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(a) Content (b) Style (c) Gatys et al. [6] (d) Luan et al. [21] (e) Ours

Figure 1: Given a content photo (a) and a style photo (b), photorealistic image style transfer algorithms aim at transferring the
style of the style photo to the content photo as shown in (c), (d), and (e). Comparing to the existing algorithms [6, 21], the
proposed algorithm outputs photos that have more consistent stylizations and much fewer artifacts. Moreover, it runs an order
of magnitude faster thanks to its closed-form formulation.

Abstract

Photorealistic image style transfer algorithms aim at styl-
izing a content photo using the style of a reference photo
with the constraint that the stylized photo should remains
photorealistic. While several methods exist for this task,
they tend to generate spatially inconsistent stylizations with
noticeable artifacts. In addition, these methods are compu-
tationally expensive, requiring several minutes to stylize a
VGA photo. In this paper, we present a novel algorithm to
address the limitations. The proposed algorithm consists of
a stylization step and a smoothing step. While the stylization
step transfers the style of the reference photo to the content
photo, the smoothing step encourages spatially consistent
stylizations. Unlike existing algorithms that require iterative
optimization, both steps in our algorithm have closed-form
solutions. Experimental results show that the stylized pho-
tos generated by our algorithm are twice more preferred by
human subjects in average. Moreover, our method runs 60
times faster than the state-of-the-art approach. Code and ad-
ditional results are available at https://github.com/

NVIDIA/FastPhotoStyle.

1. Introduction
The goal of photorealistic image style transfer is to change

the style of a photo to resemble that of another one. For a
faithful stylization, the content in the output photo should
remain the same, while the style of the output photo should
resemble the one of the reference photo. Furthermore, the
output photo should look like a real photo captured by a
camera. Figure 1 shows two photorealistic image stylization
examples. In one example, we transfer a summery photo
to a snowy one, while in the other example, we transfer a
day-time photo to a night-time photo. Photorealistic image
style transfer algorithms find use in numerous applications,
ranging from image editing to content creation.

Due to lack of expressive feature representations, classical
stylization approaches are based on matching color statistics
(e.g., color transfer [25, 24, 31] or tone transfer [1]) or are
limited to specific scenarios (e.g., seasons [12] and headshot
portraits [27]). Recently, Gatys et al. [5, 6] show that the
correlations between deep features encode the visual style
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of an image and propose an optimization-based method,
called the neural style transfer algorithm, for image style
transfer. While the method shows impressive performance
for artistic style transfer (converting images to paintings),
it often introduces structural artifacts and distortions (e.g.,
extremely bright colors) when applied to the photorealistic
image style transfer task as shown in Figure 1(c). In a follow-
up work, Luan et al. [21] propose adding a regularization
term to the optimization objective function of the neural style
transfer algorithm and show this reduces distortions in the
output images. However, the resulting algorithm tends to
stylize semantically uniform regions in images inconsistently
as shown in Figure 1(d).

In this paper, we propose a novel fast photorealistic im-
age style transfer algorithm. It consists of two steps: the
stylization step and the smoothing step. Both of the steps
have closed-form solutions. The stylization step is based on
the whitening and coloring transform (WCT) algorithm [17]
and is referred to as the PhotoWCT step. The WCT algo-
rithm matches deep feature statistics via feature projections
and is developed for artistic style transfer. Similar to the
neural style transfer algorithm, when the WCT algorithm is
applied to the photorealistic image style transfer task, the
output stylized photos often have structural artifacts. The
proposed PhotoWCT step addresses the issue by incorpo-
rating unpooling layers in the WCT transform. We show
this largely improves the photorealistic style transfer perfor-
mance. The PhotoWCT step alone cannot guarantee gener-
ating spatially consistent stylization. This is resolved by the
proposed smoothing step, which is formulated as a manifold
ranking problem. We conduct extensive experiments with
comparison to the state-of-the-art to validate the proposed al-
gorithm. User studies on stylization effects and photorealism
show the competitive advantages of the proposed algorithm.
In addition, our algorithm runs 60 times faster across various
image resolutions thanks to the closed-form formulation.

