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A useful variant of Wilks’ theorem for grouped

data

Emanuele Dolera∗, Andrea Bulgarelli†, Stefano Favaro‡ and Alessio Aboudan§

Abstract

This paper provides a generalization of a classical result obtained by Wilks about the

asymptotic behavior of the likelihood ratio. The new results deal with the asymptotic behavior

of the joint distribution of a vector of likelihood ratios which turn out to be stochastically

dependent, due to a suitable grouping of the data.
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1 Introduction

This paper deals with the problem of testing a composite statistical hypothesis on the basis of the analysis

of several likelihood ratio statistics (LRS’s, from now on) that are obtained after a suitable splitting of

the original data set into some groups. This new statistical methodology has been devised to solve a

specific problem connected with the analysis of astrophysical data, but we are confident that an abstract

formulation could serve as a theoretical guide to manage similar situations arising in other branches of

applied science. Thus, we mainly focus on the explanation of the sampling procedure—to be considered

itself as a novelty of this work—and the allied mathematical results, deferring the description of the

inspiring astrophysical setting to the end of the introduction. Furthermore, throughout the paper, we shall

emphasize the theoretical aspects, because of their importance as founding elements of the methodology.

To introduce the basic elements of the problem, suppose we are observing n repeated trials of the

same phenomenon, the trials being independent of each other, with the further information about the

time at which any trial is performed. Hence, the theoretical description of the sample is in the form of
(

(X1, t1), . . . , (Xn, tn)
)

, where (X1, . . . , Xn) is a vector of i.i.d. random variables (r.v.’s) and (t1, . . . , tn) be-

longs to (0,+∞)n. The first step consists in the use of (t1, . . . , tn) to split the original vector (X1, . . . , Xn)
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into P different vectors, as follows: first, fix a basic unity of time, in such a way that the whole data

set corresponds to the observation of P unities of time, and then define the random vectors X(p) :=

(X
(p)
1 , . . . , X

(p)
np ), for p = 1, . . . , P , whose components are exactly those original Xi’s for which ti ∈ (p−1, p].

These P vectors could also be interpreted as the result of a sampling from P ordered “populations” of

“individuals”, which are supposed to behave with the same characteristics. Of course, such an assumption

could be too restrictive in certain contexts—where, for example, the time variable could induce some

form of stochastic dependence, or the probability distributions (p.d.’s) could vary from a population to

another—and, consequently, their statistical treatment falls outside the present study. To complete the

picture, after denoting by X the set of all possible realizations of any trial and endowing this set with

a suitable σ-algebra X , consider a regular parametric model {f(· ; θ)}θ∈Θ, where Θ is an open subset

of R
d and, for every θ ∈ Θ, x 7→ f(x ; θ) is a probability density function with respect to a σ-finite

reference measure ν on (X,X ). The unexplained concept of regular model will be made precise in Section

2. The common p.d. of the X
(p)
j ’s corresponds to the density f(· ; θ0), where θ0 ∈ Θ is the true—but

unknown—value of the parameter, and the objective is to test the null hypothesis H0 : θ0 ∈ Θ0 against

the alternative H1 : θ0 6∈ Θ0, Θ0 being a proper subset of Θ. We now formalize how the testing procedure

has to be based on many LRS’s, defined in terms of X(1), . . . ,X(P ), by means of the following principles:

A) any LRS has to be formed by gathering the data included in G consecutive vectors (i.e. the data

observed during G unities of time), the integer G being fixed a priori ;

B) H0 is rejected only if at least k LRS’s are sufficiently small, for a suitably chosen integer k.

The motivation for these two principles rests principally on the purpose to abide by a strict scientific

protocol or practical, unavoidable rules. In fact, on the one hand, a prescription like A) is considered to

tune the definition of the LRS’s with the typical time length of those phenomena which are (supposed to

be) induced by H1. On the other hand, a prescription like B) can be justified whenever it is desirable to

have repeated manifestations of those phenomena to accept H1.

