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Abstract

We explore recurrent encoder multi-decoder neural network architectures for
semi-supervised sequence classification and reconstruction. We find that the
use of multiple reconstruction modules helps models generalize in a classifi-
cation task when only a small amount of labeled data is available. Our clas-
sification experiments are conducted using three well known skeletal motion
datasets. We also explore a novel formulation for future predicting decoders
based on conditional recurrent generative adversarial networks. We further
propose both soft and hard constraints for transition generation derived from
desired physical properties of synthesized future movements and desired ani-
mation goals. We find that using such constraints allow to stabilize training
for recurrent adversarial architectures for animation generation.
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1. Introduction

It is often the case that for a given task only a small amount of labeled
data is available compared to a much larger amount of unlabeled data. In
these cases, semi-supervised learning may be preferred to supervised learning
as it uses all the available data for training, and has good regularization and
optimization properties [10, 2]. A common technique for semi-supervised
learning is to perform training in two phases: unsupervised pre-training, fol-
lowed by supervised fine tuning [21, 2, 10, 49]. The unsupervised pre-training
task often consists of training a variant of an auto-encoder (e.g. a denoising
auto-encoder) to reconstruct the data. This helps the network bring its ini-
tial parameters into a good region of the high-dimensional parameter space
before commencing to train the model on the supervised task of interest.

Advances in Recurrent Encoder-Decoder networks have afforded models
the ability to perform both supervised learning and unsupervised learning.
These architectures are often based on the capacity that recurrent neural
networks (RNNs) have to model temporal dependencies in sequential inputs.
When handling a sequence, the last hidden state of an RNN can summarize
information about the whole sequence, allowing the model to encode input
sequences of variable lengths in fixed length vector representations. The
separation between the encoder and the decoder networks allows one to easily
add, modify or re-purpose decoders for desired tasks. Using multiple decoders
forces the encoder to learn rich, multipurpose representations. Additionally,
this also allows semi-supervised training in a single phase.

In this work, we jointly train a classifier model with optional frame-
reconstruction, frame-classification, and sequence reconstruction decoders
which all affect the sequence representation used by the upper, classification-
only layers. Our empirical study shows that adding the unsupervised de-
coders have a regularizing effect on the supervised sequence classification
task. We demonstrate this improvement on HDM05 [37], a well known ac-
tion recognition dataset. We also explore the limits of this method using the
more recent NTU-RGB+D dataset [41]. Finally, we perform separate exper-
iments in which a new constrained recurrent adversarial decoder learns to
generate future frames conditioned on a similarly encoded past-context rep-
resentation. We use Long-Short-Term-Memory (LSTM) models to encode
and decode sequences, and a simple multilayer perceptron (MLP) to classify
them. Our adversarial discriminator is a bi-directional LSTM (BDLSTM),
and outputs predictions at each timesteps.
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Our main contributions are the following: We introduce a novel Recur-
rent Encoder, Multi-Decoder architecture which allows for semi-supervised
learning with sequences. We define and execute a set of experiments using
more realistic and representative test set partitioning of a widely used public
MOCAP dataset, thereby facilitating more informative future evaluations.
We show that this updated classification task is still challenging when hav-
ing an appropriate test set. We show improvements over our implementation
of previous state-of-the-art techniques for action recognition on such well de-
fined experiments. We also present a novel conditional Recurrent Generative
Adversarial Network (ReGAN) architecture for predicting future continuous
trajectories which integrate multiple physics based constraints as well as de-
sired animation properties. We show that using such data-driven constraints
prevents the adversarial learning of the recurrent generator from diverging,
greatly improving the generated transitions from a the same generator net-
work trained without those constraints.

2. Related Work

2.1. Recurrent-Encoder-Decoders

RNNs have proven over the years to be very powerful models for sequen-
tial data, such as speech [20, 40, 18], handwriting [19], text [44, 17], or as in
our case, MOCAP [9, 52]. We use LSTMs [22] without in-cell connections (as
suggested by Breuel [3]) in the models we explore here. A major advantage
and key attribute of RNNs based on Recurrent Encoder-Decoders is their
ability to transform variable-length sequences into a fixed-size vector in the
encoder, then use one or more decoders to decode this vector for different
purposes. Using an RNN as an encoder allows one to obtain this represen-
tation of the whole input sequence. Cho et al. [7] as well as Sutskever et al.
[45] have used this approach for supervised sequence-to-sequence translation,
with some differences in the choice of hidden units and in the use of an ad-
ditional summary vector (and set of weights) in the case of Cho et al. [7].
Both approaches need a symbol of end-of-sequence to allow input and tar-
get sequences to have different lengths. They are trained to maximize the
conditional probability of the target sequence given the input sequence. Our
approach is more closely related to the one used by Srivastava et al. [43]
in which they perform unsupervised learning, by either reconstructing the
sequence, predicting the next frames, or both. In our work, an additional
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decoder is used for classification of whole sequences, and the future generator
uses an adversarial loss to improve generated sequences.

