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Abstract

Model reduction is a central problem in analyzing complex systems and high-

dimensional data. We study the state compression of finite-state Markov process from

its empirical trajectories. We adopt a low-rank model which is motivated by the state

aggregation of controlled systems. A spectral method is proposed for estimating the

frequency and transition matrices, estimating the compressed state spaces, and recov-

ering the state aggregation structure if there is any. We provide upper bounds for the

estimation and recovery errors and matching minimax lower bounds.

1 Introduction

Dimension reduction is a central problem in system engineering and data science. In scien-

tific studies or engineering applications, one often needs to interact with unknown complex

systems about which many noisy observations of system characteristics and system trajec-

tories are available. The exact structures and dynamics of the system are typically masked

by massive observations of noisy variables, many of which might not be relevant to the

physical state of the system. It is often unclear how to describe the “state” of a system,

when one can only access noisy observations. One may view each unique observation as

a single state, however, this would generate a huge- or even infinite-dimensional process

which is difficult to model or analyze. Although there exists a vast body of literatures

on time series analysis [18], they typically require knowledge of specific models and might

perform poorly when the models are misspecified.
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Let us focus on the model reduction of discrete-state Markov processes where the tran-

sition function is not known. Suppose that we are given the trajectoric data generated by a

black-box Markov process. The goal is to “sketch” the unknown dynamics from the limited

data as well as to “compress” the state space into compact representations. We are inspired

by the state aggregation approach for reducing controlled systems, which corresponds to

a special decomposition of the system’s transition function. In this paper, we consider a

more general framework for state compression of Markov processes based on low-rank mod-

els. There are a few basic questions of interest: How to compress a large state space into

compact representations? How to find an approximate state-aggregation structure based

on empirical data? How to quantify the estimation error? In this paper, we plan to take a

substantial step towards answering these questions.

1.1 Motivating Examples

State compression finds wide applications in analyzing random dynamic processes. Exam-

ples of application include network analysis, community detection, reinforcement learning

and ranking problems.

• Network Analysis and Community Detection. Suppose that the network is hidden and

one needs to learn from the dynamic “state-transition” data, which are snapshots of

a random walk associated with the implicit network. For example, records of taxi

trips can be used to reveal the traffic network of a metropolitan [26, 3]. Each trip

can be viewed as a fragmented sample path realized from a city-wide Markov chain

that characterizes the traffic dynamics. Experiments suggest that one can use state

compression to recover the zoning of Manhattan city [52]. Existing results for network

partition do not address the Markov nature of state-transition data.

• Reinforcement Learning. Reinforcement learning applications such as autonomous

driving and game AI are modeled as Markov decision processes [46]. Given trajectories

of game snapshots by an expert player, it is of vital interest to identify the compressed

representation of the “state” of game. Multiple efforts show that as long as a reduced

model is given, on can solve the reinforcement learning in sample-efficient ways; see

[44] for reinforcement learning with known soft aggregation models.

• Ranking Problems. Learning to rank is a basic problem in machine learning, where the

goal is to reconstruct a rank-ordered list from training data that consist of partial-

ordered lists [32, 13]. Such problems typically arise from e-commerce applications

where one needs to analyze click streams. The click stream can be viewed as a

random walk on the space of all possible clicks, governed by the advertising strategy
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the user’s preference. State compression of click stream might provide insights into

the consumers’ preferences.

1.2 Related Work

This work is related to previous literatures on spectral clustering, latent-variable models,

and state aggregation of controlled system. Network data arise in many applications and

research areas. Examples include protein-protein interaction networks [22], phone commu-

nication networks [34], collaboration networks [6], correlation networks between stock prices

and the gravitational interaction network of dark matter particles in cosmology [38, 27, 33].

Due to the highly complex nature of these networks, many efforts have been devoted to in-

vestigate reduced-order representations from high-dimensional data (e.g. [14, 39, 37, 12]).

Previously, [45, 51, 20] considered the minimax-optimal estimation under various losses

and specific discrete distributions with i.i.d. observations. In contrast, the estimation of

Markov frequency matrix is a discrete distribution estimation based on non-i.i.d. random

walks and low-rank structures. The spectral clustering is a class of powerful methods that

exploits the spectrum structure, reduce the dimension, and perform clustering for the high-

dimensional data [29, 36]. This method is widely used in various problems in statistics and

machine learning, such as community detection [41, 35, 24], high-dimensional feature clus-

tering [21, 8], imaging segmentation [43, 55]. For most of spectral clustering literature, the

data are independent but not Markovian generated. Most of the existing statistical results

on low-rank matrix estimation focus on independent and identically distributed data.

There is a large body of literatures on the model reduction of large-scale systems. One

popular way to model complicated systems in reduced dimensions is the so-called state

aggregation [4, 5, 31, 40]. Admitting an inherent state aggregation structure means that

the large collection of states can be mapped into a small number of state clusters without

affecting the system dynamics. In practical engineering systems, state aggregation is usually

heuristically imposed by practitioners based on domain-specific knowledges.

1.3 Scope of This Paper

In this paper, we first study the discrete-state Markov processes where the state space

is finite and known a priori. Supposing that the transition probability is unknown, we

aim to estimate a compressed model of the transition matrix from empirical trajectories.

We propose a spectral state compression method for state space reduction of the Markov

processes, which is based on truncated singular value decomposition. Then we extend the

analysis for continuous-state Markov processes. Our main results are as follows.

1. We establish upper bounds on the estimation error for the frequency and transition

3



matrices, and further establish matching minimax lower bounds for a large class of

Markov processes. Our method and result also extends to the estimation of general

stochastic matrices that are not necessarily square.

2. We show that our method recovers the leading low-dimensional subspace for Markov

processes, which we refer to as the compressed state space, with high accuracy. We

provide upper bounds and minimax lower bounds for the subspace recovery error.

3. In the special case where the Markov process admits a latent state-aggregation struc-

ture. We show that the state compression method applies to recovering the state

clusters with high probability.

4. We also consider the continuous-state Markov process low-rank kernel estimation.

Particularly, a functional truncated singular value decomposition is introduced based

on local smoothed empirical surface. The estimation upper bounds are further estab-

lished.

We provide a general framework for dimension reduction of Markov processes, which applies

to special cases like latent-variable models and lumpability of Markov models. The state

compression method can be further used as basis functions for approximating distributions

or for recovering state aggregation structures.

Outline Section 2 proposes the spectral method for low-rank approximation of Markov

chains and provide recovery guarantees. Section 3 investigates the factorization approach

to identify state aggregation structures for lumpable Markov chains. Section 4 extends the

low-rank estimation results to continuous-state Markov processes and gives upper bound

for the estimation error.