2. Related Works
Stylizing an image while keeping the output photorealis-

tic is a long-standing problem. Existing stylization methods
are mostly example-based and can be classified into two
categories: global and local. Global methods usually con-
struct a spatially-invariant transfer function through match-
ing the means and variances of pixel colors [25], histograms
of pixel colors [24], or both [4]. These approaches often
only adjust global colors or tones [1] in effects. Local
methods [28, 27, 36, 12, 33] perform spatial color mapping
through finding dense correspondences between the content
and style photos based on either low-level or high-level fea-
tures. These approaches are slow in practice. Moreover, they
are often limited to specific scenarios.

In a seminar work, Gatys et al. [5, 6] propose the neu-
ral style transfer algorithm for the artistic style transfer task.

The core of the algorithm is to solve an optimization problem
of matching the Gram matrices of deep features extracted
from the content and style photos. A number of methods
have been developed [14, 34, 11, 16, 3, 8, 9, 17] to further
improve its stylization performance and speed. However,
these works do not aim for preserving photorealism (see Fig-
ure 1(c)). Post-processing techniques [15, 22] are proposed
to refine these results by matching the gradients between the
content and output photo.

Another important line of related works is image-to-
image translation [10, 35, 20, 32, 29, 19, 43] where the goal
is to translate an image from one domain to another. Un-
like image-to-image translation, photorealistic image style
transfer does not require a training dataset to learn the trans-
lation. It just needs one single reference image. Furthermore,
photorealistic image style transfer performs can make image
translation more specific. Not only can it transfer a photo
to a different domain (e.g., form day to night-time) but also
can transfer the specific style (e.g., extent of darkness) in a
reference style image.

Closest to our work is the method of Luan et al. [21],
which significantly improves photorealism of the stylization
results of the neural style transfer algorithm by enforcing
local constraints as an additional loss function. However, it
often generates noticeable artifacts, which cause inconsistent
stylization (Figure 1(d)). Moreover, it is computationally
expensive. The proposed algorithm aims at efficient and
effective photorealistic image style transfer. We demonstrate
that it performs favorably against state-of-the-art methods in
terms of both quality and speed.

3. Photorealistic Image Stylization

Our photorealistic image style transfer algorithm consists
of two steps as illustrated in Figure 2. The first step is a
stylization transform F1 called PhotoWCT. Given a style
photo IS , F1 transfer the style of IS to the content photo
IC while minimizing structural artifacts in the output im-
age. Although F1 can faithfully stylize IC , it often leads
to inconsistent stylization in semantically similar regions.
Therefore, we use a photorealistic smoothing function F2, to
eliminate these artifacts. Our whole algorithm can be written
as a two-step mapping function:

F2

(
F1(IC , IS), IC

)
. (1)

In the following, we discuss the two steps in details.

3.1. Stylization

Our PhotoWCT is based on the WCT [17]. It improves
the WCT for the photorealistic image style transfer task by
using a novel network design. For completeness, we briefly
review the WCT in this section.



IC

IS

Y = F1(IC , IS) F2(Y, IC)

F2F1

Figure 2: The proposed photorealistic image style transfer
algorithm consists of two closed-form function mappings:
F1 and F2. While F1 maps IC to an intermediate image
carrying the style of IS , F2 removes noticeable artifacts and
produces a photorealistic stylized result.

WCT. The WCT formulates stylization as an image re-
construction problem with feature projections. To utilize
WCT, an auto-encoder for general image reconstruction is
first trained. Li et al. [17] employ the VGG-19 model [30]
as the encoder E , fix the encoder weights, and train a de-
coder D for reconstructing the input image. The decoder is
designed to be symmetrical to the encoder, with upsampling
layers (pink blocks in Figure 3(a)) used to enlarge the spatial
resolutions of the feature maps. Once the auto-encoder is
trained, a pair of projection functions are inserted at the net-
work bottleneck to perform stylization through the whitening
(PC ) and coloring (PS) transforms. The key idea behind the
WCT is to directly match feature correlations of the content
image to those of the style image via the two projections.
Specifically, given a pair of content image IC and style im-
age IS , the WCT first extracts their vectorised VGG features
HC = E(IC) and HS = E(IS), and then transform the
content feature HC via