2.2. Generative Adversarial Networks

GANs [16] can be powerful tools to map a random noise distribution to a
real data distribution and therefore to generate realistic samples. They are
composed of a Generator (G) and a discriminator (D) that can be both deep
neural networks. The goal of D is to tell if a sample comes from the real
distribution or if it was generated by G (i.e. it is fake). The generator G
learns from the likelihood signal provided by D in order to produce samples
closer to real samples. While impressive work has been done with GANs or
some of their variants on image generation [39, 38, 25], results on sequential
data remains more limited. Ghosh et al. [14] make use of recurrent networks
to generate the next plausible image as an answer to a sequence query. In
that case, the answer should match the only ground truth answer. In our
case, we aim at producing a realistic series of positions (which might differ
from the true trajectories) that lead to a target pose, conditioned on the
compressed representation of the past context, the noise vector, and the
target pose itself. During training, our generator and discriminator are not
given ground truth frames during their generations/predictions, but always
have information about the target pose. For text generation, Yu et al. [50]
use recurrent networks with a policy gradient method to handle discrete
outputs. We are interested here in plausible continuous trajectories and thus
work with continuous, differentiable, recurrent GANs.

2.3. MOCAP datasets

One challenge with the application of deep learning to MOCAP data
is the lack of strongly labeled, quality data. For this work, we used two
high-quality publicly available MOCAP datasets and a bigger, lower-quality
Kinect dataset. The first MOCAP dataset is the HDM05 dataset [37]. It
contains 2329 labeled cuts that are very well suited for action recognition.
We use the same 65 classes defined by Cho and Chen [6]. The second dataset
is the CMU Graphics Lab Motion Capture Database1. This is a significantly
bigger MOCAP dataset in terms of number of frames. It contains 2148
weakly labeled or unlabeled sequences. This dataset can hardly be used for

1http://mocap.cs.cmu.edu/
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supervised learning as the labeling of sequences, if any, was only made to give
high level indications of the actions, and does not seem to have followed any
stable conventions throughout the dataset. The work by Zhu et al. [52], Ijjina
et al. [27], and Barnachon et al. [1] all use different custom class definitions to
obtain quantitative results on CMU for classification. In the present work,
we use this dataset for unsupervised learning only. The Kinect dataset is
the NTU RGB+D dataset [41] which is to our knowledge the biggest motion
dataset containing skeletal motion data. It contains 60 actions performed by
40 different actors, recorded with a Kinect 2 sensor. It contains over 56000
labeled sequences that may contain more than one subject. Despite the fact
that this dataset is approximately 24 times bigger than HDM05 and has a
higher actor count, its lower quality and its well defined, realistic partitioning
make action recognition in this context a challenging task. Its two evaluation
schemes are based on either held-out actors or a held-out view angle. We
wish to provide here a similarly well defined evaluation case for HDM05.

2.4. Action recognition

Much of the prior work on MOCAP analysis has been based on hand-
crafted featrues. For example, Chaudhry et al. [4] created bio-inspired fea-
tures based on the findings of Hung et al. [26] on the neural encoding of
shapes and, using Support Vector Machines (SVMs), have obtained good
results on classification of 11 actions from the HDM05. Ijjina et al. [27] use
some joints distance metrics based on domain knowledge to create features
that are then used as inputs to a neural classifier (pre-trained as a stacked
auto-encoder). They reach good accuracy for 3 custom classes in the CMU
dataset. Using this prior domain knowledge helps in particular when the
dataset is somewhat specialized and may contain actions of a certain type.
take similar feature-based approaches. However, if the goal is to have a
generic action classifier that handles at least as many actions as found in
HDM05, it might be more appropriate to learn those features with a more
complex architecture. Barnachon et al. [1] use a learnt vocabulary of key
poses (from K-means) and use distances between histograms of sub-actions
in order to classify ongoing actions. They present good accuracy (96.67%)
on a custom subset of 33 actions from HDM05 (where training samples are
taken at random). In our case, we wish to perform classification on the 65
HDM05 actions.

End-to-end neural approaches have also been tried on HDM05 and CMU
in which cases discriminating features are learnt throughout the training of
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a neural network. Cho and Chen [6] have obtained good movement clas-
sification rates on simple sequences (cuts) on the HDM05 dataset using a
Multi-Layer Perceptron (MLP)+Auto-encoder hybrid. Chen and Koskela [5]
tested multiple types of features, using a fast technique they call Extreme
Machine Learning to classify, again, HDM05 cuts. Results were good in both
cases, with accuracies of over 95% and 92% with 65 and 40 action classes
respectively. Their models were trained at the frame level, and sequence clas-
sification was done by majority voting. Other work by Du et al. [9] treated
the simple sequences’ classification problem with the same action classes as
Cho and Chen [6] with a hierarchical network handling in its first layer parts
of the body separately (i.e. torso, arms and legs), and concatenating some
of these parts in each layer until the whole body is treated in the last hid-
den layer. They worked with RNNs to use context information, instead of
concatenating features of some previous frames at each timestep. This led to
better results, and their classification accuracy on simple sequences reached
96.92%. Finally, Zhu et al. [52] have a similar, but less constrained recurrent
architecture that is regularized by a weight penalty based on the l2,1 norm
(Cotter et al. [8]), which encourages parts of the network to focus the most
meaningful joints’ or features’ interactions. They report 97.25% accuracy on
HDM05 for classification of simple sequences, with 65 classes.