A real application can be found in astrophysics, as described, e.g., in [3]. In this context, every variable

X
(p)
j is associated with the detection of a single photon, the information being relative to its position in the

sky map and its energy, in addition to the time of detection. To have an idea of some orders of magnitude,

we confine ourselves to considering the specific field of transient emission of γ-ray astrophysical sources,

where the scientific operations are focused on the detection of γ-ray flares (see [2, 4]): a representative

unity of time according to which the aforesaid splitting could be performed corresponds to one hour (see

[2] for technical motivations); G is usually chosen equal to 24 (one day), even if different time scales from

6 hours to some weeks are possible; the duration of a γ-ray flare is variable, and the choice of G is coherent

with the fact that the research is focused on the detection of those γ-ray flares of duration of less than

G unities of time; P = N · G, where N has the size of 102 or 103 (corresponding to one or some years).

The i.i.d. assumption makes sense since the region of the sky under study remains reasonably the same

during the whole period of investigation. Now, to better understand and motivate the above setting, it is

crucial to underline that a typical data set in this field is composed of an extraordinary huge number of

observations (i.e. n = n1 + · · ·+nP is very large), but only a very small amount of them is relevant to the

investigation (in the sense that the number of photons actually ascribable to a distinguished astrophysical
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source is much smaller than the total number, the majority of these photons being produced by the

background). Moreover, the relevant photons are concentrated in brief periods of typical time length of

less than G unities of time (the γ-ray flares, indeed). Hence, a global analysis of the entire data set, based

on a single LRS, would prove completely meaningless, since the overwhelming majority of the photons

produced by the background would lead to always accept H0. On the contrary, the application of principle

A), in conjunction with a reasonable choice of G, ensures that the photons actually emitted by the source

under study may be relevant with respect to a subgroup of photons detected during a period of G unities

of time. A detailed description of this operational framework can be found in [1, 2], where principles A)-B)

are explicitly mentioned in connection with the so-called post-trial analysis.

In the following subsections, we illustrate two testing procedures fulfilling principles A)-B). The former

procedure (Subsection 1.1) is standard and simpler and has been used till now, being supported by a well-

known mathematical framework. Nevertheless, this procedure presents a point of weakness connected with

the arbitrary choice of the “origin of the time” and, to clear this hurdle, another practical methodology has

been hinted at by some groups of researchers (see [1, 2]). The formal description of this latter procedure

(Subsection 1.2) has revealed—at the best of our knowledge—a novelty from a statistical viewpoint. In

addition, since the ensuing testing algorithm is no more supported by the current mathematical literature,

we have provided the necessary new results in Section 2.

1.1 The standard approach

Letting P = N ·G and the data be collected in the form of x(1) := (x
(1)
1 , . . . , x

(1)
n1 ), . . . ,x

(P ) := (x
(P )
1 , . . . , x

(P )
nP

),

consider a vector of N different LRS’s, say (Λ
(st)
1 , . . . ,Λ

(st)
N ), where Λ

(st)
i is obtained by gathering the data

belonging to vectors from (i− 1)G+ 1 to iG, namely

Λ
(st)
i := Λ

(st)
i (x((i−1)G+1); . . . ;x(iG)) :=

sup
θ∈Θ0

∏iG
p=(i−1)G+1

∏np

j=1 f(x
(p)
j ; θ)

sup
θ∈Θ

∏iG
p=(i−1)G+1

∏np

j=1 f(x
(p)
j ; θ)

(1)

for i = 1, . . . , N . Notice that, in this framework, these LRS’s turn out to be stochastically independent,

since the N groups of G vectors just considered are disjoint. Then, reject H0 if at least k of the Λ
(st)
i ’s

are less than some reference value α. By independence, the probability of type I error can be evaluated

by means of the binomial formula as π(k, α) :=
∑N

h=k

(

N
h

)

phα(1− pα)
N−h, where the probability pα that

a single Λ
(st)
i is less than α can be approximated, with sufficiently good precision, by resorting to Wilks’

theorem. In fact, from this well-known result, one gets the following result: if {f(· ; θ)}θ∈Θ is a regular

parametric model and Θ0 is an s-dimensional (s ∈ {1, 2, . . . , d − 1}) sub-manifold of Θ, then, under H0,

the p.d. of −2 log Λ
(st)
i (X((i−1)G+1); . . . ;X(iG)) converges weakly, for every i = 1, . . . , N , to a standard

χ2 distribution with d − s degrees of freedom, as n1, . . . , nP go to infinity. See [12, 11] for the original

formulation of Wilks’ theorem, and Chapter 21 of [5], Chapter 22 of [6] or Chapter 5 of [8] for an updated

mathematical treatment.

