric micro-structures in
images [17, 37]. The stroke size of an image can be defined
as the average scale of the composed stroke textons.

In the deep neural network based Fast Style Transfer,
three factors are found to influence the stroke size, namely



(a) Style (b) Content (c) LRF Result (d) SRF Result

Figure 2. Results of learning the same size of large strokes with
large and small receptive fields, respectively. LRF represents the
result produced with a large receptive field and SRF represents the
result produced with a small receptive field. The content image is
credited to flickr user Kevin Robson.

the scale of the style image [33], the receptive field in the
loss network [11], and the receptive field in the generative
network.

The objective style is usually learned by matching the
style image’s gram-based statistics [10] in style transfer al-
gorithms, which are computed over the feature maps from
the pre-trained VGG network [29]. These gram-based
statistics are scale-sensitive, i.e., they contain the scale in-
formation of the given style image. One reason for this
characteristic is that the VGG features vary with the im-
age scale. We also find that for other style statistics (e.g.,
BN-based statistics in [24]), it reaches the same conclusion.
Therefore, given the same content image, generative net-
works trained with different scales of the style image can
produce different stroke sizes.

Although the stroke in stylized results generally becomes
larger with the increase of the style image scale, this is in-
feasible when the style image is scaled to a high resolution
(e.g., 3000 × 3000 pixels [11]). The reason for this prob-
lem is that a neuron in pre-trained VGG loss network can
only affect a region with the receptive field size in the in-
put image. When the stroke texton is much larger than the
fixed receptive field in VGG loss network, there is no vi-
sual difference between a large and larger stroke texton in a
relatively small region.

Apart from these above two factors, we further find that
the receptive field size in the generative network also has
influence on the stroke size. In Figure 2, we change the re-
ceptive field size in the generative network and other factors
remain the same. It is noticeable that a larger stroke size
is produced with a larger receptive field for some styles.
To explain this result, we interpret the training process of
the generative network as teaching the convolutional kernels
to paint a pre-defined size of stroke textons in each region
with the size of receptive field. Therefore, given two differ-
ent sizes of input images, the kernels of a trained network
paint almost the same size of stroke textons in the same size
of regions, as shown in Figure 3. In particular, when the
receptive field in a generative network is smaller than the
stroke texton, the kernels can only learn to paint a part of
the whole stroke texton in each region, which influences the

Style Transfer Network

Figure 3. The feed-forward process of Fast Style Transfer. For the
same size of regions in the outputs of both small and large input
images respectively, their stroke sizes are almost the same. The
content image is credited to flickr user BillChenSF.

stroke sizes.
To sum up, both the scale of the style image and the re-

ceptive field in the generative network should generally be
considered for stroke size control. As the style image is not
high-resolution in most cases, the influence of the receptive
field in the loss network is not considered in this work.

4. Proposed Approach
4.1. Problem Formulation

Assume that Ti ∈ T denotes the stroke size of an image,
T denotes the set of all stroke sizes, and ITi represents an
image I with the stroke size Ti. The problem studied in this
paper is to incorporate different stroke sizes Ti ∈ T into the
feed-forward fast neural style transfer model. Firstly, we
formulate the feed-forward stylization process as:

g(Ic) = Io, Io ∼ p(Io|Ic, Is), (1)

where g is the trained generator. And the target statistic
p(Io) of the output image Io is characterized by two com-
ponents, which are the semantic content statistics derived
from the input image Ic, and the visual style statistics de-
rived from the style image Is.

Our feed-forward style transfer process for producing
multiple stroke sizes can then be modeled as:

g′(Ic, Ti) = ITio , ITio ∼ p(ITio |Ic, Is, Ti) (Ti ∈ T). (2)

We aim to enable one single generator g′ to produce styl-
ized results with multiple stroke sizes Ti ∈ T for the same
content image Ic.

4.2. Network Architecture

Based on the analysis in Section 3, to incorporate differ-
ent stroke sizes into one single model, we propose to design
a network with adaptive receptive fields and each receptive
field is used to learn a corresponding size of stroke. The
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Figure 4. An overview of our network architecture with the StrokePyramid. It consists of several stroke branches with gating functions.
Each stroke branch corresponds to a specific stroke size.

network architecture of our proposed approach is depicted
in Figure 4.

Our network consists of three components. At the core
of our network, a StrokePyramid module is proposed to de-
compose the network into several stroke branches. Each
branch has a larger receptive field than the previous branch
through progressively growing convolutional filters. By
handling different stroke branches, the StrokePyramid can
regulate the receptive field in the generative network. With
different receptive fields, the network learns to paint strokes
with different sizes. In particular, to better preserve the de-
sired size of strokes, larger strokes are learned with larger
receptive fields, as is explained in Section 3. During the
testing phase, given a signal which indicates the desired
stroke size, the StrokePyramid automatically adapts the re-
ceptive field in the network and the stylized result with a
corresponding stroke size can be produced.