Notation and Preliminaries Let small case letters, such as x, y, z, to represent scalars

and vectors. For x, y ∈ R, we note x ∧ y and x ∨ y as the maximum and the minimum of

x and y, respectively. Especially, (x)+ = x ∨ 0 = max{x, 0} represents the non-negative

part of x. For vector v ∈ Rp, define its `q norm as ‖u‖q = (
∑p

i=1 |vi|q)
1/q

, particularly

‖u‖1 =
∑p

i=1 |ui|, ‖u‖2 = (
∑p

i=1 u
2
i )

1/2, and ‖u‖∞ = max1≤i≤p |ui| will be extensively

used throughout the paper. We use boldface upper case letters, e.g. F, P, to represent

matrices. For X ∈ Rp1×p2 with singular value decomposition X =
∑p1∧p2

k=1 σkukv
>
k , denote

σk(X) as the k-th largest singular value of X. Several matrix norms will be considered

in this paper, including Frobenius norm ‖X‖F =
(∑

i,j X2
ij

)1/2
and spectral norm ‖X‖ =

sup‖u‖2≤1 ‖Xu‖2. The class of p-by-r orthogonal matrices is denoted as Op,r = {U ∈ Rp×r :

U>U = Ir}. Finally, we use C,C0, C1, . . . and c, c0, c1, . . . to present the large and small

constants respectively, whose actual values may vary from line to line.
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Next, we briefly review the basic concepts of Markov process. Given a discrete Markov

process on p states {1, . . . , p}, denote its transition matrix as P ∈ Rp×p. Given n states

{X0, . . . , Xn} from P, one must have P(Xk = j|Xk−1 = i,Xk−2, . . . , X0) = Pij for all

k ≥ 1, 1 ≤ i, j ≤ p. When the Markov chain is ergodic on a finite-dimensional state

space, a stationary distribution µ ∈ Rp exists and characterizes the frequency of each state

in a long time observation, µi = limn→∞
1
n

∑n
k=1 1{Xk=i}. Furthermore, µ is a stationary

distribution if and only if µ>P = µ>, µi ≥ 0 and
∑p

i=1 µi = 1. For convenience we

also denote µmin = min1≤i≤p µi, µmax = max1≤i≤p µi. The p-by-p frequency matrix F

characterizes how frequent State i jumps to State j for each (i, j) pair in the long run:

Fij = 1
n

∑n
i=1 1{Xk=i,Xk+1=j}. Then P and F are related via F = diag(µ)P (or Fi· = µiPi·

for any 1 ≤ i ≤ p). Some basic properties of P and F are collected in Lemma 2 in the proof

section, which will be used in the technical analysis in this article.

2 Low-Rank Estimation of Discrete-State Markov Chains

In this paper, we focus on the state compression of finite-state Markov process based on em-

pirical state trajectories. Consider the Discrete-time Markov chain on p states {1, . . . , p}.Let

us consider the model that the system state transition matrix P ∈ Rp×p is an approximately

low-rank matrix; see Figure 1.

Figure 1: State compression of high-dimensional Markov chains. Informally speaking, we want to find a

low-rank decomposition that approximate the transition probability matrix. When the transition probability

matrix P is low-rank, one can map high-dimensional states into low-dimensional states while preserving most

of the system dynamics.

2.1 A Spectral Method for Markov Transition Matrix Estimation

We consider a Markov chain on p states {1, . . . , p} with transition matrix P ∈ Rp×p and

frequency matrix F ∈ Rp×p. Given (n + 1) observable states {X0, . . . , Xn}, it is natural

to estimate P and F via the following empirical frequency matrix and empirical transition

matrix,

F̃ =
(
F̃ij

)
1≤i,j≤p

, F̃ij =
1

n

n∑
k=1

1{Xk−1=i,Xk=j}; (1)
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P̃ =
(
P̃ij

)
1≤i,j≤p

, P̃ij =


∑n
k=1 1{Xk−1=i,Xk=j}∑n

k=1 1{Xk−1=i}
, if

∑n
k=1 1{Xk−1=i} ≥ 1;

1
p , if

∑n
k=1 1{Xk−1=i} = 0.

(2)

The empirical transition matrix is in fact the maximum likelihood estimator [1].

When F or P further satisfy low-rank assumption, we consider a spectral method for

estimation. Suppose the singular value decomposition of F̃ is F̃ = ŨF Σ̃F Ṽ>F , where ŨF

and ṼF are p-by-p orthogonal matrices, Σ̃ is p-by-p diagonal, we propose

F̂(r) =
(
ŨF,[:,1:r]Σ̃F,[1:r,1:r](ṼF,[:,1:r])

>
)

+
, (3)

and P is estimated after the row-wise normalization as

P̂(r) ∈ Rp×p, P̂
(r)
[i,:] =

{
F̂

(r)
[i,:]/

∑p
j=1 F̂

(r)
ij , if

∑p
j=1 F̂

(r)
ij > 0,

1
p1p, if

∑p
j=1 F̂

(r)
ij = 0.

(4)

Remark 1. The proposed F̂(r) and P̂(r) is related to the hard singular thresholding esti-

mator, which has been applied to various settings, including matrix denoising [9, 42, 15, 8];

matrix completion [7, 10]. However, due to the additional transition matrix structure (see

Lemma 2 in the proof section) and Markov dependency, the analysis is different from and

far more complicated than most of the previous independent sampling settings.

2.2 Optimal Low-Rank Recovery of Transition Probability Matrices

Next, we investigate the theoretical performance of the proposed estimators F̂(r) and P̂(r).

The result relies on a key quantity of the Markov mixing time. For any ergodic Markov

transition matrix P with p states and stationary distribution µ, and any value ε > 0, the

Markov mixing time is defined as

τ(ε) = max
1≤i≤p

min

{
k : ∀k′ > k,

1

2

∥∥∥(Pk′)[i,:] − µ>
∥∥∥

1
≤ ε
}
. (5)

Clearly, τ(ε) is an non-negative, integer-valued, and non-increasing function. The Markov

mixing time measures how many jumps one needs to ensure that the state is sufficiently

random given any specific starting state. The interested readers are referred to [25] for a

more comprehensive discussion of Markov mixing time. Based on τ := τ(1/4) in particular,

the following theoretical upper bound holds for F̂(r) and P̂(r).

Theorem 1 (Upper Bound). Suppose P ∈ Rp×p and µ ∈ Rp are the transition matrix and

invariant distribution of some ergodic Markov process on p states. We observe n consecutive

states from any starting points. Denote τ = τ(1/4), where τ(t) is the Markov mixing time

defined as (5). If rank(P) ≤ r and the truncation rank r̂ satisfies r ≤ r̂, there exist universal
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constants C0, C such that when n ≥ C0rp · µmax

pµ2min
· τ log2(n), we have

E
p∑
i=1

‖F̂(r̂)
i· − Fi·‖1 ≤

√
Cr̂p

n
· µmaxp · τ log2(n), (6)

E
1

p

p∑
i=1

‖P̂(r̂)
i· −Pi·‖1 ≤

√
Cr̂p

n
· µmax

µ2
minp

· τ log2(n). (7)

Remark 2. The proof of Theorem 1 relies on a novel matrix Markov chain concentration

inequality with mixing time (Lemma 9), which characterizes the spectral norm distance

between F̃ and F. Then based on the low-rank assumption of F and P, we perform a

careful spectral analysis (Lemma 4) to obtain the error bounds for F̂(r̂) and P̂(r̂).

Remark 3 (Empirical estimators P̃ and F̃). The empirical estimators P̃ and F̃ usually yield

a larger convergence rate since it does not utilize the low-rank structure. Consider the case

that P = 1
p1p1

>
p , the empirical frequency and probability estimation yields a larger error

rate than F̂(r) and P̂(r): E‖F̃−F‖1 � E1
p‖P̃−P‖1 �

√
p2/n. In order to obtain consistency

estimation, the sufficient sample complexity for P̂(r) and F̂(r) is O(prpolylog(p)), which is

smaller than O(p2), i.e., the sufficient sample complexity for F̃ and P̃.