With this approach, the observed number of LRS’s which are less than α could be affected by the

arbitrary choice of the “origin of time”, in connection with principle A). In fact, the standard subdivision

of the time interval (0, P ] and the ensuing definition of the Λ
(st)
i ’s yield only a partial interpretation of

the data set: since the validity of H1 is usually manifested by the observation of remarkable phenomena
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(the γ-ray flares in astrophysics) of typical duration of less than G unities of time, any single of such

phenomena is effectively seized only in the case that both its initial and final instants belong to some time

interval ((i − 1)G, iG]. On the contrary, if the initial instant belongs to some interval ((i− 1)G, iG] and

the final instant to (iG, (i+1)G], it could happen that such a manifestation is not seized, both the LRS’s

Λ
(st)
i and Λ

(st)
i+1 being possibly greater than α. In conclusion, since the final action of accepting/rejecting

H0 is determined by the comparison of a reference value k(α, π0)—typically the smallest value of k for

which π(k, α) ≤ π0—with the actual value of LRS’s which are less than α, the aforesaid weakness could

distort the decision process. This difficulty is indeed attested in astrophysics, as noted in [1].

1.2 The new approach

Considering all the M groups of G consecutive vectors, the i-th of which consists of those vectors that are

numbered from i to i+G− 1, where M = P −G+ 1 = (N − 1)G+ 1. Then, once the data are collected

in the form of x(1) := (x
(1)
1 , . . . , x

(1)
n1 ), . . . ,x

(P ) := (x
(P )
1 , . . . , x

(P )
nP

), as before, associate a LRS with each

group, obtaining the vector Λ(new) := (Λ
(new)
1 , . . . ,Λ

(new)
M ) defined by

Λ
(new)
i := Λ

(new)
i (x(i); . . . ;x(i+G−1)) :=

sup
θ∈Θ0

∏i+G−1
p=i

∏np

j=1 f(x
(p)
j | θ)

sup
θ∈Θ

∏i+G−1
p=i

∏np

j=1 f(x
(p)
j | θ)

(2)

for i = 1, . . . ,M . At first, it is worth noticing that the random vector

Λ
(new)(X) :=

(

Λ
(new)
1 (X(1); . . . ;X(G)), . . . ,Λ

(new)
i (X(i); . . . ;X(i+G−1)), . . . ,Λ

(new)
M (X(M); . . . ;X(P ))

)

is no more formed by stochastically independent components. Therefore, our main result will deal with the

joint distribution of Λ(new)(X), by providing its asymptotic behavior for large values of the sample sizes

n1, . . . , nP . The main difference with respect to Wilks’ theorem consists of the fact that our result will

not provide weak convergence towards a specific limiting distribution, but only a merging phenomenon, in

the following sense: after fixing a probability distance to compare p.d.’s on (RM ,B(RM )), we will provide

an approximating sequence—depending on the data only through the sample sizes n1, . . . , nP and, above

all, being completely free from the model {f(· ; θ)}θ∈Θ and the choice of θ0—such that the aforesaid

distance between the p.d. of Λ(new)(X) and the relative element of the approximating sequence goes

to zero as n1, . . . , nP go to infinity. With such a theoretical result at disposal, we can describe a more

robust testing procedure which, even maintaining the basic principles A)-B), is no more affected by the

dependency on the “origin of time”. The new setting consists in rejecting H0 whenever there are at least

k of the Λ
(new)
i ’s, say Λ

(new)
i1

, . . . ,Λ
(new)
ik

, with ij+1 − ij ≥ G, which are less than α. More formally, the

rejection rule corresponds to considering the event ∪1≤i1<···<ik≤M
ij+1−ij≥G

(

{Λ
(new)
i1

< α} ∩ · · · ∩ {Λ
(new)
ik

< α}
)

,

whose probability can be evaluated after knowing the joint distribution of Λ(new)(X). Since our main

result (Theorem 2 in Section 2) will provide an explicit approximation of this joint distribution, there are

now all the elements to carry out the new procedure.