Other relevant advances for skeletal motion recognition are applied on
different datasets, such as NTU RGB+D, and once again focus on defining
new motion data representations [30, 31, 48, 51] in order to inject domain
knowledge directly into the inputs. Others propose instead new architectural
variants to the neural networks for motion recognition [34, 42, 28, 12] that
sometimes induces prior knowledge in the architecture instead. Our own
approach could be considered as an architectural modification that aims at
reducing the need for domain knowledge by learning better representations
for generalization using several decoders. It is in that sense more generic,
and could therefore easily be combined with the above approaches or applied
to different domains.

2.5. Transition Generation

Approaches have been proposed for motion prediction with well-designed
recurrent neural networks [12, 36, 15]. While our method uses the same
proposed LSTM decoder used for our reconstruction objective, these archi-
tectures could be applied with our proposed constrained adversarial learning
strategy that stabilizes training. As we wish to generate transitions and not
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only predicting the next frames, we therefore need to add conditioning on fu-
ture context to allow reaching a desired positions. Our work in that manner
is related to Lehrmann et al. [33] for which we add the difficulty of allowing
variable-length transitions.

2.6. Defining a good test set for HDM05

Most previous approaches for classification on HDM05 achieve good clas-
sification results when randomly separating the sequences into training, val-
idation and test sets. However, this kind of partitioning is not a fair esti-
mation of the generalization performance of the model, as the network may
overfit the action styles of particular actors and perform poorly with new
subjects. A more realistic partitioning of HDM05 would therefore be one
based on performers, where action recognition accuracy on new subjects can
be assessed.

Table 1: Accuracies (Acc.) with different test sets, using techniques from Cho and Chen
[6], Du et al. [9] and Zhu et al. [52]. and ours.

Technique Test set Acc.(%)

Du et al. Random 10%, balanced 92.98
Zhu et al. Random 10%, balanced 94.53
Cho & Chen Random 10%, balanced 95.61
SC (Ours) Random 10%, balanced 96.92

Cho & Chen Random 40%, balanced 94.13

Cho & Chen Actors [tr , dg] 64.36

Du et al. Actors [tr , dg], PP 70.63
Cho & Chen Actors [tr , dg], PP 81.64
Zhu et al. Actors [tr , dg], PP 81.64

Table 1 shows the results of our own implementation of previous state-
of-the-art methods [6, 9, 52] on the HDM05 dataset using our controlled
experimental setup. It shows how using held out actors as a test set can
hurt the accuracy, and illustrates more clearly that despite the good results
of previous methods, this can still be a challenging task. In this setting, we
use actors with initials ’tr’ and ’dg’ as test subjects, and a random 5% of
the training data as a validation set for early stopping and hyper-parameter
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searches. Since using two out of five actors from HDM05 for testing repre-
sents approximately 40% of the sequences in the dataset, we tested again the
method from Cho and Chen [6] with a balanced, shuffled partition having the
same proportions of sequences in each sets to see if this was the only factor
influencing the declining results. Finally, we applied our own pre-processing
(PP) of the data with these techniques with our newly defined actor-based
partitions to make further comparisons fair. Our preprocessing of the data
is explained in Section 4.1 and its effects can be seen in in Figure 1. As
we can see, results using our realistic actors-based partitioning of HDM05
are significantly lower, but our own pre-processing method of the data has
a considerable positive effect. Since the techniques of Cho and Chen [6] and
Zhu et al. [52] yielded the best results with our actor-based partitions and
with our pre-processing method, the baseline test accuracy for the rest of this
work will score of 81.64% that was reached with those methods. Finally, we
also include results from our sequence-classification architecture (SC), which
doesn’t use any reconstruction with a random 10% balanced test set and
using the same preprocessing as Cho and Chen [6].

Figure 1: Visual comparison of pre-processing methods for a cartWheel movement
from HDM05. UP: Same as Cho and Chen [6]. DOWN: our method, that allows
for hips not to be parallel to the ground.

3. Our Models

3.1. Multi-Decoder Models

Figure 2 shows an overview of the Frame Reconstructive-Sequence Re-
constructive Classifier (FR-SRC) variant of the proposed architecture. The
model is composed of 5 main components: a per-frame encoder, a per-frame
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Figure 2: The FR-SRC variant of the architecture studied. This network pro-
duces 3 types of outputs (in green) with respect to a sequence X = [x1, ...,xT ]
and its parameters θ. The set θSC includes all the weights and biases used to
compute class probabilities. The hidden states of the frame encoder, sequence
encoder and sequence reconstructive decoder are denoted here by hFE , hSE and
hSD respectively. The sequence representation c is created with the hidden state
of the sequence encoder at time T , and hc represents the sequence classifier’s fully
connected layers (the softmax activation is not explicitly shown here).

reconstructive decoder, a sequence encoder, a sequence reconstructive de-
coder, and a sequence classifier. Each decoder along with the classifier pro-
duces an output used to calculate a cost. Each of these components are added
to produce evermore meaningful features as we go up the layers by having
multiple costs influencing more directly different modules. Here neither the
future generator or the per-frame classifier are shown. The latter tries to
classify the action based on single frames and takes the per-frame encodings
to produce probabilities of actions.