HCS = PSPCHC , (2)

where PC = ECΛ
− 1

2

C E>C , and PS = ESΛ
1
2

SE
>
S . Here ΛC

and ΛS are the diagonal matrices with the eigenvalues of
the covariance matrix HCH

>
C and HSH

>
S respectively. The

matrices EC and ES are the corresponding orthonormal
matrices of the eigenvectors, respectively. After the trans-
formation, the correlations of transformed features match
those of the style features, i.e., HCSH

>
CS = HSH

>
S . Fi-

nally, the stylized image is obtained by directly feeding the
transformed feature map into the decoder: Y = D(HCS).
For better stylization performance, Li et al. [17] use a multi-
level stylization strategy, which performs the WCT on the
VGG features at different layers.

The WCT performs well for artistic style transfer. How-
ever it generates structural artifacts (e.g., distortions on ob-
ject boundaries) for photorealistic image stylization (Fig-
ure 4(c)). Our PhotoWCT is proposed for suppressing these
structural artifacts.

IC Y

YIC

PC PS

Max pooling mask
Unpooling

Convolution Max pooling
Upsampling

(a) WCT

(b) PhotoWCT

PC PS

Figure 3: PhotoWCT and WCT. Both share the same encoder
architecture and projection steps. In the PhotoWCT, we
replace the upsampling layers (pink) with unpooling layers
(green) for photorealistic stylization. Note that the unpooling
layer is used together with the pooling mask (yellow) which
records where carries the argmax over each max pooling
region in the corresponding pooling layer [41].

PhotoWCT. Our PhotoWCT design is motivated by the
observation that the max-pooling operation in the WCT re-
duces the spatial information in feature maps. Simply upsam-
pling feature maps in the decoder fails to recover detailed
structures of the input image. That is, we need to pass the
lost spatial information to the decoder to facilitate recon-
structing these fine details. Inspired by the success of the
unpooling layer [39, 41, 23] in preserving spatial informa-
tion, we propose to replace the upsampling layers in the
WCT with unpooling layers for photorealistic stylization. As
a result, the PhotoWCT function is formulated as

Y = F1(IC , IS) = D(PSPCHC), (3)

where D is the decoder trained with unpooling layers for
image reconstruction. Figure 3 illustrates the difference in
network architecture between the WCT and PhotoWCT.

Figure 4(c) and (d) show the results using the WCT and
PhotoWCT. As highlighted in close-ups, the straight lines
along the building boundary in the content image become
zigzagged when applying the WCT but remains straight
when applying the PhotoWCT. The PhotoWCT-stylized im-
age has much fewer structural artifacts.

3.2. Photorealistic Smoothing

The PhotoWCT-stylized result (Figure 4(d)) still looks
less like a photo since semantically similar regions are styl-
ized inconsistently. For example, as we stylize the day-time
photo using the night-time photo in Figure 4, the stylized
sky region would be more photorealistic if it were uniformly
dark blue instead of partially dark and partially light blue.



(a) Content (b) Style

(c) WCT [17] (d) PhotoWCT

(e) WCT + smoothing (f) PhotoWCT + smoothing

Figure 4: Comparison of image stylization using the WCT
and the PhotoWCT. The PhotoWCT better preserves local
structures in the content image, which is crucial for the image
smoothing step as shown in (e) and (f).

This motivates us to employ the pixel affinities in the content
photo to smooth the PhotoWCT-stylized result.

We aim to achieve two goals in the smoothing step. First,
pixels with similar content in a local neighborhood should
be stylized similarly. Second, the smoothed result should
not deviate significantly from the PhotoWCT result in order
to maintain the global stylization effects. As such, we first
represent all pixels as nodes in a graph and define an affinity
matrix W = {wij} ∈ RN×N (N is the number of pixels)
to describe pixel similarities. We define a smoothness term
and a fitting term that model these two goals in the following
optimization problem:

argmin
r

1

2
(

N∑
i,j=1

wij‖
ri√
dii
− rj√

djj
‖2+λ

N∑
i=1

‖ri − yi‖2),

(4)
where dii =

∑
j wij is the diagonal element in the degree

matrix D of W , i.e., D = diag{d11, d22, ..., dNN}. Here, yi
is the pixel color in the PhotoWCT-stylized result Y and ri
is the pixel color in the desired smoothed output R. In (4), λ
controls the balance of these two terms.