From a mere theoretical viewpoint, there is an evident improvement due to the fact that the new

rejection event includes its standard counterpart, entailing that the new test turns out to be more powerful

than the standard one. In any case, from a practical viewpoint, it is easily seen that the problem of the

arbitrary choice of the time origin is now definitely overcome: indeed, it is not possible anymore to neglect a
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relevant manifestation (of duration of less than G unities of time) starting in the time interval ((i−1)G, iG]

and ending in (iG, (i+ 1)G], since there is some other time interval, in the new finer subdivision, which

contains both the initial and the final instants.

2 New results

Before formulating the new mathematical results, it is worth recalling the (standard) conditions of regu-

larity for a parametric model {f(· ; θ)}θ∈Θ, that are:

a) ∀ x ∈ X, θ 7→ f(x ; θ) belongs to C2(Θ);

b) the set X+ := {x ∈ X | f(x ; θ) > 0} does not depend on θ and ν(Xc
+) = 0;

c) for any measurable function T : X → R satisfying
∫

X
T (x)f(x ; θ)ν(dx) < +∞ for all θ ∈ Θ,

derivatives of first and second order (with respect to θ) may be passed under the integral sign in
∫

X
T (x)f(x ; θ)ν(dx);

d) for any θ0 ∈ Θ, there exist a measurable function K0 : X → [0,+∞] and δ0 > 0 such that
∫

X

K0(x)f(x ; θ0)ν(dx) < +∞ ,

sup
|θ−θ0|≤δ0

∣

∣

∣

∂2

∂θi∂θj
log f(x ; θ)

∣

∣

∣
≤ K0(x) (∀ x ∈ X, i, j = 1, . . . , d);

e) the Fisher information matrix I(θ) := (Ii,j(θ))i,j=1,...,d, given by

Ii,j(θ) := −

∫

X

(

∂2

∂θi∂θj
log f(x ; θ)

)

f(x ; θ)ν(dx) , (3)

is well-defined and positive definite at every value of θ;

f) the model is identified, i.e. ν ({x ∈ X | f(x ; θ1) 6= f(x ; θ2)}) = 0 entails θ1 = θ2.

In addition, we require a maximum likelihood estimator (MLE) actually exists as a point of Θ, meaning

that such a MLE must coincide with a root of the likelihood equation. More formally, we assume that

g) ∀ n ≥ n0, there exists a measurable function tn : Xn → Θ such that

sup
θ∈Θ

[

n
∏

j=1

f(xj ; θ)

]

=
n
∏

j=1

f(xj ; tn(x1, . . . , xn)) (∀ (x1, . . . , xn) ∈ X
n) . (4)

The last mathematical tool we need to formalize the concept of approximating sequence is that of

probability distance. See, e.g., [7] or Chapter 2 of [10] for a comprehensive treatment of the subject. Taking

cognizance that there are many distances to compare two p.d.’s on (Rl,B(Rl)), each one emphasizing a

peculiar aspect of the discrepancy, we now select a distinguished metric—henceforth denoted byDl—which

is particularly meaningful with respect to our problem. For the sake of definiteness, given two probability

measures µ1 and µ2 on (Rl,B(Rl)), put

Dl(µ1;µ2) := inf{ε > 0 | µ1(C) ≤ µ2(C
ε) + ε, µ2(C) ≤ µ1(C

ε) + ε, ∀ C ∈ Cl}

where Cε := {x ∈ R
l | d(x,C) ≤ ε} and Cl stands for the class of all convex subsets of Rl. It should

be recalled that Dl is usually called Lévy-Prokhorov distance, and it is often used in the context of
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multidimensional extensions of the Berry-Esseen estimate, being related to the concept of weak convergence

of probability measures. See, for example, [9, 10]. In any case, notice that the testing problem is concerned

exclusively with probabilities of events expressible as {Λ
(new)
1 < α1, . . . ,Λ

(new)
M < αM} for some numbers

α1, . . . , αM , which involve only convex regions of RM .