Frame reconstruction: The frame auto-encoder’s role is to learn robust
per-frame features in an unsupervised manner by reconstructing the clean
version (xt) of a corrupted frame (x̃t) at time t. The reconstructive error
(lFRE,t) we use is the well known mean squared error and we apply it for
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each frame, before calculating its average over the frames to get lFR, where:

hFE
t = u(x̃t)

x̂F
t = g(hFE

t )

lFR,t =
1

2
||x̂F

t − xt||2

lFR =
1

T

T∑
t=1

lFR,t

Here, u() is the encoding function learnt by the bottom feed-forward layers of
the per-frame auto-encoder, while g() is the decoding function of the module
learnt by its upper layers. In further equations, HFE will stand for the
sequence of features [hFE

1 , ...,hFE
T ] and we will dismiss the corruption sign

over x̃ as we will show equations for a test setting, where the frames are not
corrupted. All further symbols W and b without subscript or superscript
will represent the weight matrices and bias vectors for the current layer in
order to lighten the notation.

Frame classification: The per-frame classifier uses hFE
t as an input to

yield activations at = W(hFE
t ) + b on movement classes for every frame.

These activations are then summed over all frames into af =
∑T

t=1 at and a
softmax operation is applied on the result, yielding class probabilities P (yk)
given all the frames xt of the whole sequence X, and the parameters of
the frame encoder θFE: P (yk|X, θFE) = sf,k = eaf,k(

∑K
i=1 e

af,i)−1. This is
similar to the operation used by Du et al. [9] to classify sequences based on
a sequence of activations but differs in the fact that we do not use outputs
from recurrent layers.

We use the negative log-likelihood of the correct class as our frame-based
loss lFC = −log(P (Y = yk|X, θFE)). The combination of the frame auto-
encoder and the frame classifier gives something very similar to Cho & Chen’s
[6] approach, except that each frame’s input does not contain information
about a previous frame. When per-frame reconstruction is not used, the
model still encodes frames with z() before outputting probabilities with a
softmax.

Sequence encoding: The LSTM encoder’s purpose is to encode the
whole sequence of learnt features into a fixed length summary vector c that
models temporal dependencies, and which can be used for supervised or
unsupervised tasks, c(X) = tanh(Wsch

SE
T +b), where, c(X) is the output of
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a fully connected layer parametrized by the weight matrix Wsc. It uses the
last hidden state of the LSTM encoder hSE

T as an input. The encoder itself
takes HFE as an input sequence.

Sequence reconstruction: If the sequence reconstructive decoder is
present, it learns to reconstruct the sequence X that was fed to the LSTM
encoder. As explained by Srivastava et al. [43], the LSTM decoder can use
its own previous prediction at each timestep to predict the current output,
making it a conditional decoder. This is what we use in this work. With the
outputted X̂ = [x̂S

1 , ..., x̂
S
T ] from the decoder, and the frame decoding function

g(), we can calculate our feature sequence reconstruction error (lSR):

hD
t = tanh(Wihĥ

FE

t−1 + Whhh
D
t−1 + Wchc(X) + b)

ĥ
FE

t = tanh(WhD
t + b)

x̂t = g(ĥ
FE

t )

lSR,t =
1

2
||x̂S

t − xt||2

lSR =
1

T

T∑
t=1

lSR,t

Sequence classification: The sequence classifier is a MLP that outputs
class probabilities based on the summary vector. This is the main task of
interest, the sequence classifier is therefore used in all of our our experiments.
We again use the negative log-likelihood as the sequence classification error
(lSC):

hC = Wc(X̃) + b,

aseq = WhC + b

P (yk|X, θSC) = sseq,k =
easeq,k∑K
i=1 e

aseq,i

lSC = −log(P (Y = yk|X, θSC))

Using a reconstruction weight ω, we can define different models with dif-
ferent loss functions, enabling some or all of the modules of the architecture.
For example, the complete FRC-SRC loss is defined as :

`frc−src = lSC + lFC + ω · lFR + lSR
2
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In the generic case, the total loss ` can be defined as follow:

` = lSC + i(FC) · lFC + ω · i(FR) · lFR + i(SR) · lSR
i(FR) + i(SR)

(1)

where the indicator function i(m) is simply equal to 1 when the module
is present and 0 when it is not. Removing all optional decoders will result
in a Sequence Classifier only (SC) network. Adding sequence reconstruction
to this model will yield a Sequence Reconstructive Classifier (SRC). Adding
instead frame reconstruction to the SC will give a Frame Reconstructive-
Sequence Classifier (FR-SC), while adding frame reconstruction to the SRC
will yield a Frame Reconstructive SRC (FR-SRC). Finally, adding the last
module will result in a Frame Reconstructive Classifier-SRC (FRC-SRC).