The actual value of Markov mixing time τ(t) is generally difficult to evaluate in practice.

On the other hand, τ(ε) can be characterized by the following Cheeger’s constant and eigen-

gap condition.

• Cheeger’s constant [11]: the following Cheeger’s constant is introduced to measure the

degree of connectivity for P,

Φ = min
Ω⊆{1,...,p}

∑
i∈Ω,j∈Ωc µiPij

min{
∑

i∈Ω µi,
∑

i∈Ωc µi}
. (8)

Cheeger’s constant essentially characterizes the connectivity of all different parts of the

Markov chain. The larger Φ implies the less chance that the state will “stuck” in some

subsets of the states for a long run.

• Eigen-gap condition: When P satisfies the detailed balance condition, i.e., µiPij = µjPji

for any 1 ≤ i, j ≤ p, or equivalently F is symmetric, the corresponding Markov process is

referred to as being reversible. The reversibility is an important and widely considered

condition in stochastic process literature. The largest eigenvalue of a reversible Markov

transition matrix is always 1; suppose the second largest eigenvalue of P is λ2 < 1, then

1 − λ2 plays an important role in regulating the connectivity of the Markov chain: the

more close λ2 is to 1, the more likely the Markov chain is congested. Moreover, the

eigen-gap of reversible Markov processes can be estimated from the observable states via

a plug-in estimator proposed by [19].
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The following results hold as an extension of Theorem 1 based on Cheeger’s constant or

eigen-gap assumption.

Corollary 1. Under the assumption of Theorem 1,

1. if the Markov chain is with the Cheeger’s constant Φ, then

E‖F̂(r̂) − F‖1 ≤

√
Cr̂p

n
· (µmaxp) ·

log2(n)

Φ2
, (9)

E
1

p

p∑
i=1

‖P̂(r̂)
[i,:] −P[i,:]‖1 ≤

√
Cr̂p

n
·
(
µmax

µ2
minp

)
· log2(n)

Φ2
; (10)

2. if P is reversible and with second largest eigenvalue λ2 < 1, then

E‖F̂(r̂) − F‖1 ≤

√
Cr̂p

n
· (µmaxp) ·

log2(n)

1− λ2
, (11)

E
1

p

p∑
i=1

‖P̂(r̂)
[i,:] −P[i,:]‖1 ≤

√
Cr̂p

n
·
(
µmax

µ2
minp

)
· log2(n)

1− λ2
. (12)

Correspondingly, the following lower bound results hold for low-rank Markov transition

and frequency matrices estimation.

Theorem 2 (Lower Bound). Consider the following class of low-rank transition and fre-

quency matrices

Fp,r =
{

F ∈ Rp×p : F ∈ F , rank(F) ≤ r
}
,

Pp,r =
{

P ∈ Rp×p : P ∈ P, rank(P) ≤ r
}
.

(13)

where F and P are the classes of transition and frequency matrices whose formal char-

acterizations are given in (53) and (52). Suppose (n + 1) consecutive transition states

{x0, . . . , xn} from the corresponding Markov chain with starting point randomly generated

from the invariant distribution. Then following minimax lower bound for estimation of P

and F hold,

inf
F̂

sup
F∈Fp,r

E
p∑
i=1

∥∥∥F̂[i,:] − F[i,:]

∥∥∥
1
≥ c

(√
rp

n
∧ 1

)
, (14)

inf
P̂

sup
P∈Pp,r

E
1

p

p∑
i=1

∥∥∥P̂[i,:] −P[i,:]

∥∥∥
1
≥ c

(√
rp

n
∧ 1

)
. (15)

where c > 0 is some uniform constant.
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Combining Theorems 1 and 2 together, we have shown that the spectral estimator F̂(r)

and P̂(r) achieves near minimax-optimal up to logarithmic terms, when r̂/r, θmax/θmin, and

τ are of constant order.

Remark 4. The proof of Theorem 1 relies on the careful construction of a series of low-

rank Markov transition and frequency matrices. Then one aims to show that these low-rank

objects are non-separable based on a length-(n+1) Markov train, and the generalized Fano’s

lemma is applied to develop the desired lower bound results.

2.3 Optimal Compression of State Space

The matrix factorization is an important tool for dimension reduction for high-dimensional

data. We further consider the factorization of approximately low-rank Markov process in

this section. Suppose the singular value decomposition of P and F are

P = [UP UP⊥]

[
ΣP1 0

0 ΣP2

]
·

[
VP

VP⊥

]
, F = [UF UF⊥]

[
ΣF1 0

0 ΣF2

]
·

[
VF

VF⊥

]
, (16)

where UP ,VP ,UF ,VF ∈ Op,r, UP⊥,VP⊥,UF⊥,VF⊥ ∈ Op,p−r, ΣP1,ΣP2,ΣF1,ΣF2 are

diagonal matrices with non-increasing order of diagonal entries. It is noteworthy that VP

and VF represent the same subspace when P or F is of exactly rank-r, since F = diag(µ) ·P
and the left multiplication does not change the right singular subspace. We consider the

following estimators for the leading singular vectors of F and P,

ÛF =SVDr

(
F̃
)

= leading r left singular vectors of F̃;

V̂F =SVDr

(
F̃>
)

= leading r right singular vectors of F̃;

ÛP =SVDr

(
P̃
)

= leading r left singular vectors of P̃;

V̂P =SVDr

(
P̃>
)

= leading r right singular vectors of P̃.

(17)

The proposed estimators satisfy the following theoretical properties.

Theorem 3 (Upper Bounds for Low-rank Stochastic Matrix Factorization). Suppose we

observe n states from an ergodic Markov chain with transition matrix P from any starting

point, where n ≥ C0rτ log2(n)µmax

µ2min
. The mixing time τ := τ(1/4) is defined as (5). Then the

proposed estimator (17) satisfies

E
(
‖ sin Θ(ÛF ,UF )‖ ∨ ‖ sin Θ(V̂F ,VF )‖

)
≤
C
√

1/(np) · (µmaxp) · τ log2(n)

σr(F)− σr+1(F)
∧ 1,

E
(
‖ sin Θ(ÛP ,UP )‖ ∨ ‖ sin Θ(V̂P ,VP )‖

)
≤
C‖P‖

√
p/n · µmax/(µ2

minp) · τ log2(n)

σr(P)− σr+1(P)
∧ 1.
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Particularly if we focus on the following class of approximately low-rank stochastic

matrices,

Pp,r,λP =
{
P ∈ Rp×p : P ∈ P, rank(P) ≤ r, σr(P)− σr+1(P) ≥ λP

}
;

Fp,r,λF =
{
P ∈ Rp×p : F ∈ F , rank(F) ≤ r, σr(F)− σr+1(F) ≥ λF

}
,

(18)

we can develop the following lower bound results.

Theorem 4 (Lower Bound for Low-rank Stochastic Matrix Factorization). Suppose 2 ≤
r ≤ p/2, the following lower bound holds for estimations of UP , VP , UF , VF .

inf
ÛF

sup
F∈Fp,r,λF

E
(
‖ sin Θ(ÛF ,UF )‖ ∧ ‖ sin Θ(V̂F ,VF )‖

)
≥ c

(√
1/(np)

λF
∧ 1

)
,

inf
ÛP

sup
P∈Pp,r,λP

E
(
‖ sin Θ(ÛP ,UP )‖ ∧ ‖ sin Θ(V̂P ,VP )‖

)
≥ c

(√
p/n

λP
∧ 1

)
.