The way is now paved for the presentation of the first new result, dealing with the asymptotic normality

of the vector (θ̂n1,...,nG
, . . . , θ̂nM ,...,nP

) of MLE’s, whose components are defined by θ̂ni,...,ni+G−1 :=

tni+···+ni+G−1(X
(i)
1 , . . . , X

(i)
ni

; . . . ;X
(i+G−1)
1 , . . . , X

(i+G−1)
ni+G−1 ), for i = 1, . . . ,M , with the same tn as in (4).

Theorem 1. If the regularity conditions a)-g) are valid and θ0 denotes the true value of the parameter,

then the joint distribution of the random vector





√

√

√

√

G
∑

k=1

nk · (θ̂n1,...,nG
− θ0), . . . ,

√

√

√

√

P
∑

k=M

nk · (θ̂nM ,...,nP
− θ0)



 ,

say µ
(dM)
n1,...,nP

, meets

DdM

(

µ
(dM)
n1,...,nP

; γ(dM)(RM , I(θ0))
)

→ 0 (5)

as n1, . . . , nP → +∞, where:

i) RM := RM (n1, . . . , nP ) is the M ×M matrix whose elements ρi,j := ρi,j(n1, . . . , nP ) are given by

ρi,j(n1, . . . , nP ) :=











0 if i, j ∈ {1, . . . ,M}, |i− j| ≥ G
∑b(i,j)

p=a(i,j)
np

√

∑i+G−1
q=i

∑j+G−1
l=j

nqnl

if i, j ∈ {1, . . . ,M}, |i− j| < G
(6)

with a(i, j) := max{i, j} and b(i, j) := min{i, j}+G− 1;

ii) I(θ0) is defined by (3);

iii) γ(dM)(RM , I(θ0)) denotes the dM -dimensional Gaussian p.d. with zero means and covariance matrix



















ρ1,1I(θ0)
−1 ρ1,2I(θ0)

−1 . . . ρ1,M I(θ0)
−1

ρ2,1I(θ0)
−1 ρ2,2I(θ0)

−1 . . . ρ2,M I(θ0)
−1

...
...

. . .
...

ρM,1I(θ0)
−1 ρM,2I(θ0)

−1 . . . ρM,M I(θ0)
−1



















. (7)

Here, it is worth noticing that the covariance matrices given in (7) are actually non-singular, for any

n1, . . . , nP in N. Then, as a consequence of Theorem 1, we can state the main result of the paper, which

generalizes Wilks’ theorem by dealing with the joint distribution, say η
(M)
n1,...,nP

, of the random vector

Ξ(X) :=
(

Ξ1(X
(1); . . . ;X(G)), . . . ,Ξi(X

(i); . . . ;X(i+G−1)), . . . ,ΞM (X(M); . . . ;X(P ))
)

with Ξi(X
(i); . . . ;X(i+G−1)) := −2 log(Λ

(new)
i (X(i); . . . ;X(i+G−1))).

Theorem 2. If the regularity conditions a)-g) are valid and Θ0 is an s-dimensional sub-manifold of Θ,

with s ∈ {1, . . . , d− 1}, then, under H0,

DM

(

η
(M)
n1,...,nP

;χ2
M,r(RM )

)

→ 0 (8)

as n1, . . . , nP → +∞, where:
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i) r := d− s;

ii) χ2
M,r(RM ) stands for the p.d. of the M -dimensional random vector

(

r
∑

h=1

Z
2
h;1,

r
∑

h=1

Z
2
h;2, . . . ,

r
∑

h=1

Z
2
h;M

)

;

iii) the rM -dimensional random vector (Z1;1, . . . , Zr;1, Z1;2, . . . , Zr;2, . . . , Z1;M , . . . , Zr;M) is jointly Gaus-

sian with zero means and covariance matrix given by































Var(Zh;i) = 1 if h = 1, . . . , r and i = 1, . . . ,M

Cov(Zh;i, Zl;j) = 0 if h 6= l and i, j = 1, . . . ,M

Cov(Zh;i, Zh;j) = 0 if |i− j| ≥ G and h = 1, . . . , r

Cov(Zh;i, Zh;j) = ρi,j if |i− j| < G and h = 1, . . . , r .