3.2. Constrained Conditional Generation

As mentioned above, we have also developed a novel constrained condi-
tional recurrent generative adversarial model aimed at creating high quality
conditional transition animations. We explored in this context how one could
stabilize the adversarial learning procedure for RNNs using physics-based soft
constraints by forcing the generated clips to respect certain statistics and ac-
tual physical constraints of the data. As a tool for generating transitions
could be beneficial to animators when desired segments are missing, using
GANs for such a task could naturally allow sampling capabilities to such a
tool since the generator could potentially add variety to the transitions based
on the noise sampling. This motivates our exploration with GANs and why
stabilizing their learning could be beneficial. Figure 3 shows a summary of
the generator model. The past context encoder has the same structure as the
sequence encoder used for classification described above. We describe the
other components below.

Future key-pose encoder: Since the future key-pose is a single vector
(single frame), we use here a stack of fully connected layers with no recurrence
with the same number of neurons as the past encoder. Similarly to past
encoding, we create a future context representation cf that will be used by
the generator. With a single layer, cf = σ(WxT+1 + b), where xT+1 is the
future key-pose frame at time t = T + 1.

Transition generator: Our transition generator is a stack of LSTM
layers with additional conditioning connections that transform and transmit
z and cf information at each timestep, so it always has access to it’s future
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Figure 3: Overview of our generative architecture where stacked LSTM layers are
not shown. Different time indices are used for this problem.

target. When generating words, it is common to use an end-of-sentence
keyword in order to have variable length generations. In our case, we use
a stop criterion that is based on the distance of a generated pose x̂t to
the future target x̂T+1. We can therefore stop according to the condition
||x̂t − x̂T+1||2 < λ where λ is a distance threshold.

Discriminator: The discriminator consists of a stack of BDLSTM layers
that take as input a minibatch of sequences with real and fake transitions
and tries to yield higher probabilities for real transitions. The output layer
performs a per-frame feed-forward activation at = W(hD

t ) + b. These acti-
vations, for all transition frames, are then summed into a tensor on which
the sigmoid classification is done, similarly to what the per-frame classifier
does.

Reconstruction objective: A common way to train a generative ar-
chitecture is to use a reconstruction loss on the outputted sequences. We
can obtain a per-frame reconstruction loss lrec,t = 1

2
||x̂t − xt||2 and average

it to get our full reconstruction loss lrec = 1
T+1

∑T
t=0 lrec,t, where T + 1 is the

number of frames in the transition.

Our adversarial objective: For the adversarial loss, both our generator
G and our discriminator D are needed. Regular adversarial networks [16] are
designed to be trained by playing the minimax game with

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))].
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In our case, however, incoming data to the discriminator is formatted as a
sequence X of frames containing the past frames Xpast, transition frames
Xtrans and future frame xtarget. Our generator is not only conditioned on the
noise vector z, but also the past context cp and future context cf provided
but the past and future encoders. We therefore have the following objective:

min
G

max
D

V (D,G) =EX∼pdata(X)[logD(Xtrans|Xpast,xtarget)]

+Ez∼pz(z)[log(1−D(G(z, cp, cf )))]
(2)

Bone length consistency : Similarly to [23], we apply a bone length
consistency constraint in order to preserve rigid bone lengths throughout
frames of the generated sequences. In our case, we base our prior knowledge
of the bone lengths variations on statistics gathered on the training set. We
therefore calculate a vector b(m) of mean bone lengths differences between
consecutive frames, as well as the vector b(v) of variances for all bones differ-
ences. This way, we formulate a Gaussian prior (which we expect to be very
narrow) on every bone length variations between two frames, which we fit
during training using the Log-Likelihood (LLB) of every bone differences:

LLB =
log(2πb(v))

2
− (B− b(m))2

2b(m)

where B is the matrix of bone length differences on every frame for every bone
in the generated sequence, to which the target key-pose is appended. We can
therefore retrieve our bone length consistency loss (Lbone) by averaging all
the negative LLB :

lbone =
1

N

1

(T + 2)

N−1∑
n=0

T+1∑
t=0

−LLBn,t (3)

where N is the number of bones.

Joint velocity constraints: We also apply a joint velocity constraint
based on a mixture of Gaussian priors retrieved from the training set. We
perform an EM algorithm to fit two velocity Gaussians for all input dimen-
sions d, based on velocities at every frame in the training set. Since bone
velocities are very close to 0 on most frames, our mixtures often contain
this spike (with a very small variance) and a broader distribution (higher
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variance). With these mixtures for every joint, we can add a negative log
likelihood loss on velocities to constrain bones to have normal velocities, re-
ducing gaps between consecutive frames in the generated transitions. For
a given vector v(m) of mean velocities per bones and another vector v(v) of
variances per bones, we get the log-likelihood LLV:

LLV =
log(2πv(v))

2
− (V− v(m))2

2v(m)
,

where V is the matrix of velocities of the generated transition to which the
target key-pose was appended, for every dimension at every timestep. We
can therefore calculate our minimum negative LLV for the spike-gaussian
and the broader-gaussian velocity statistics and define our loss as:

lvel =
1

D

1

(T + 2)

D−1∑
d=0

T+1∑
t=0

min(−LLV
(spike)
d,t ,−LLV

(broad)
d,t ),

where D is the number of input dimensions.