In addition to the StrokePyramid, there are two more
components in the network, namely the pre-encoder and
the stroke decoder. The pre-encoder module refers to the
first few layers in the network and is shared among dif-
ferent stroke branches to learn both the semantic content
of a content image and the basic appearances of a style.
The stroke decoder module takes the feature maps from the
StrokePyramid as input and decodes the stroke feature into
the stylized result with a corresponding stroke size. To de-
termine which stroke feature to decode, we augment a gat-
ing function G in each stroke branch. Assume that the se-
lected feature map to be decoded is from the branch Bsk .
The gating function G is then defined as

G(FBsi ) =

{
0 · FBsi , i 6= k

1 · FBsi , i = k
, (3)

1024×1024×16

conv
residual 

block

1/2 strided conv

conv

1024×1024×3 512×512×32

conv

256×256×48

residual 

block

residual 

block

residual 

block

1/2 strided convconv

256×256×48
256×256×48

residual 

block

256×256×48256×256×48

⋯

512×512×32

⋯

GGG

1024×1024×161024×1024×3

in

out

StrokePyramid

Figure 5. Details of our architecture. An image with size 1024 ×
1024 is taken as our example input.

where FBsi is the output feature map of the branch Bsi in
the StrokePyramid, which corresponds to the stroke size Ti.
All the stroke features from the StrokePyramid need to go
through the gating function and then be fed into the stroke
decoder Dec to be decoded into the output result ITko with
the desired stroke size:

Dec(
∑
i

G(FBsi )) = ITko . (4)

We also demonstrate the detailed settings of our network
in Figure 5. Compare with [16], our network uses fewer
channels to further reduce the computational complexity.

4.3. Loss Function

Semantic loss. The semantic loss is defined to preserve
the semantic information in the content image, which is for-
mulated as the Euclidean distance between the content im-
age Ic and the output stylized image Io in the feature space
of the VGG network [10].



Assume that F l(I) ∈ RC×H×W represents the feature
map at layer l in VGG network with a given image I , where
C, H and W denote the number of channels, the height and
width of the feature map respectively. The semantic content
loss is then defined as:

Lc =
∑

l∈{lc}
‖F l(Ic)−F l(Io)‖2. (5)

where {lc} represents the set of VGG layers used to com-
pute the content loss.

Stroke loss. The visual style statistics can be well repre-
sented by the correlations between filter responses of the
style image Is in different layers of pre-trained VGG net-
work. These feature correlations can be obtained by com-
puting the Gram matrix over the feature map at a certain
layer in VGG network. As the gram-based statistic is scale-
sensitive, representations of different stroke sizes can be ob-
tained by simply resizing the given style image.

By reshaping F l(I) into F l(I)′ ∈ RC×(H×W ), the
Gram matrix G(F l(I)′) ∈ RC×C over feature map F l(I)′

can be computed as:

G(F l(Is)
′) = [F l(Is)

′][F l(Is)
′]T . (6)

The stroke loss for size Tk can be therefore defined as:

LTk =
∑

l∈{ls}
‖G(F l(R(Is, Tk))′)− G(F l(I

Bsk
o )′)‖2,

(7)
whereR represents the function that resizes the style image
to an appropriate scale according to the desired stroke size
Tk, and I

Bsk
o represents the output of the k-th stroke branch.

{ls} is the set of VGG layers used to calculate the style loss.
The total loss for stroke branch Bsk can then be written

as:

LBsk
= αLc + βkLTk + γLtv, (8)

where α, β and γ are balancing factors. Ltv is a total varia-
tion regularization loss to encourage the smoothness in the
generated images.

4.4. Training Strategies

Progressive training. To train different stroke branches
in one single network, we propose a progressive training
strategy. This training strategy stems from the intuition that
the training of the latter stroke branch benefits from the
knowledge of the previously learned branches. Taken this
into consideration, the network learns different stroke sizes
with different stroke branches progressively. Assume that
the number of the stroke sizes to be learned is K. For ev-
ery K iterations, the network firstly updates the first stroke
branch in order to learn the smallest size of stroke. Then,

(a) Training a
separate generator

(b) Image resizing +
forwarding + SR

(c) Our proposed
approach

Figure 6. Quality comparison of our proposed algorithm and afore-
mentioned two possible stroke control solutions in Section 4. SR
represents the image super-resolution technique [18]. The second
line represents the zoom region in the red frame in order to com-
pare the fine texture.

based on the learned knowledge of the first branch, the net-
work uses the second stroke branch to learn the second
stroke size with a corresponding scale of the style image.
In particular, since the second stroke branch grows the con-
volutional filters on the basis of the first stroke branch, the
updated components in the previous iteration are also ad-
justed. Similarly, the following stroke branches are updated
with the same progressive process. In the next K iterations,
the network repeats the above progressive process, since we
need to ensure that the network preserves the previously
learned stroke sizes.