3 Proofs

Gathered here are the proofs of Theorems 1 and 2. They are obtained under the additional hypothesis

that all the ρi,j are convergent as n1, . . . , nP → +∞. Consequently, since Dl metrizes weak convergence,

the merging phenomenon follows as a consequence of the weak convergence towards the respective limiting

distributions.

3.1 Proof of Theorem 1

Start by noting that the existence of the MLE’s as points of Θ, which is an open set, entails that

θ̂ni,...,ni+G−1 can be expressed as a root of the likelihood equation

ℓ
′

ni,...,ni+G−1
(θ) := ∇θ log[Lni,...,ni+G−1(θ;X

(i)
1 , . . . X

(i)
ni

; . . . ;X
(i+G−1)
1 , . . . X

(i+G−1)
ni+G−1

)]

=

i+G−1
∑

p=i

np
∑

j=1

∇θ log[f(X
(p)
j | θ)] = 0

for every i = 1, . . . ,M . Under the assumptions of the theorem, it is well-known that these estimators are

strongly consistent, that is θ̂ni,...,ni+G−1 → θ0, Pθ0 -a.s.. See, for example, the beginning of the proof of

Theorem 18 in [6]. Now, expand ℓ
′

ni,...,ni+G−1
as

ℓ
′

ni,...,ni+G−1
(θ) = ℓ

′

ni,...,ni+G−1
(θ0) +

1
∫

0

{

i+G−1
∑

p=i

np
∑

j=1

M(X
(p)
j ;θ0 + u(θ − θ0))

}

du · (θ − θ0)

where M(x; t) is the d × d matrix given by
(

∂2

∂tk∂th
log f(x | t)

)

k,h=1,...,d
. Now, let θ = θ̂ni,...,ni+G−1 ,

where θ̂ni,...,ni+G−1 can be any root of the likelihood equation, and divide by
√

∑i+G−1
k=i nk to obtain

1
√

∑i+G−1
k=i nk

ℓ
′

ni,...,ni+G−1
(θ0) =

√

√

√

√

i+G−1
∑

k=i

nk · Bni,...,ni+G−1(θ̂ni,...,ni+G−1 − θ0)

with

Bni,...,ni+G−1 := −

1
∫

0

1
∑i+G−1

k=i nk

{

i+G−1
∑

p=i

np
∑

j=1

M(X
(p)
j ;θ0 + u(θ̂ni,...,ni+G−1 − θ0))

}

du .
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It is well-known that Bni,...,ni+G−1 → I(θ0), Pθ0 -a.s., as shown, for example, in the final part of the proof

of Theorem 18 in [6]. Therefore, the original problem is traced back to the determination of the limiting

distribution of the Md-dimensional random vector

Vn1,...,nP
:=





1
√

∑G
k=1 nk

ℓ
′

n1,...,nG
(θ0), . . . ,

1
√

∑P
k=M nk

ℓ
′

nM ,...,nP
(θ0)





where, by definition,

1
√

∑i+G−1
k=i nk

ℓ
′

ni,...,ni+G−1
(θ0) =

√

√

√

√

i+G−1
∑

k=i

nk

(

1
∑i+G−1

k=i nk

i+G−1
∑

p=i

np
∑

j=1

Ψ(X
(p)
j ;θ0)

)

for i = 1, . . . ,M , with Ψ(x; t) := ∇t log[f(X
(p)
j | t)]. It is worth noticing, at this stage, that the random

vectors {Ψ(X
(p)
j ;θ0)}j=1,...,np

p=1,...,P

are i.i.d. under Pθ0 , and it follows from hypothesis ii) on the model that

Eθ0 [Ψ(X
(p)
j ; θ0)] = 0 (9)