4. Experiments

4.1. Experimental Setup

The data in these experiments comes from three different datasets. The
labeled HDM05 dataset and the unlabeled CMU MOCAP dataset are both
recorded at 120 frames per second (fps) and contain more than 30 markers’
positions. In our case, we sub-sample sequences to 30 frames-per-second
and use 23 common markers between the two datasets. We work with the
C3D file format, which contains series of X, Y, Z positions for each marker,
yielding a frame vector of dimension 69. From the NTU dataset, we retrieve
the Kinect’s skeletal data for each sequences. We use the same approach
as Shahroudy et al. [41] to determine the main actor(s) of each sequences.
We use the positions of each of the 25 joints for each actor when using this
dataset. Since some classes in NTU are two-actor-actions, the standard way
of representing the sequences is to concatenate data from the two main actors
of each sequences, yielding a data representation with 150 degrees of freedom.
In cases where only one actor is present, values for the second actor are kept
at 0. We do not sub-sample the NTU sequences as they already have a 30
fps rate.
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Our preprocessing of the data for HDM05 and CMU consists mainly of
orienting, centering and scaling the point cloud of every frame given by the
files. The orientation process is a basis change of all 3D positions so that the
actor’s hips are always facing the same horizontal direction, while allowing
a changing vertical orientation. We then center the hips of the actor at the
origin and scale so every marker is always in the interval [−1, 1]. This can
help handling different actors of different sizes. In all experiments on these
two datasets, we use an additive Gaussian noise with a standard deviation
of 0.05 and mean 0 on markers’ positions for training. We use minibatches
of size 4 when handling HDM05 only data, and minibatches of size 32 when
using the NTU dataset. On the NTU dataset, our only preprocessing consists
of standardizing each joint to have zero mean and unit variance across all
the dataset as suggested by LeCun et al. [32].

We use a model with a frame encoder that is closely related to the one
used by Cho and Chen [6], as it has two hidden layers of [1024, 512] units.
Two extra layers of [1024, 69] units are used by the reconstruction decoder
with tied weights with the encoder. The LSTM encoder, has 3 hidden layers
of [512, 512, 256] LSTM memory cells. As the output of a single bi-directional
recurrent layer can contain, at each timestep, information for the whole se-
quence, we use bi-directionality only in the first LSTM layer of the sequence
encoder. This means that the second layer of the LSTM encoder has an
input of size 2 ∗ 512 containing past and future information. The c layer,
outputting the summary vector is of size 1024, and the hc layer is of size 512.
A softmax layer is placed on top of hc to output probabilities. Each layer
of the LSTM decoder has a number of units equal to size of the output of
its corresponding layer in the encoder. This leads to [256, 512, 1024] memory
cells. All non-linear activations used in the network consist of the tanh()
function except for the input, output and forget gates of the memory cells
that use sigmoid activations. All reconstructive output layers have linear
activations.

For feed-forward layers’ initializations, their weights are drawn uniformly
from [−

√
1/fanin,

√
1/fanin], while we use orthonormal initialization for

recurrent weight matrices. All biases are initialized at 0, except for LSTM
forget gates which are initialized to 1, as proposed by Gers et al. [13] and
Jozefowicz et al. [29]. We use early stopping on the validation set with a
tolerance of 20 epochs for HDM05 and 10 epochs for NTU. The learning
rate is initialized to 0.04, and is halved when the validation accuracy is
not improved for a number of epochs equal to the half of the tolerance.
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We optimize the network parameters with momentum-augmented stochastic
gradient descent with a 0.9 momentum value.

Even though our networks can model sequences of arbitrary lengths, em-
pirical analysis showed that using overlapping sliding windows with a vot-
ing strategy to classify a single sequence yielded better results than feeding
these complete sequences as a whole to the network. Windows correspond
to sub-sequences of a given width, with a constant offset, that are fed to the
network once at a time. We then combine the outputs of the network for
these windows in order to compute the final classification. More specifically,
the network’s softmax outputs for all windows of the sequence are summed
together before retrieving the position of the maximum value (argmax) for
classification. This allows for high-activation segments of a full sequence
to have a bigger weight in the final classification vote. Before conducting
experiments over variations of the classification models, we tested the net-
work using the FR-SRC model on HDM05 data in order to explore different
values of reconstruction weights and different sliding window’s widths (num-
ber of frames we feed to the encoder). We had ω ∈ {0, 1, 5, 10, 20, 50, 100},
where ω = 0 means there’s no reconstruction, and the window’s width w
∈ {20, 30, 90,∞} where ∞ means taking all frames in the sequence. In all
other cases, we used an offset of half the width to slide the window. Based
on results on our validation set, we found ω = 50.0 and w= 30 to be most
effective. These two hyper-parameters have been fixed to those values for all
further experiments.

The SRC architecture without the classification layers is our Sequence
Encoder-Decoder architecture used for generating transitions. It has addi-
tional future-conditioning weights in the sequence-decoder to compute each
LSTM gate and cell activation. In this case, we modify the targets of the
reconstruction to be the future frames of transition. The adversarial learn-
ing is standard, where the generator and discriminator alternate updates for
optimizing Equation 3.2. When using our soft constraints, the generator
also minimizes Equation 3.2 and Equation 3.2 to better shape the generated
poses.