Incremental training. We also propose a flexible incre-
mental training strategy to efficiently augment new stroke
sizes upon a trained model. Given a new desired stroke
size, instead of learning from scratch, our algorithm incre-
mentally learns the new stroke size by adding one single
layer as a new stroke branch in the StrokePyramid. The
position of the augmented layer depends on the previously
learned stroke sizes and their corresponding receptive fields.
By fixing other network components and only updating the
augmented layer, the network learns to paint a new size of
strokes on the basis of the previously learned stroke features
and thus can reach convergence quickly.

5. Experiment

5.1. Implementation Details

Our proposed network is trained on MS-COCO dataset
[25]. All the images are cropped and resized to 512 ×
512 pixels before training. We adopt the Adam op-
timizer [19] during training. The pre-trained VGG-
19 network [29] is selected as the loss network and
{relu1 1, relu2 1, relu3 1, relu4 1, relu5 1} are used as
the style layers and relu4 2 is used as the content layer.
The number of initially learned stroke sizes are set to 3 by
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Figure 7. Some example results of different stroke sizes produced by our algorithm and other Fast Style Transfer algorithms [16, 32, 14, 22].
Note that results of each size of strokes with Johnson et al. [16] and Ulyanov et al. [32] are produced by a separate model. Results of
Huang and Belongie’s algorithm [14], Li et al.’s algorithm [22], and our algorithm are produced by one single model. All the results with
different stroke sizes are all produced by forwarding content images with a fixed size 1024× 1024 pixels. All the test content images are
never seen during training. Content images are credited to flickr users Julie Jablonski and b togol.

default. For a fair comparison, the parameters of the ex-
isting algorithms are set to be the default values according
to their published literature. We implement our algorithm
based on Tensorflow [1].

5.2. Qualitative Evaluation

Sample results of our algorithm and two aforementioned
possible solutions are shown in Figure 6 (the generator for
Figure 6(a) is trained using [16]). Our algorithm achieves
comparative results with the first possible solution in Fig-
ure 6(a) regarding the quality while preserving the flexi-

bility of the second possible solution in Figure 6(b). Fig-
ure 7 shows sample results of our algorithm and other Fast
Style Transfer algorithms. More results can be found in the
supplementary material1. For results from the algorithm of
Johnson et al. [16] and Ulyanov et al. [32], training a sepa-
rate scale-specific generator for each stroke size is adopted,
which is the first aforementioned possible solution of stroke
size control. Totally three generators are trained using [16]
and [32] for each style in Figure 7. It can be noticed that our

1https://youtu.be/UNG38tdMSMg

https://youtu.be/UNG38tdMSMg
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Figure 8. Training curves for three stroke sizes with (dashed
curves) and without (solid curves) progressive training strategy.
Our progressive training strategy is faster than the individual train-
ing in terms of the converging speed, except for the learning of
stroke #3 where progressive training achieves comparable conver-
gence speed.

algorithm achieves competitive results against [16, 32] but
exploits only one single pre-trained model. To achieve vi-
sually plausible results withK stroke sizes, [16, 32] need to
trainK corresponding stroke-specific models, which brings
additional time cost. In contrast, our algorithm needs less
training time due to our progressive training strategy. The
algorithm of Huang and Belongie [14] and the algorithm of
Li et al. [23] belong to the category of ASPM algorithms
and are able to transfer an arbitrary style through one sin-
gle model. Therefore, these two algorithms do not need to
train a style-specific generator in advance and can control
the stroke size during stylization by just feeding different
scales of style images. However, [14] is not effective at
producing some fine textures in some styles (Figure 7, the
fourth row). Although [23] captures finer textures, the de-
tails are not well preserved in some cases (Figure 7, the fifth
row).

5.3. Quantitative Evaluation

In terms of the quantitative evaluation, we focus on three
evaluation metrics in this section, which are: training curves
during jointly training and incremental training; average
content and style loss for test content images; training time
for our single model and corresponding generating time for
results with different stroke sizes.

Training curve analysis. To demonstrate the effective-
ness of our progressive training strategy, we record the
stroke losses when learning several sizes of strokes progres-
sively and learning different strokes individually. The result
is shown in Figure 8. The reported loss values were aver-
aged over 15 randomly selected batches of content images.
It can be observed that the network which progressively
learns multiple stroke sizes converges relatively faster than
the one which learns only one single stroke size individ-
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(a) Training curves of learning incrementally and from scratch.