Our formulation is motivated by the graph-based ranking
algorithms [42, 38]. In their algorithms, Y is a binary input
where each element indicates if a specific item is a query
(yi = 1 if yi is a query and yi = 0 otherwise). The optimal
solution R is the ranking values of all the items based on
their pairwise affinities. In our algorithm, we set Y as the
PhotoWCT-stylized result. The optimal solution R is the

(a) Content (b) Style

(c) PhotoWCT (d) Matting Affinity (Ours)

(e) Gaussian Affinity σ = 1 (f) Gaussian Affinity σ = 0.1

Figure 5: Smoothing with different affinities. To refine the
PhotoWCT result in (c), it is hard to find an optimal σ for the
Gaussian Affinity that works globally well as shown in (e)-(f).
In contrast, using the Matting Affinity can simultaneously
smooth different regions well as shown in (d).

smoothed version of Y based on the pairwise pixel affinities,
which encourages consistent stylization within semantically
similar regions.

The above optimization problem is a simple quadratic
problem with a closed-form solution, which is given by

R∗ = (1− α)(I − αS)−1Y, (5)

where I is the identity matrix, α = 1
1+λ and S is the nor-

malized Laplacian matrix computed from IC , i.e., S =
D−

1
2WD−

1
2 ∈ RN×N . As the constructed graph is of-

ten sparsely connected (i.e., most elements in W are zero),
the inverse operation in (5) is computationally efficient. With
the close-form solution, the smoothing step can be written
as a function mapping given by:

R∗ = F2(Y, IC) = (1− α)(I − αS)−1Y. (6)

Affinity. The affinity matrix W is computed using the con-
tent photo based on an 8-connected image graph assump-
tion. While several choices of affinity metrics exist, a pop-
ular one is to define the affinity (denoted as the Gaussian



affinity) as wij = e−‖Ii−Ij‖
2/σ2

where Ii, Ij are the RGB
values of adjacent pixels i, j and σ is a global scaling hyper-
parameter [26]. However, it is difficult to determine the σ
value in practice. It often results in either over-smoothing
the entire photo (Figure 5(e)) or stylizing the photo incon-
sistently (Figure 5(f)). To avoid selecting one global scaling
hyper-parameter, we resort to the matting affinity [13, 40]
where the affinity between two pixels is based on means and
variances of pixels in a local window. Figure 5(d) shows
that the matting affinity is able to simultaneously smooth
different regions well.

WCT plus Smoothing? We note that the smoothing step
can also remove structural artifacts in the WCT as shown in
Figure 4(e). However, it leads to unsatisfactory stylization.
The main reason is that the content photo and the WCT result
are severely misaligned due to spatial distortions. For exam-
ple, a stylized pixel of the building in the WCT result may
correspond to a pixel of the sky in the content photo. Con-
sequently this causes wrong queries in Y for the smoothing
step. That is why we need to use the PhotoWCT to remove
distortions first. Figure 4(f) shows that the combination of
PhotoWCT and smoothing leads to better photorealism while
still maintaining faithful stylization.

4. Experimental Results
We first discuss the implementation details. We then

present qualitative results comparing the proposed algorithm
to several competing algorithms. Finally, we analyze the
run-time and several algorithm design choices. Code and ad-
ditional results are available at https://github.com/
NVIDIA/FastPhotoStyle.

Implementation details. We use the layers from conv1 1
to conv4 1 of the VGG-19 [30] network as the encoder
E . We initialize the encoder using the pretrained weights,
which are kept fixed during training. The architecture of the
decoder D is symmetrical to the encoder. We train the auto-
encoder for minimizing the sum of the L2 reconstruction
loss and perceptual loss [11] using the Microsoft COCO
dataset [18]. As suggested in [17] for better stylization
effects, we apply the PhotoWCT on VGG features at multiple
layers to better capture the characteristics of the style photo.
The details of the network design are given in the appendix.