4.2. Regularization by Reconstruction

The experiments we conducted here used the small HDM05 dataset only
and used our proposed held-out actors as a test set. Examining these results,
we are able to see the regularization effects of adding different types of re-
constructive modules and losses to the network’s composite error function.
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Table 2 shows these effects. Each result is the average classification accuracy
for the test set of three different runs with the same architecture.

Table 2: Regularization effects of different models on accuracies
with HDM05 data only

Model Train(%) Test(%)

SC 99.61 84.08
SRC 99.62 84.42
FR-SC 99.86 86.14
FR-SRC 98.83 85.71
FRC-SRC 98.90 85.89

First, we were able to see that all tested variants with optional mod-
ules performed better than our sequence classifier only architecture, which
is better than our implemented baselines. Adding only the recurrent recon-
struction decoder (SRC) improved only marginally the average performance
on the test set, while the biggest improvement came from having per-frame
decoders (FR-SC) denoising and improving frame representations for the se-
quence encoder. It seems however, that in this low-data regime, combining
the multiple optional decoders (FR-SRC, FRC-SRC) also help generalization
compared to the sequence-classification-only model, but to a lesser extent.

4.3. Adding CMU to HDM05

The following experiments, summarized in Table 3, compares our results
for the movement classification task using on HDM05 with and without us-
ing additional unlabeled sequences from the CMU dataset. We compare our
results with our implementation of the baseline techniques from Cho and
Chen [6] and Zhu et al. [52] on the same test set. When adding CMU, we
performed the same preprocessing as with HDM05 and, during training, aug-
mented each HDM05 minibatch with an equal number of randomly picked
CMU sequences for which no classification cost were computed. As with only
labeled sequences, the reconstruction losses were averaged over all sequences
in the minibatch. Since SC does not use any reconstruction, no experiment

was done on with that model with unlabeled data. The results for HDM05-
only experiments from last section are repeated here for easier comparisons.
All additional experiments are also averages from three runs in the same set-
ting. In this bigger data-regime, the use of multiple reconstruction decoders
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Table 3: Test accuracy of different models

Model Dataset Test Accuracy (%)

Baseline HDM05 81.64
SC HDM05 84.08

SRC HDM05 84.42
SRC HDM05+CMU 84.20

FR-SC HDM05 86.14
FR-SC HDM05+CMU 85.71

FR-SRC HDM05 85.71
FR-SRC HDM05+CMU 87.40

FRC-SRC HDM05 85.89
FRC-SRC HDM05+CMU 86.61

with FR-SRC showed to be the most beneficial addition to the system for
generalizing on new subjects. However, when only adding the frame-decoder
(FR-SC) or the sequence decoder (SRC), it seems the addition of unlabeled
sequences from a different distribution of movements did not help as much
as with HDM05 data only. Interestingly, all tested versions of the proposed
system showed a similar trend of having CMU data boost performance only
when having at least the two reconstructive decoders. We hypothesize that
when trying to model the data coming from the different distribution of the
CMU classes, capacity may be wasted on trying to solve the harder job of
reconstructing CMU poses when all the weighting of the reconstruction is
focused on a single reconstruction task (frame/sequence). However, when
combining the reconstruction losses by averaging them (see Equation 3.1), it
seems that reduced focus on a single objective helps the network improve the
representations by having more generalizable reconstructive features, without
wasting its capacity on a single, harder reconstruction task. This would hint
at the fact that an hyper-parameter search for the reconstruction weight ω
for each setting, for different models with and without CMU, could have been
beneficial for CMU improving performances everywhere. As specified in Sec-
tion 4.1, the search over different ω values was done only with the FR-SRC
model using only HDM05. Also, the frame-based classification module might
not be as useful as other modules, which makes sense intuitively. Estimat-
ing probabilities of an action based on a single frame without context might
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Figure 4: 2D visualization of clusters found by the FR-SRC network with some hand-made
annotations after inspection of sub-sequences inside clusters.

be a task overly complex - or simply impossible - for the network. There-
fore, the per-frame encoding layers might try to reduce the very high loss on
frame-based classification by (often unsuccessfully) producing discriminative
features at the expense of higher other losses, resulting in less useful features
to send to the LSTM encoder.

4.4. Clustering HDM05

Using the FR-SRC network that yielded the best results on HDM05 clas-
sification, we produced and performed clustering on the summary vectors it
produced for the test set, unseen during training. We used a Gaussian Mix-
ture Model (GMM) initialized with the K-means++ algorithm, where K was
found by using 10% of the set as a validation set to find the best likelihood.
This system found 30 clusters that we can visualize in Figure 4. Note that
feature vectors have 1024 dimensions and clusters were found in that space,
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while we used the t-SNE algorithm [35] to create a 2D visualization. Some
clusters were annotated after manual inspection to give an idea of what move-
ments the network clustered. We can see that such a trained network could
help accelerate labeling MOCAP sequences of movements since sequences in
the most well defined clusters could be labeled in batch. Manual annotation
seems to suggest that HDM05 actions have a considerable impact of the clus-
tered actions, since almost all clusters could be associated with one or two
HDM05 labels.