Remark 5. Theorems 3 and 4 together yields a near-optimal rate of convergence for

factorizing P and F, when µmax/µmin and τ are in the constant order.

3 Optimal State Aggregation for Lumpable Markov Pro-

cesses

Motivated by previous discussions on low-rank stochastic matrix estimation and factoriza-

tion for Markov processes, we consider the lumpable complex network in this section.

3.1 Lumpable Markov Chains and State Aggregation

Suppose the targeting stochastic network is lumpable, in the sense that the node can be

partitioned into smaller number of groups, which still form a Markov chain. Our goal is to

partition these nodes into sub-groups according to lumpability (see, e.g. [29, 16]).

Definition 1 (Lumpability of Stochastic Network [23]). A stochastic process with Markov

transition matrix P is lumpable with respect to partition G1, . . . , Gr, if for any 1 ≤ k < l ≤
r, Gk ∩Gl = ∅, G1 ∪ · · · ∪Gr = {1, . . . , p}, and for any two states in the same group, i.e.,

i, i′ ∈ Gk, ∑
j∈Gk

Pi,j =
∑
j∈Gk

Pi′,j . (19)

When the Markov chain is lumpable with r groups, say G1, . . . , Gr ⊆ {1, . . . , p}, P

exhibits a block-wise structure after permutation (see Pσ in Figure 2). The original p

states can be compressed into r groups, where the law of walkers on {G1, . . . , Gr} remains
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a Markov chain. For convenience, let Z ∈ Rp×r be the group membership indicator, such

that Zik = 1{i∈Gk}. Following the statements in [29] and [16], the stochastic matrices have

the following decomposition.

Proposition 1 (Lumpability Transition Matrix Decomposition). Suppose P and F are

the transition and frequency matrices of a lumpable Markov chain. Then there exists the

compressed Markov transition matrix P̄ ∈ Rr×r for state space {G1, . . . , Gr}, such that

P̄kl =
∑
j∈Gl

Pij , where i ∈ Gk. (20)

P and F can be further decomposed as follows,

P = P1 + P2, (P1)ij =
1

|Gl|
∑
j∈Gl

Pij , if j ∈ Gl, (21)

F = F1 + F2, (F1)ij =
1

|Gl|
∑
j∈Gl

(F1)ij , if j ∈ Gl. (22)

P2,F2 can be seen as the remainders of low-rank approximation. Equivalently, P1 can be

written as P1 = Z · P̄ · diag(|G1|−1, . . . , |Gr|−1) · Z>. Moreover, P1P
>
2 = 0, F1F

>
2 = 0.

If P1 = UP1ΣP1V
>
P1
,F1 = UF1ΣF1V

>
F1

are the singular value decompositions, UP1,

VP1 ,VF1 are piecewise linear based on group partitions. To be specific, (UP1)[i,:] = (UP1)[i′,:],

(VP1)[i,:] = (VP1)[i′,:], and (VF1)[i,:] = (UF1)[i′,:] for any i, i′ ∈ Gk. On the other hand, un-

less the Markov chain is reversible, UF1 does not necessarily have piecewise linear structure.

Particularly, the lumpable transition matrix P and its decomposition are illustrated in

Figure 2.

3.2 The State Aggregation Procedure and High-Probably Recovery of

Meta-States

Given rank(P1) = r and P2 is of small amplitude, P can be seen as an approximately rank-

r matrix. Thus, the proposed low-rank factorization method sheds light to the partitions

structure estimation for lumpable stochastic processes. When we implement k-means algo-

rithm on the rows of Û[:,1:r] to partition the p states {1, . . . , p} into r groups, the following

results on misclassification rate hold.

Theorem 5. Suppose all assumptions in Theorem 1 holds, the targeting Markov process is

lumpable with respect to partition G1, . . . , Gr. Let ÛF , V̂F , U , and V be the leading r left

and right singular vectors of F̂ and F, respectively. Then

E
(
‖ sin Θ(ÛF ,UF1)‖ ∨ ‖ sin Θ(V̂F ,VF1)‖

)
≤

C
√

1/(pn) · (pµmax)τ log2(n)

σr(F1)
+

2‖F2‖
σr(F1)

 ∧ 1.
(23)
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Figure 2: Heat map illustration of P, P1, P2, Pσ, and P̄

When the Markov chain is further reversible, we have

E
(
‖ sin Θ(ÛF ,UF1)‖ ∨ ‖ sin Θ(V̂F ,VF1)‖

)
≤

C
√

1/(pn) · pµmaxτ log2(n)

σr(F1)

 ∧ 1. (24)

Corollary 2 (Misclassification Rate). Suppose one performs k-means on all p rows of V̂F

and partition into r groups, i.e., calculate

Ĝ1, . . . , Ĝr = arg min
Ĝ1,...,Ĝr

min
v̄1,...,v̄r∈Rr

r∑
s=1

∑
i∈Ĝs

‖(V̂F )[i,:] − v̄s‖22.

If (23) holds, there exists a permutation among r group memberships, π, such that

r∑
j=1

|{i : i ∈ Gj , but i /∈ Ĝπ(j)}|
|Gj |

≤
(
Cr/(pn)

σ2
r (F1)

· pµmax · τ log2(n) +
4‖F2‖2

σ2
r (F1)

)
∧ r.

If the Markov chain is further reversible, one has

r∑
j=1

|{i : i ∈ Gj , but i /∈ Ĝπ(j)}|
|Gj |

≤
(
Cr/(pn)

σ2
r (F1)

· pµmax · τ log2(n)

)
∧ r.

Here
∣∣∣{i : i ∈ Gj , but i /∈ Ĝπ(j)}

∣∣∣ presents the number of nodes in Gj but was classified into

the other group by mistake.

Remark 6. We prefer performing k-means on V̂F for lumpability network partition among

the other singular subspace estimations, since (a) the estimation of ÛP and V̂P yields larger

bounds; (b) UF typically does not have piece-wise linear structure (see Proposition 1), then

the outcome from k-means on ÛF does not provide valid partition estimations.
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4 Continuous-State Markov Process Low-rank Kernel Esti-

mation

Now we further consider the transition kernel estimation for continuous-state low-rank

Markov chain. Given an ergodic Markov process on the continuous-state space S, let

P,F : S × S → R be the transition and frequency kernels, µ : S → R be the invariant

distribution. If one observes (n+1) states X = {x0, . . . , xn} from such Markov process, the

goal is to estimate P and F based on these state transitions. Similarly as the discrete-state

Markov processes, P, F and µ are related as F(a, b) = µ(a)P(a, b),∀a, b ∈ S.

4.1 Low-Rank Kernel Estimation of Continuous Markov Processes

We consider the method for estimating low-rank continuous-state Markov processes.

1. Let K : R2 → R be a bivariate smooth kernel and h > 0 be the bandwidth. Calculate

the following local smoothed empirical surface F̃ : R2 → R,

F̃(a, b) =
1

n

n∑
k=1

K

(
a− xk−1

h
,
b− xk
h

)
. (25)

2. Perform functional SVD on F̃ and extract the first r singular components,

λ̂i ≥ 0, ûi ∈ L2(R), v̂i ∈ L2(R), i = 1, . . . , r. (26)

Numerically one can obtain these objects via discretization and matrix singular value

decomposition.