To obtain better photorealistic image stylization perfor-
mance, we use semantic label maps for more localized con-
tent and style matching, which are also used by the compet-
ing algorithms [7, 21]. Specifically, in the PhotoWCT step,
we compute a pair of projection matrices PC and PS for each
semantic label. We gather the encoder feature vectors cor-
responding to the same semantic label in the content image
to compute a PC , and those in the style image to compute a

PS . The feature vectors with a specific semantic label in the
content image is then transformed using the corresponding
PC and PS . We also use the post-processing filtering step in
Luan et al. [21] for a fair comparison.

Visual comparisons. In Figure 6, we provide a visual com-
parison between the proposed algorithm and two photore-
alistic stylization methods [24, 21]. The method of Pitié et
al. [24] performs a global image transfer through matching
the color statistics between the content and style photos,
while the method of Luan et al. [21] improves upon the neu-
ral style transfer algorithm [6] with a regularization term.
From Figure 6, we find that the proposed algorithm outper-
forms the competing algorithms in generating photorealistic
image stylization results. The method of Pitié et al. [24]
tends to simply change the color of the content photo and
fail to transfer the style. The method of Luan et al. [21]
achieves good stylization results, but it renders output im-
ages with inconsistent stylizations and noticeable artifacts
(e.g., the purple color on the house in the second row).

In Figure 7, we compare the proposed algorithm to two
artistic style transfer methods [6, 9]: the neural style transfer
algorithm [6] and its fast variant [9]. Both methods suc-
cessfully stylize the content images but render noticeable
structural artifacts and inconsistent stylizations across the im-
ages. In contrast, our method produces more photorealistic
results.

User studies. As photorealistic image stylization is a
highly subjective task, we resort to user studies using the
Amazon Mechanical Turk (AMT) platform to better evaluate
the performance of the proposed algorithm. We compare the
proposed algorithm to three competing algorithms, namely
the neural style transfer algorithm of Gatys et al. [6], the
method of Huang and Belongie [9], and the state-of-the-art
photorealistic style transfer algorithm of Luan et al. [21].

We use a set of 32 content–style pairs provided by Luan et
al. [21] as a benchmark dataset. In each question, we show
the AMT workers the content–style pair and the stylized
results of each algorithm in a random order and ask the
worker to select an image based on the instructions. A worker
must have a lifetime HIT (Human Intelligent Task) approval
rate greater than 98% to be qualified to answer the question.
For a statistically significant test, each image pair is sent
to 10 different workers. This constitutes to 320 questions
for each study. We then calculate the average number of
times the images from an algorithm is selected, which is the
preference score.

We conduct two user studies. In one study, we ask the
AMT workers to select which stylized photo better carries the
style of the style photo. In the other study, we ask the workers
to select which stylized photo looks more like a real photo.
In both studies, detailed job instructions with examples are

https://github.com/NVIDIA/FastPhotoStyle
https://github.com/NVIDIA/FastPhotoStyle


(a) Content (b) Style (c) Pitié et al. [24] (d) Luan et al. [21] (e) Ours

Figure 6: Comparison of different photorealistic stylization methods. We show diverse photo style examples, including
season, weather, indoor and outdoor scenery. The method of Pitié et al. [24] often fails to ensure faithful stylization due to its
simple color mapping. The results of Luan et al. [21] often contain obvious artifacts from inconsistent stylization effects (e.g.,
irregular colors on the house, hill, cabinet, ceiling, and tree). Our results are more photorealistic (zoom in).

provided to define the task properly for the worker. Through
the two studies, we want to answer which algorithm better
stylizes a content image and which algorithm renders better
photorealistic output images, respectively. The user study
results are shown as round charts in Figure 8. We find the

proposed algorithm is preferred for its stylization effect 50%
of the times, which is two-times more frequent than the
second best method of Luan et al. [21]. For the user study
on photorealism, our method is preferred 62% of the time,
which significantly outperforms the competing algorithms.



(a) Content (b) Style (c) Gatys et al. [6] (d) Huang et al. [9] (e) Ours

Figure 7: Comparison with artistic stylization methods. Note the severe distortions on the building and sea in (c) and (d). Our
results do not contain structural artifacts and exhibit much better photorealism.