(b) Incremental learning. (c) Learning from scratch.

Figure 9. Comparisons between incremental learning and learning
from scratch in terms of training curves and stylization quality.
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Figure 10. Comparisons of the average content and style loss of
our algorithm with state-of-the-art Neural Style Transfer algo-
rithms.

ually. The result indicates that during progressive training,
the latter stroke branch benefits from the learned knowledge
of the previous branches, and can even improve the training
of previous branches through a shared network component
in turn. To validate our stroke incremental training strategy,
we present both the training curves of the incremental learn-
ing and learning from scratch in Figure 9. While achiev-
ing comparable stylization quality, incrementally learning a
stroke can significantly speed up the training process com-
pared to learning from scratch.

Average loss analysis. To measure how well the loss
function is minimized, we compare the average content and
style loss of our algorithm with other style transfer meth-
ods. For a fair comparison, the loss functions of different
algorithms are kept the same. The recorded values are av-
eraged over 100 content images and 5 style images. For
each style, we calculate the average loss of the three stroke
sizes. As shown in Figure 10, the average style loss of our
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Figure 11. Results of stroke interpolation. We zoom in on the same region (red frame) to observe the variations of stroke sizes.

(a) Content image (b) Same stroke size across image

(c) Content mask (d) Our result of mixed stroke sizes

Figure 12. Our algorithm allows flexible spatial stroke size control
during stylization. The result produced by our single model can
have mixed stroke sizes, which is more consistent with an artist’s
artwork in reality.

algorithm is similar to [32], and our average content loss is
slightly lower than [32]. This indicates that our algorithm
is comparable to [32] regarding the ability to minimize the
loss function.

Speed analysis. Fully training one single model with
three stroke sizes takes about 2 hours on a single NVIDIA
Quadro M6000. For generating time, it takes averagely 0.09
seconds to stylize an image with size 1024 × 1024 on the
same GPU using our algorithm. Since our network archi-
tecture is similar with [16, 32] but with a shorter path for
some stroke sizes, our algorithm can be on average faster
than [16, 32] and further faster than Huang and Belongie’s
algorithm and Li et al.’s algorithm according to the speed
analysis in [14, 23].

5.4. Runtime Controls

Stroke Interpolation. By interpolating between the out-
put feature maps in the StrokePyramid, our algorithm can
achieve arbitrary intermediate stroke sizes. Given a content
image Ic, we assume that FBsm and FBsn are two output
feature maps in the StrokePyramid, which can be decoded
into the stylized results with two stroke sizes ITmo and ITno

respectively. The interpolated feature FBs̃ can then be cal-
culated as:

FBs̃ = aFBsm + (1− a)FBsn (9)

By changing the value of a and feeding the obtained
FBs̃ into the stroke decoder module, stylized results with
arbitrary intermediate stroke sizes I T̃o can be produced, as
shown in Figure 11.

Spatial Stroke Control. Previously, in the community of
Fast Style Transfer, stylized results usually have almost the
same stroke size across the whole image, which is imprac-
tical in the real case. As is shown in Figure 12, our algo-
rithm supports mixed stroke sizes in different spatial regions
and in this way, the contrast information in the content im-
age can be enhanced. Our spatial stroke control is achieved
by feeding masked content image through different corre-
sponding stroke branches and then combining these styl-
ized results. The mask can be obtained either by manual
labelling or forwarding the content image through a pre-
trained semantic segmentation network.

6. Conclusions
In this paper, we present a Fast Style Transfer deep net-

work that allows a flexible control for the stroke size dur-
ing stylization. By using almost the same number of pa-
rameters as the previous Fast Style Transfer algorithm, our
network is capable of learning multiple stroke sizes. The
main idea behind our technique is proposing a StrokePyra-
mid module to endow the network with adaptive receptive



fields and the network can learn to paint different stroke
sizes with the corresponding size of the receptive field. By
adopting the proposed progressive training strategy, our net-
work achieves faster convergence and through incremental
training strategy, new stroke sizes can be augmented in a
trained mode. Finally, our network can produce distinct
stroke sizes in different output images or different spatial re-
gions within the same output image. Embedded with other
existing perceptual factor controlling strategies, our work
takes a step towards breaking the tradeoff between the flex-
ibility and efficiency in Fast Style Transfer. Our future work
will focus on exploring the influence of other factors on the
stroke size. Another research direction is to apply the idea
of the StrokePyramid into the MSPM so as to efficiently
learn multiple stroke sizes for multiple styles.
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