3. Then we construct the estimators for frequency and transition kernels and the singular

subspaces,

F̂ =

(
r∑
i=1

λ̂iûi ⊗ v̂i

)
+

, i.e. F̂(a, b) =

(
r∑
i=1

λ̂iûi(a)v̂i(b)

)
+

,

P̂ : R2 → R, P̂(a, b) =
F̂(a, b)∫
F̂(a, b′)db′

,

4.2 Upper Bounds of Estimation Errors

Suppose kernel F has functional singular value decomposition F =
∑∞

k=1 λkuk ⊗ vk, where

λ1 ≥ λ2 ≥ · · · ≥ 0, {ui(·)}∞i=1 and {vi(·)}∞i=1 are two orthonormal systems in `2 finite space

L2(R). The Markov chain mixing time can be defined as follows,

τ(ε) = sup
a∈R

min

{
k : ∀k′ ≥ k, 1

2
‖P(k)(a, ·)− µ(·)‖1 =

1

2

∫
|P(k)(a, b)− µ(b)|db ≤ ε

}
. (27)

13



Here, P(k) is the k-th power of P,

P(k) : R2 → R, P(k)(a, b) =

∫
Rk−1

P(a, x1)P(x1, x2) · · ·P(xk−1, b)dx1 · · · dxk−1. (28)

Next, we establish the upper bound for estimation errors of F̂ and P̂.

Theorem 6. Suppose a continuous-state Markov chain is with transition kernel P, fre-

quency kernel F, compact support S with constant measure, and invariant distribution µ.

If K is an order-bβc kernel and F belongs to the 2-dimensional Nikol’ski class [48, Chapter

1]:

F ∈ H(β, L) =

{
F : R2 → R is bβc-th differentiable;

 ∑
α≤bβc

∫
R2

(DαF(x1 + t1, x2 + t2)−DαF(x1, x2))2 dx1dx2

1/2

≤ L(t21 + t22)(β−bβc)/2

}
.

for constant L > 0. Here, DαF is the differential operator with α = (α1, α2) ∈ R2 as the

order of derivatives. When the bandwidth h = n
− 1

4β+2 , the estimators F̂ and P̂ yield the

following estimation upper bounds,

E
∫
|F̂(a, b)− F(a, b)|dadb ≤ C

(
log(n)τ

n

) 2β
4β+2

; (29)

E
∫
|P̂(a, b)−P(a, b)|dadb ≤ Cµ−1

min

(
log(n)τ

n

) 2β
4β+2

. (30)

To better characterize the continuous Markov chain mixing time, we introduce the

following continuous-state Markov chain Cheeger’s constant and eigen-gap.

Definition 2 (Cheeger’s constant for continuous-state Markov chain). The Cheeger’s con-

stant for continuous-state Markov chain is defined as (see, e.g. [2]),

Φ = inf
Ω⊆R

∫
Ω×Ωc µ(a)P(a, b)dadb

min{
∫

Ω µ(a)da,
∫

Ωc µ(a)da}
.

Definition 3 (Eigen-gap for reversible continuous-state Markov chain). Suppose P and µ

are the transition kernel of a continuous-state Markov chain. Assume the Markov chain

is reversible, in the sense that µ(a)P(a, b) = µ(b)P(b, a) or equivalently F is self-adjoint.

Recall that λk(P) is defined as the k-th largest eigenvalue of P, then the eigen-gap for

reversible continuous-state Markov chain is defined as 1− λ2(P).

With Cheeger’s constant or eigen-gap condition, the following upper bounds hold for

estimation errors.

14



Corollary 3 (Continuous Markov Chain Transition Operator Estimation under Cheeger’s

Constant and Spectral Gap). Under the assumption of Theorem 6,

1. if the Markov process is with Cheeger’s constant Φ, then (29) and (30) with τ replaced

by 1/Φ2 hold;

2. if the reversible Markov process is with second largest eigenvalue λ2 < 1, then (29)

and (30) with τ replaced by 1/(1− λ2) hold.

5 Proofs of Main Results

We collect the proofs for the technical results in this section.

5.1 Proof of Theorem 1

First, for any matrix A with singular value decomposition A =
∑

i σiuiv
>
i , we define

Amax(r) =
∑r

k=1 σkukv
>
k and A−max(r) =

∑p1∧p2
k=r+1 σkukv

>
k = A − Amax(r) as the leading

and non-leading parts of A.

Now we consider the proof for Theorem 1. By Lemma 9, there exists constants C > 0

and c > 1 such that

∥∥∥F̃− F
∥∥∥ ≤ C

√
µmax · τ(

√
µmax/n) · log(n)

n
, (31)

‖µ̃− µ‖∞ ≤ C

√
µmax · τ(

√
µmax/n) · log(n)

n
, (32)

with probability at least 1 − O(n−c). By Lemma 6, one further has τ(
√
µmax/n) ≤

Cτ(log(n) + log(1/µmax)) ≤ Cτ log(n), provided that n ≥ C0rp
µmax

µ2minp
· τ log2(n) ≥ C0rp ≥

C0/µmax. Thus, (31) and (32) implies

P

max
{∥∥∥F̃− F

∥∥∥ , ‖µ̃− µ‖∞} ≤ C
√
µmaxτ log2(n)

n

 ≥ 1− n−c. (33)

Assume (33) holds, define F̂
(r̂)
0 = ŨF,[:,1:r]Σ̃F,[1:r,1:r]Ṽ

>
F,[:,1:r], then F̂(r̂) = (F̂

(r̂)
0 )+. By

Lemma 4 and F̂
(r̂)
0 is the leading r̂ principal components of F̃, we have∥∥∥F̂(r̂)
0 − F

∥∥∥
F
≤ 2
√

2r̂
∥∥∥F̃− F

∥∥∥+ 2
√

2r̂‖F−max(r̂)‖+ ‖F−max(r̂)‖F

≤C

√
r̂µmaxτ log2(n)

n
+ C
√
r̂
∥∥F−max(r̂)

∥∥+ C‖F−max(r̂)‖F .
(34)
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By Hölder’s inequality,∥∥∥F̂(r̂) − F
∥∥∥

1
=

p∑
i=1

p∑
j=1

|F̂(r̂)
0,ij − Fij | ≤

p∑
j=1

|F̂(r̂)
ij − Fij |

≤p

 p∑
i=1

p∑
j=1

|F̂(r̂)
ij − Fij |2

1/2

= p
∥∥∥F̂(r̂) − F

∥∥∥
F

≤Cp

√
r̂µmaxτ log2(n)

n
+ C
√
r̂p
∥∥F−max(r̂)

∥∥+ Cp‖F−max(r̂)‖F

=C

√
r̂p

n
· pµmax · τ log2(n) + C

√
r̂p
∥∥F−max(r̂)

∥∥+ Cp‖F−max(r̂)‖F .