Table 1

0.153 0.0875

0.113 0.0625

0.242 0.23

0.5 0.62

50%

24%

11%

15%

Gatys et al. Huang et al. Luan et al. Ours

62%
23%

6%
9%

�1

(a) Stylization effects (b) Photorealism

Figure 8: User study results. The proposed algorithm is
compared to three competing methods on their stylization
effects and photorealism. The numbers in the charts indicate
the percentage of users favoring a particular algorithm.

Speed. We compare our method to the state-of-the-art
method [21] in terms of run-time. The method of Luan
et al. [21] stylizes a photo by solving two optimization prob-
lems in sequence. The first one is to obtain an initial stylized
result by solving the optimization problem in the neural
style transfer algorithm [6]. The second one is to refine the
initial result by adding another regularization term to the
optimization objective function of the neural style transfer al-
gorithm. We report the run-time of solving both optimization
problems and the run-time of solving the second optimiza-
tion problem alone. We resize the content images in the
benchmark dataset to different sizes and report the average
run-time for each image size. The results are shown in Fig-
ure 9. For 1K image size, our algorithm takes 11.39s in
average, which is much faster than the 650.45s achieved
by [21]. For images in small resolution, our algorithm can
stylize an image within one second. Overall, our method is
60 times faster that the method of Luan et al. [21].

Image size

Figure 9: Run-time comparison. We compare the run-time
of the proposed method to that of Luan et al. [21] and its
second-stage-only variant. The experiments are conducted
using a PC with an NVIDIA Titan X Pascal GPU.

WCT versus PhotoWCT. We compare the proposed al-
gorithm with a variant where the PhotoWCT step is replaced
by the WCT [17]. Again, we conduct two user studies for
the comparison where one compares stylization effects while
the other compares photorealism as described earlier. The
result shows that the proposed algorithm is favored over its
variant for better stylization 83% of the times and favored
for better photorealism 88% of the times.

Sensitivity analysis on λ. In the photorealistic smoothing
step, the λ balances between the smoothness term and fitting
term in (4). A smaller λ renders smoother results, while
a larger λ renders results that are more faithfulness to the
queries (the PhotoWCT result). Figure 10 shows results of



Content Style PhotoWCT GT edges [37]

λ = 10−2 λ = 10−3 λ = 10−4 λ = 10−6

Figure 10: Visualization of the effect of different λ in the
photorealistic smoothing step.

λ λ

Figure 11: Quantitative stylization performance under differ-
ent λ. A higher ODS or OIS score means a more photoreal-
istic stylization. See text for further details.

using different λ value. In general, decreasing λ helps re-
move artifacts and hence improves photorealism. However,
if λ is too small, the output image tends to be over-smoothed.
In order to find the optimal λ, we perform a grid search.
We use the similarity between the boundary maps extracted
from stylized and original content photos as the criteria since
object boundaries should remain the same despite the styl-
ization [2]. We employ the HED method [37] for boundary
detection and use two standard boundary detection metrics:
ODS and OIS. A higher ODS or OIS score means a stylized
photo better preserves the content in the original photo. The
average scores over the benchmark dataset are shown in Fig-
ure 11. Based on the results, we use λ = 10−4 in all the
experiments.

Alternative smoothing techniques. In Figure 12, we
compare our photorealistic smoothing step with two alterna-
tive approaches. In the first approach, we use the PhotoWCT-

(a) Content (b) Style

(c) PhotoWCT (d) Ours

(e) Luan et al. [21] (f) Mechrez et al. [22]

Figure 12: Comparison between our photorealistic smooth-
ing and other refinement methods (d)-(f). We refine the
PhotoWCT result (c) in order to encourage spatially consis-
tent stylization for better photorealism.

stylized photo as the initial solution for solving the sec-
ond optimization problem in the method of Luan et al. [21].
The result is shown in Figure 12(e). We find that this ap-
proach leads to noticeable artifacts as the color on the road
is distorted. In the second approach, we use the method of
Mechrez et al. [22], which refines stylized results by match-
ing the gradients in the stylized photo to those in the content
photo. As shown in Figure 12(f), we find this approach per-
forms well for removing structural distortions on boundaries
but does not remove visual artifacts. In contrast, as shown
in Figure 12(d), our method generates more photorealistic
results with an efficient closed-form solution.