4.5. Experiments in higher data regime

To study the effect of our approach in a higher data regime, we evaluate
our models on NTU RGB+D [41], a more recent and much larger dataset. It
contains 56,880 action sequences (compared to 2329 for HDM05), recorded
on 40 different actors and from 3 different camera views. Our results on this
dataset are presented in table 4.

Table 4: Performance in terms of accuracy on the NTU RGB+D dataset

Model CS CV

Squeletal Quads [11] 38.6 41.4
Lie Group [47] 50.1 52.8
FTP Dynamic Skeletons [24] 60.2 65.2
HBDRNN [9] 59.1 64.0
Deep RNN [41] 56.3 64.1
Deep LSTM [41] 60.7 67.3
Part-aware LSTM [41] 62.9 70.3
ST-LSTM [34] 69.2 77.7
STA-LSTM [42] 73.4 81.2
CNN-MTLN [31] 79.6 84.8

SC 62.5 65.88
FR-SC 63.4 65.60

Our models, trained with the same hyper-parameters as with the other
datasets, achieve similar results (slightly better on cross-subject evaluation
and slightly worse on cross-views) to those of the Deep LSTM [41] originally
proposed as a baseline for NTU. Table 4 shows that even though adding
frame reconstruction seem to improve our results on cross-subject evaluation,
it does the opposite on cross-views, supporting the idea that its effect is
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mitigated in higher data regimes. In other words, additional unsupervised
objectives clearly show to be beneficial on HDM05 and CMU datasets, as
supported by Table 3, but do not provide the same benefit on much larger
datasets. We hypothesize that such behavior could emerge from the fact that
our multi-decoders approach effectively improves generalization on smaller
datasets by acting as a regularization strategy, as supported by Table 2, and
that even though action classification on NTU is still a very challenging task,
the large number of sequences and the impressive variety of actors included
in the training set reduce the need for that kind of regularizer.

4.6. Constrained Adversarial Generation

Figure 5: Frames of a sample produced by (TOP) an unconstrained ReGAN, (MID-
DLE) a constrained reconstructive generator, and (BOTTOM) a constrained Re-
GAN.

We apply our proposed conditional future generator on the same datasets.
In this setup, we specify a maximum number of transition frames (45) in or-
der to make predictions stop even if the target is not reached. The ground
truths contain transitions of 15 frames for the given pairs of past context and
future targets. Figure 5 shows a sample output with different losses. The
improvement of adding physics-based soft constraints is easily noticeable as
without them, the generator never learns to produce stable transitions. As
differences between samples from reconstructive and constrained adversarial
generators, such as small reductions of foot sliding, are considerably harder
to see on still frames, the reader is encouraged to see videos in the sup-
plementary materials. A common limitation of both the reconstructive and
constrained generators is the difficulty to produce movements at plausible
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speeds. In both experiments, most samples show transitions taking either
the minimum or the maximum number of frames allowed. This hints at
the fact that the produced representations of the encoder might not contain
enough information on velocity or acceleration of movements. The choice of
the stop criterion could also be improved. A better design choice based on a
distance of each joint to the target pose that depends on the velocity of the
said joint could lead better movement continuity when reaching the target.
The main contribution of these exploratory experiments are therefore the
significant stability improvement of recurrent adversarial learning brought
by using soft constraints based on train-data statistics. This can be used in
other settings as it is a good way to enforce realism without diminishing the
ability of GANs to produce realistic samples.

5. Conclusion

Recurrent Encoder-Decoder architectures with multiple decoders provide
an attractive framework for semi-supervised, multi-purpose representation
learning. Our experiments show that the explored architectures outperform
our implementations of the state-of-the-art for HDM05 movement classifica-
tion methods with a realistic actor-based partition of data. We hope this
evaluation setup can serve as a benchmark partition for further HDM05 ex-
periments, which is still a challenging dataset due to its high number of action
classes and low actor count. Our results also indicate that the inclusion of
reconstructive decoders can have a regularizing effect on learning and allow
the use of unlabeled data in order to improve generalization. Additionally,
we have seen that such networks are well suited for clustering as learned rep-
resentations compress reconstructive and discriminative information about
sequences. Clusters therefore tend to correspond to actions that resemble
labels and could therefore accelerate further labeling.

Our experiments on NTU RGB+D dataset, which contains both many
more sequences and more actors, show the limited beneficial aspects of our
unsupervised-decoders on larger datasets. This indicates that our approach
is most useful when working with a limited amount of labeled data, which is
still quite common for real-life applications.

Finally we have also explored a novel constrained recurrent adversarial an-
imation transition generator which can produce plausible continuous skeletal
trajectories. Both LSTMs and GANs can be hard to train, but we observed
clear benefits from the addition of soft constraints with adversarial training

23



and believe this points to promising directions for realistic animation synthe-
sis and continuous, variable length trajectory generation. the idea of defining
data-driven soft constraint could be applied to other temporal domains where
GANs are especially hard to train.
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