(35)

provided that (31), (32) hold. On the other hand, we always have the following loose upper

bound, ∥∥∥F̂(r̂) − F
∥∥∥

1
≤
∥∥∥F̂(r̂)

∥∥∥+ ‖F‖1 ≤ 2. (36)

Since (31) and (32) hold with probability 1−O(n−c), we finally have

E
∥∥∥F̂(r̂) − F

∥∥∥
1

=E
∥∥∥F̂(r̂) − F

∥∥∥
1

1{(31)(32) hold} + E
∥∥∥F̂(r̂) − F

∥∥∥
1

1{(31)(32) hold}c

(35)(36)

≤ C

√
r̂p

n
· pµmax · τ log2(n) + C

√
r̂p
∥∥F−max(r̂)

∥∥+ Cp‖F−max(r̂)‖F

+ 2 · P (either (35) or (36) not holds)

≤C
√
r̂p

n
· pµmax · τ log2(n) + C

√
r̂p
∥∥F−max(r̂)

∥∥+ Cp‖F−max(r̂)‖F + 2n−c,

which implies the error bound for F̂(r̂) provided that rank(F) ≤ r̂.
Next we consider the error bound for P̂(r̂). Since P̂

(r̂)
i· =

F̂
(r̂)
i·

‖F̂(r̂)
i· ‖1

,P
(r̂)
i· =

F
(r̂)
i·

‖F(r̂)
i· ‖1

, and

‖Fi·‖1 = µi ≥ µmin, therefore

1

p

∥∥∥P̂(r̂) −P
∥∥∥

1
=

1

p

p∑
i=1

‖P̂(r̂)
i· −Pi·‖1

Lemma 3
≤

p∑
i=1

2‖F̂(r̂)
i· − Fi·‖1
pµmin

≤C

√
r̂

np
· µmax

pµ2
min

· τ log2(n) +
C
√
r
∥∥F−max(r̂)

∥∥+ C‖F−max(r̂)‖F
µmin

.

One can similarly show

1

p

∥∥∥P̂(r̂) −P
∥∥∥

1
≤ C

√
r̂

np
· µmax

pµ2
min

· τ log2(n) +
C
√
r
∥∥F−max(r̂)

∥∥+ C‖F−max(r̂)‖F
µmin

.

Therefore, we have finished the proof for this theorem. �
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5.2 Proof of Corollary 1

We only focus on the case with Cheeger’s constant as the proof for eigen-gap-based scenario

essentially follows. By Lemma 7, one has

τ(ε) ≤ 2

Φ2
log(1/(2εµmin)), ∀ε > 0. (37)

Combing (37) with Lemma 9 and n ≥ C µmaxrτ log2(n)
µ2min

for large constant C > 0, we have

max
{∥∥∥F̃− F

∥∥∥ , ‖µ̃− µ‖∞} ≤ C
√
µmaxτ(

√
µmax/n) log(n)

n

≤C

√
µmax log(

√
n/(2µmin

√
µmax)) log(n)

nΦ2
≤ C

√
µmax log2(n)

nΦ2
,

(38)

for large constant C > 0 and with probability at least 1−O(n−c). Applying (38), the rest

of the proof exactly follows from the one of Theorem 1. �

5.3 Proof of Theorem 2

First, it is helpful to study the Kullback-Leibler divergence between two Markov processes

with same the same state space {1, . . . , p} but different transition matrices P and Q. Sup-

pose µ is the stationary distribution of P, X(1) = {x(1)
0 , . . . , x

(1)
n } and X(2) = {x(2)

0 , . . . , x
(2)
n }

are two Markov chains generated from P and Q, and x
(1)
0 ∼ µ, i.e. the starting point of

X(1) is from its stationary distribution. Then, clearly x
(1)
0 , . . . , x

(1)
n identically satisfy the

distribution of µ (though they are dependent). Recall the KL divergence between two

discrete random distributions p and q is defined as DKL(p||q) =
∑

x p(x) log(p(x)/q(x)).

Thus,

DKL

(
X(1)||X(2)

)
:=

∑
X∈[p]n+1

pX(1)(X) log

(
pX(1)(X)

pX(2)(X)

)

=
∑

i0,...,in∈[p]n+1

P
(
X(1) = (i1, . . . , in)

)
· log

(
P
(
X(1) = (i0, . . . , in)

)
P
(
X(2) = (i0, . . . , in)

))

=
∑

i0,...,in∈[p]n+1

µi0Pi0,i1 · · ·Pin−1,in log

(
µi0Pi0,i1 · · ·Pin−1,in

µi0Qi0,i1 · · ·Qin−1,in

)

=
∑

i0,...,in−1∈[p]n

∑
in∈[p]

µi0Pi0,i1 · · ·Pin−1,in

{
log

(
µi0Pi0,i1 · · ·Pin−2,in−1

µi0Qi0,i1 · · ·Qin−2,in−1

)
+ log

(
Pin−1,in

Qin−1,in

)}

=DKL

(
{x(1)

0 , . . . , x
(1)
n−1}||{x

(2)
0 , . . . , x

(2)
n−1}

)
+

∑
in−1∈[p]

µin−1

∑
in∈[p]

Pin−1,in log

(
Pin−1,in

Qin−1,in

)
=DKL

(
{x(1)

0 , . . . , x
(1)
n−1}||{x

(2)
0 , . . . , x

(2)
n−1}

)
+
∑
i∈[p]

µiDKL (Pi·||Qi·) .
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Then it is easy to use induction to show that

DKL

(
X(1)||X(2)

)
= DKL

(
{x(1)

0 , . . . , x
(1)
n−1}||{x

(2)
0 , . . . , x

(2)
n−1}

)
+
∑
i∈[p]

µiDKL (Pi·||Qi·)

= · · · = DKL

(
x

(1)
0

∣∣∣∣∣∣x(2)
0

)
+ n

∑
i∈[p]

µiDKL (Pi·||Qi·) .

(39)

Next, we consider the proof the frequency matrix estimation lower bound. Let p0 = bp/2c,
l0 = bp0/{2(r − 1)}c, and construct

P(k) =
1

p
1p1
>
p +

τ

2p


l0︷ ︸︸ ︷

R(k) · · · R(k)

l0︷ ︸︸ ︷
−R(k) · · · −R(k) 0p0×(p−2l0(r−1))

−R(k) · · · −R(k) R(k) · · · R(k) 0p0×(p−2l0(r−1))

0(p−2p0)×(l0(r−1)) 0(p−2p0)×(l0(r−1)) 0(p−2p0)×(p−2l0(r−1))


(40)

Here {R(k)}mk=1 are i.i.d. Bernoulli p0-by-(r − 1) random matrices, 0a×b is the a-by-b zero

matrix, and 0 < τ ≤ 1 is some constant to be determined later. Then clearly, P(k) is a

transition matrix, and 1
p1p is the stationary distribution, then the corresponding frequency

matrix F(k) = 1
pP

(k). Now for any k 6= l,

‖F(k) − F(l)‖1 =
1

p
‖P(k) −P(l)‖1 =

2l0τ

p2
‖R(k) −R(l)‖1 =

2l0τ

p2

p0∑
i=1

r−1∑
j=1

∣∣∣R(k)
ij −R

(l)
ij

∣∣∣ .
It is easy to see that

{∣∣∣R(k)
ij −R

(l)
ij

∣∣∣} are i.i.d. uniformly distributed on {0, 2}. These

random variables also satisfy

E
∣∣∣R(k)

ij −R
(l)
ij

∣∣∣ = 1, Var(R
(k)
ij −R

(l)
ij ) = 1,

∣∣∣∣∣∣R(k)
ij −R

(l)
ij

∣∣∣− 1
∣∣∣ ≤ 1.