Covθ0(Ψ
(k)(X

(p)
j ; θ0),Ψ

(h)(X
(p)
j ;θ0)) = Ik,h(θ0) (10)

where Ψ(k)(X
(p)
j ;θ0) denotes the kth coordinate of Ψ(X

(p)
j ; θ0). For notational convenience, define Sp :=

∑np

j=1 Ψ(X
(p)
j ; θ0) for p = 1, . . . , P , and note that they are independent d-dimensional random vector,

under Pθ0 . Then, the characteristic function of the random vector Vn1,...,nP
is given by

Φn1 ,...,nP
(ξ1, . . . , ξM ) = Eθ0



exp







M
∑

m=1

iξm •
∑m+G−1

p=m Sp
√

∑m+G−1
k=m nk











= Eθ0









exp















P
∑

p=1

Sp •
∑

m=1,...,M
m≤p≤m+G−1

iξm
√

∑m+G−1
k=m nk























=

P
∏

p=1

ϕ
np









∑

m=1,...,M
m≤p≤m+G−1

ξm
√

∑m+G−1
k=m nk









where • stands for the standard scalar product in R
d and ϕ(ξ) := Eθ0 [exp{iξ •Ψ(X

(p)
j ;θ0)}], with ξ ∈ R

d.

As in the standard proof of the multi-dimensional central limit theorem (see, for example, Proposition 5.9

and Lemma 5.10 in [?]), one exploits (9)-(10) to deduce

Φn1,...,nP
(ξ1, . . . , ξM )

=
P
∏

p=1

[

1−
1

2
t
Ξ

(p)
n1,...,nP

(ξ1, . . . , ξM )I(θ0)Ξ
(p)
n1,...,nP

(ξ1, . . . , ξM ) + o(
1

np
)

]np

with

Ξ
(p)
n1,...,nP

(ξ1, . . . , ξM ) :=
∑

m=1,...,M
m≤p≤m+G−1

ξm
√

∑m+G−1
k=m nk

.

Here, o( 1
np

) is complex-valued so, by taking the principal branch of the complex logarithm, one has

Log[Φn1,...,nP
(ξ1, . . . , ξM )]

= −
1

2

P
∑

p=1

np
t
Ξ

(p)
n1,...,nP

(ξ1, . . . , ξM )I(θ0)Ξ
(p)
n1,...,nP

(ξ1, . . . , ξM ) + o(1) .
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The former term in the RHS above is evidently a quadratic form in the ξ-variables, which can be written

as

P
∑

p=1

np

∑

m=1,...,M
m≤p≤m+G−1

∑

l=1,...,M
l≤p≤l+G−1





np
√

∑m+G−1
k=m

∑l+G−1
h=l nknh





t
ξmI(θ0)ξl

=
∑

m,l=1,...,M
|m−l|<G





∑b(l,m)
p=a(l,m) np

√

∑m+G−1
k=m

∑l+G−1
h=l nknh





t
ξmI(θ0)ξl

where a(l,m) := max{l, m} and b(l,m) := min{l, m} + G − 1. At this stage, taking the limit as

n1, . . . , nP → +∞ of the above expression, one gets

lim
n1,...,nP →+∞

Log[Φn1 ,...,nP
(ξ1, . . . , ξM )] = −

1

2

∑

m,l=1,...,M
|m−l|<G

ρl,m
t
ξmI(θ0)ξl

for every fixed ξ1, . . . , ξM ∈ R
d. This fact, in view of the Lévy continuity theorem, amounts to proving that

the probability distribution of Vn1,...,nP
, evaluated under Pθ0 , converges weakly to the Md-dimensional

normal distribution with zero means and covariance matrix given by


















ρ1,1I(θ0) ρ1,2I(θ0) . . . ρ1,M I(θ0)

ρ2,1I(θ0) ρ2,2I(θ0) . . . ρ2,M I(θ0)

...
...

. . .
...