5. Conclusion

We propose a novel fast photorealistic image style transfer
algorithm. It consists of a stylization step and a photorealis-
tic smoothing step. Both steps have a closed-form solution.
Experimental results show that our algorithm generates re-
sults that are twice more favored and runs 60 times faster
than the state-of-the-art method.
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A. Semantic Label Map
In order to obtain a better stylization result and give users

control to decide the content–style correspondences, our styl-
ization algorithm supports spatial control [7] through using
semantic label maps. Labels in the same color represent the
corresponding regions in the content and style photos. Note
that we do not require precise label maps. Our photorealistic
smoothing step, which employs pixel affinities to encourage
consistent stylizations, can naturally handle inaccurate se-
mantic labels along object boundaries. This could greatly
reduce the labeling burden for users. Figure 13 shows a
comparison between using coarse and precise semantic label
maps. Results in (e) and (f) show that using the coarse label
map can achieve nearly the same stylization performance as
using the precise label map.

B. Multi-level Stylization Strategy
We present the details of our PhotoWCT stylization step,

which consists of a reconstruction auto-encoder with unpool-
ing layers, and a pair of feature transforms (PC , PS). The
encoder is made of the first few layers of the VGG-19 [30]
network. We perform the feature transforms on the features
extracted by the encoder.

As suggested in the WCT paper [17], it is advantageous to
match features across different levels in the VGG-19 encoder
to fully capture the characteristics of the style. We hence
adopt a similar strategy for the PhotoWCT. Specifically,
we train four decoders for image reconstruction. They are
responsible for inverting features extracted from conv1 1,
conv2 1, conv3 1 and conv4 1 layer of VGG-19, respec-
tively. With the four encoders, we have a set of 4 auto-
encoder networks, which corresponds to a set of 4 Pho-
toWCT transforms. We apply the transform from the one
with the highest feature representation to stylize the content
image. The result stylized image is then passed to the trans-
form with the second highest feature representation as shown
in Figure 14. Note that the decoders are trained separately
and they do not share weights.

Table 2–1 show the detailed configurations of VGG en-
coder (up to the conv4 1 layer) and the decoders. We use
the following abbreviation for ease of presentation: N=Filter
number, K=Filter size, S=Stride.



(a) Style (b) Content (c) Coarse map (d) Precise map (e) Stylization with (f) Stylization with
coarse map precise map

Figure 13: Comparisons of stylization results of using coarse and precise label maps.
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Figure 14: Multi-level stylization strategy with the PhotoWCT transform.



Table 1: Details of the decoders.

Layer Name Specification Decoder 1 Decoder 2 Decoder 3 Decoder 4

inv − conv4 1 Conv (N256, K3, S1), ReLU v
MaxUnpooling (K2, S2) v

inv − conv3 4 Conv (N256, K3, S1), ReLU v
inv − conv3 3 Conv (N256, K3, S1), ReLU v
inv − conv3 2 Conv (N256, K3, S1), ReLU v
inv − conv3 1 Conv (N128, K3, S1), ReLU v v

MaxUnpooling (K2, S2) v v
inv − conv2 2 Conv (N128, K3, S1), ReLU v v
inv − conv2 1 Conv (N64, K3, S1), ReLU v v v

MaxUnpooling (K2, S2) v v v
inv − conv1 2 Conv (N64, K3, S1), ReLU v v v
inv − conv1 1 Conv (N3, K3, S1) v v v v

Table 2: Details of the VGG-19 encoder.

Layer Name Specification (up to conv4 1)

conv1 1 Conv (N64, K3, S1), ReLU
conv1 2 Conv (N64, K3, S1), ReLU

MaxPooling (K2, S2)
conv2 1 Conv (N128, K3, S1), ReLU
conv2 2 Conv (N128, K3, S1), ReLU

MaxPooling (K2, S2)
conv3 1 Conv (N256, K3, S1), ReLU
conv3 2 Conv (N256, K3, S1), ReLU
conv3 3 Conv (N256, K3, S1), ReLU
conv3 4 Conv (N256, K3, S1), ReLU

MaxPooling (K2, S2)
conv4 1 Conv (N512, K3, S1), ReLU