By Bernstein’s inequality, for any ε > 0 we have

P
(∣∣∣∣∥∥∥F(k) − F(l)

∥∥∥
1
− 2l0τp0(r − 1)

p2

∣∣∣∣ ≥ 2l0τ

p2
ε

)
≤ 2 exp

(
−ε2/2

p0(r − 1) + ε/3

)
Set ε = p0(r − 1)/2, m = bexp(p0(r − 1)/28)c, then we further have

P
(
∀1 ≤ k < l ≤ m, l0τp0(r − 1)

p2
≤
∥∥∥F(k) − F(l)

∥∥∥2

F
≤ 3l0τp0(r − 1)

p2

)
≥1−m(m− 1) exp

(
−p0(r − 1)

28

)
> 1−m2 exp

(
−p0(r − 1)

28

)
> 0.

By such an argument, we can see there exists
{
R(1), . . . ,R(m)

}
⊆ {−1, 1}p0×(r−1) such that

∀1 ≤ k < l ≤ m, l0τp0(r − 1)

p2
≤
∥∥∥F(k) − F(l)

∥∥∥
1
≤ 3l0τp0(r − 1)

p2
. (41)
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We thus assume
{
R(1), . . . ,R(m)

}
⊆ {−1, 1}p0×(r−1) satisfies (41).

Next, we construct m Markov chains of length (n + 1): {X(1), . . . , X(m)}. For each

k ∈ {1, . . . ,m}, x(k)
0 ∼ 1p

p , and the rest of the states jump according to P(k) and F(k).

Based on the calculation in (39),

DKL

(
X(k)

∣∣∣∣∣∣X(l)
)

=
n

p

p∑
i=1

DKL

(
P

(k)
i·

∣∣∣∣∣∣P(l)
i·

)
Base on Lemma 5 and 1/(2p) ≤ P

(k)
ij ≤ 3/(2p), we further have DKL

(
P

(k)
i·

∣∣∣∣∣∣P(l)
i·

)
≤

3p‖P(k)
i· −P

(l)
i· ‖22. Thus, for any 1 ≤ k < l ≤ m,

DKL

(
X(k)

∣∣∣∣∣∣X(l)
)
≤ 3n

p∑
i=1

‖P(k)
i· −P

(l)
i· ‖

2
2 = 3n

p∑
i,j=1

(
P

(k)
ij −P

(l)
ij

)2

=
6nτ

p

p∑
i,j=1

∣∣∣P(k)
ij −P

(l)
ij

∣∣∣ ≤ 6nτ · ‖F(k) − F(l)‖1 ≤
18nτ2l0p0(r − 1)

p2
.

Now, by generalized Fano’s lemma (see, e.g., [54, 53]),

inf
F̂

sup
F∈{F(1),...,F(m)}

∥∥∥F̂− F
∥∥∥

1
≥ l0τp0(r − 1)

p2

(
1− 18nτ2l0p0(r − 1)/p2 + log 2

logm

)
Finally, we set τ2 =

{
p2

18nl0p0(r−1)

(
1
2 log(m)− log(2)

)}
∧ 1,

inf
F̂

sup
F∈Fp,r

∥∥∥F̂− F
∥∥∥

1
≥ inf

F̂
sup

F∈{F(1),...,F(m)}

∥∥∥F̂− F
∥∥∥

1

≥p0l0(r − 1)

2p2
·

√
p2 ·

(
1
2 log(m)− log(2)

)
18np0l0(r − 1) ∧ 1

≥ c
√
pr

n
∧ 1.

Then we develop the lower bound for transition matrix estimation. To simplify the

notations, it is without loss of generality to assume that p is a multiple of 4(r − 1). For

1 ≤ k ≤ m, let

P(k) =
[

2−γ
p · 1p×(p/2)

γ
p · 1p×(p/2)

]

+
τ(2− γ)

2p


0(p/2)×(p/4) 0(p/2)×(p/4) 0(p/2)×(p/2)

R(k) · · · R(k) −R(k) · · · −R(k) 0(p/4)×(p/2)

−R(k) · · · −R(k)︸ ︷︷ ︸
l0

R(k) · · · R(k)︸ ︷︷ ︸
l0

0(p/4)×(p/2)

 , (42)

where l0 = p/4(r − 1), R(k) ∈ R(p/4)×(r−1), R(k) is a (p/4)-by-(r − 1) matrix with i.i.d.

Bernoulli random values, γ = θminp, and τ is some positive value to be determined later.

It is easy to see that rank(P(k)) ≤ r. Let

µ′ =

[
2− γ
p

1>p/2
γ

p
1>p/2

]>
. (43)
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Then we can check that µ>P(k) = µ>, min1≤i≤p µ
′
i ≥ θmin, then µ′ is the invariant distri-

bution of P(k), and P(k) ∈ Pp,r,θmin
. Similarly as the proof for previous part, there exists

fixed matrices {R(1), . . . ,R(m)} ⊆ {−1, 1}(p/4)×(r−1) such that m = bexp(cp(r − 1))c and

∀1 ≤ k < l ≤ m, p(r − 1)/4 ≤
∥∥∥R(k) −R(l)

∥∥∥
1
≤ 3p(r − 1)/4.

Then for any 1 ≤ k <≤ m, we further have∥∥∥P(k) −P(l)
∥∥∥

1
=
τ(2− γ)

2p
· 4l0 · ‖R(k) −R(l)‖1 ≥

τ(2− γ)p

8
.

DKL

(
{X(k)

0 , . . . , X(k)
n }

∣∣∣∣∣∣{X(k)
0 , . . . , X(k)

n }
)

= n
∑
i∈[p]

µi ·DKL

(
P

(k)
i·

∣∣∣∣∣∣P(l)
i·

)

=n

p∑
i=p/2+1

p/2∑
j=1

γ

p
·P(k)

ij log
(
P

(k)
ij /P

(l)
ij

)
=

2nγ

p

p/4∑
i=1

(2− γ)

2
DKL

(
u

(k)
i

∣∣∣∣∣∣u(l)
i

)
,

where u
(k)
i = 2

p1p/2 + τ
p

[
R

(k)
i· · · · R

(k)
i· −R

(k)
i· · · · −R

(k)
i·

]
is a (p/2)-dimensional distri-

bution. Similarly by Lemma 5, we have

DKL

(
u

(k)
i

∣∣∣∣∣∣u(l)
i

)
≤ 3p

2
· l0

τ2

p2

∥∥∥R(k)
i· −R

(l)
i·

∥∥∥2

2
≤ 3 · l0τ2

p
·
∥∥∥R(k)

i· −R
(l)
i·

∥∥∥
1
.

Thus,

DKL

(
{X(k)

0 , . . . , X(k)
n }

∣∣∣∣∣∣{X(k)
0 , . . . , X(k)

n }
)

=
nγ(2− γ)

p

p/4∑
i=1

3l0τ
2

p
·
∥∥∥R(k)

i· −R
(l)
i·

∥∥∥
1
≤ 6nγl0τ

2

p2
‖R(k) −R(l)‖1 ≤

6nγl0τ
2

p2
· 3p(r − 1)

4
= 18nτ2γ.