ρM,1I(θ0) ρM,2I(θ0) . . . ρM,M I(θ0)



















. (11)

Therefore, upon observing that

Vn1,...,nP
=





√

√

√

√

G
∑

k=1

nk · Bn1,...,nG
(θ̂n1,...,nG

− θ0), . . . ,

√

√

√

√

P
∑

k=M

nk · BnM ,...,nP
(θ̂nM ,...,nP

− θ0)



 ,

and that Bni,...,ni+G−1 → I(θ0), Pθ0 -a.s., the desired conclusion now follows, via an obvious application

of the Slutsky theorem, from the above achievement on the limiting distribution of Vn1,...,nP
, thanks to

the elementary property of normal distributions.

3.2 Proof of Theorem 2

The argumentation developed at the beginning of the proof of Theorem 22 in [6] shows that the limiting

distribution of (−2 log[λ̃n1,...,nG
], . . . ,−2 log[λ̃nM ,...,nP

]), evaluated under Pθ0 , is the same as the limiting

distribution of the M -dimensional random vector Wn1,...,nP
whose components are given by

1
√

∑i+G−1
k=i nk

t
ℓ
′

ni,...,ni+G−1
(θ∗

ni,...,ni+G−1
)I(θ0)

−1 1
√

∑i+G−1
k=i nk

ℓ
′

ni,...,ni+G−1
(θ∗

ni,...,ni+G−1
)

for i = 1, . . . ,M , θ∗
ni,...,ni+G−1

denoting the MLE over Θ0 based on the observations {X
(p)
j } j=1,...,np

p=i,...,i+G−1

.

But, exactly as in the central part of the above-mentioned proof from [6], the limiting distribution of the

random vector




1
√

∑G
k=1 nk

ℓ
′

n1,...,nG
(θ∗

n1,...,nG
), . . . ,

1
√

∑P
k=M nk

ℓ
′

nM ,...,nP
(θ∗

nM ,...,nP
)
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turns out to be the same as the limiting distribution of the random vector with components given by

[Idd×d − I(θ0)H(θ0)]
1

√

∑i+G−1
k=i nk

ℓ
′

ni,...,ni+G−1
(θ0)

for i = 1, . . . ,M , where H(θ0) is a d × d matrix defined as follows. Partition I(θ0) into four matrices in

such a way that

I(θ0) =





G1(θ0) G2(θ0)

tG2(θ0) G3(θ0)





holds with G1(θ0) of dimension r×r, G2(θ0) of dimension r×(d−r) and G3(θ0) of dimension (d−r)×(d−r),

and let

H(θ0) :=





0 0

0 G3(θ0)
−1



 .

At this stage, it is possible to exploit the form of the limiting distribution of the random vector Vn1,...,nP

deduced in the proof of Theorem 1. Indeed, an application of the continuous mapping theorem entails

that the limiting distribution of (−2 log[λ̃n1,...,nG
], . . . ,−2 log[λ̃nM ,...,nP

]) coincides with the probability

law of the random vector with component given by

t
Yi

t[Idd×d − I(θ0)H(θ0)] I(θ0)
−1 [Idd×d − I(θ0)H(θ0)] Yi

for i = 1, . . . ,M , where (tY1, . . . ,
t YM ) is any Md-dimensional random vector having normal distribution

with zero means and covariance matrix (11). Elementary linear algebra shows that

t[Idd×d − I(θ0)H(θ0)]I(θ0)
−1[Idd×d − I(θ0)H(θ0)] = I(θ0)

−1 − H(θ0)

because H(θ0)I(θ0)H(θ0) = H(θ0). To conclude, introduce the the Md-dimensional random vector

(tZ1, . . . ,
t ZM ), defined by putting Zi := I(θ0)

−1/2Yi, whose distribution is normal with zero means

and covariance matrix equal to



















ρ1,1Idd×d ρ1,2Idd×d . . . ρ1,M Idd×d

ρ2,1Idd×d ρ2,2Idd×d . . . ρ2,M Idd×d

...
...

. . .
...

ρM,1Idd×d ρM,2Idd×d . . . ρM,M Idd×d



















.

Upon noticing that

I(θ0)
1/2 [I(θ0)

−1 − H(θ0)] I(θ0)
1/2 = Pd,r :=





Idr×r 0

0 0





holds, the theorem is completely proved by putting

(ξ1;i, . . . , ξr;i) := Pd,rZi

for i = 1, . . . ,M .
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