Similarly as previous part, we set τ =
1
2

logm−log 2

18nγ ∧ 1,

inf
P̂

sup
F∈Pp,r(θmin)

∥∥∥P̂−P
∥∥∥

1
≥ inf

P̂
sup

P∈{P(1),...,P(m)}

∥∥∥P̂−P
∥∥∥

1

≥τ(2− γ)p

16
·
(

1− 18nτ2γ − log 2

logm

)
≥ p

32
·
√

cpr

18npγ
∧ 1

≥cp
(√

pr

n
· 1

pθmin
∧ 1

)
,

which implies the lower bound for transition matrix estimation. To sum up, we have finished

the proof for this theorem. �

5.4 Proof of Theorem 3

By Lemmas 6 and 9, one has

P
(
‖F̃− F‖ ≥ C

√
µmaxτ log2(n)/n

)
≤ n−c0 ,
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By Wedin’s lemma [49], one has

max
{
‖ sin Θ(ÛF ,UF )‖, ‖ sin Θ(V̂F ,VF )‖

}
≤
C
√
µmaxτ log2(n)/n

σr(F)− σr+1(F)

with probability at least 1−n−c0 . Since max{‖ sin Θ(ÛF ,UF )‖, ‖ sin Θ(ÛF ,UF )‖} ≤ 1 by

definition,

Emax
{
‖ sin Θ(ÛF ,UF )‖, ‖ sin Θ(V̂F ,VF )‖

}
≤Emax

{
‖ sin Θ(ÛF ,UF )‖, ‖ sin Θ(V̂F ,VF )‖

}
1Q

+ Emax
{
‖ sin Θ(ÛF ,UF )‖, ‖ sin Θ(V̂F ,VF )‖

}
1Qc

≤
C
√
µmaxτ log2(n)/n

σr(F)− σr+1(F)
+ 1 · P(Qc) ≤

C
√
µmaxτ log2(n)/n

σr(F)− σr+1(F)
∧ 1.

Since sin Θ(ÛF ,UF ) and sin Θ(V̂F ,VF ) are of r-by-r, we additionally have

Emax
{
‖ sin Θ(ÛF ,UF )‖F , ‖ sin Θ(V̂F ,VF )‖F

}
≤
C
√

(rp/n) · pµmax · τ log2(n)

σr(F)− σr+1(F)
∧
√
r.

Next we consider ÛP , and V̂P . Let µ̃ be the empirical distribution of µ,

µ ∈ Rp, µi =
1

n

n∑
k=1

1{Xk−1=i}.

Provided that n ≥ C µmaxτ log2(n)
µ2min

for large enough constant C > 0, we have

‖µ̃− µ‖∞ ≤ C

√
µmaxτ log2(n)

n
≤ 1

2
µmin.

Then

min
i
µ̃i ≥ min

i
µi − ‖µ̃− µ‖∞ ≥

1

2
µmin, (44)

and

|µi/µ̃i − 1| = |µi − µ̃i|
µ̃i

≤ 2µ−1
min · C

√
µmaxτ log2(n)

n
. (45)
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Since P̃ = µ̃−1F̃, we have∥∥∥P̃−P
∥∥∥ =

∥∥∥µ̃−1F̃− diag(µ)−1F
∥∥∥

≤
∥∥∥µ̃−1(F̃− F)

∥∥∥+
∥∥(diag(µ)−1 − diag(µ̃)−1

)
F
∥∥

≤
∥∥µ̃−1

∥∥ · ‖F̃− F‖+ ‖diag(µ/µ̃)− I‖ · ‖diag(µ)F‖

≤
(

min
i
µ̃i

)−1

· ‖F̃− F‖+ max
ij
|µi/µ̃i − 1| · ‖P‖

(44)(45)

≤ Cµ−1
min

√
µmaxτ log2(n)

n
+ Cµ−1

min

√
µmaxτ log2(n)

n
‖P‖.

Since ‖P‖ ≥ ‖ 1√
p1>p P‖2 = 1, the inequality above further yields

∥∥∥P̃−P
∥∥∥ ≤ Cµ−1

min

√
µmaxτ log2(n)

n
‖P‖.

Finally, by Wedin’s perturbation bound, we have

max
{
‖ sin Θ(ÛP ,UP )‖, ‖ sin Θ(V̂P ,VP )‖

}
≤
C‖P‖ ·

√
(p/n) · µmax/(pµ2

min) · τ log2(n)

σr(P)− σr+1(P)

with probability at least 1− n−c0 . By similar argument as the one in Theorem 1, one can

finally show

Emax
{
‖ sin Θ(ÛP ,UP )‖F , ‖ sin Θ(V̂P ,VP )‖F

}
≤
C‖P‖ ·

√
(rp/n) · µmax/(pµ2

min) · τ log2(n)

σr(P)− σr+1(P)
.

�

5.5 Proof of Theorem 4

We focus on the proof for UP , UF and r = 2 first, as the proof for VP and VF or r ≥ 3

essentially follows. Without loss of generality we also assume p is a multiple of 4. First, we

construct a series of rank-2 Markov chain transition matrices, which are all in Pp,r. To be

specific, let

P(k) =
1

p
1p1
>
p

+
λP
p



p/2︷ ︸︸ ︷
1p/4 · · · 1p/4

p/2︷ ︸︸ ︷
−1p/4 · · · − 1p/4

−1p/4 · · · − 1p/4 1p/4 · · · 1p/4

δβ(k) · · · δβ(k) −δβ(k) · · · − δβ(k)

−δβ(k) · · · − δβ(k) δβ(k) · · · δβ(k)

 .
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Here {β(k)}mk=1 are m copies of i.i.d. Rademacher (p/4)-dimensional random vectors, 0 <

δ ≤ 1 and m are constants to be determined later. It is not hard to check that the singular

value decomposition of P(k) can be written as

P(k) =

(
1
√
p

1p

)(
1
√
p

1p

)>
+ σ(k)u(k)(v(k))>, (46)

where

σ(k) =
λP
p

√
p2

2
(1 + δ2) ≤ λP ,

u(k) =
1√

p
2(1 + δ2)


1p/4

−1p/4

δβ(k)

−δβ(k)

 , v(k) =
1
√
p

[
1p/2

−1p/2

]
.

Namely, P(k) ∈ Pp,λP , k = 1, . . . ,m. Since λP ≤ 1/2, 1/2 ≤ P
(k)
ij ≤ 3/2.

Note that (β(k))>β(l) is a sum of (p/4) i.i.d. Rademacher random variables, by Bern-

stein’s inequality

P
(

1

p/4

∣∣∣(β(k))>β(l)
∣∣∣ ≥ 1/2

)
≤ 2 exp

(
− p/4 · (1/2)2

2(1 + 1/3 · 1/2)

)
,

then

P
(
∃k 6= l, s.t.

1

p/4

∣∣∣(β(k))>β(l)
∣∣∣ ≥ 1

2

)
≤ 2 · m(m− 1)

2
exp (−p/28) < m2 exp (−p/28) .

(47)

If we set m = dexp(−p/56)e, the probability in the right hand side of (47) is strictly less

than 1, which means there must exists fixed
{
β(k)

}m
k=1

such that

|(β(k))>β(l)| < p/8, ∀1 ≤ k < l ≤ m. (48)

For the rest of the proof we assume (48) always hold. Now, for any k 6= l,∥∥∥sin Θ
(
U(P,k),U(P,l)

)∥∥∥ = ‖ sin Θ(u(k), u(l))‖ =

√
1−

(
(u(k))>v(l)

)2
=

√
1−

(
p/2 + 2δ2(β(k))>β(l)

p/2 + δ2p/2

)2

≥

√
1−

(
p/2 + δ2p/4

p/2 + δ2p/2

)2

=

√
δ2p/4

p/2 + δ2p/2
·
(

1 +
p/2 + δ2p/4

p/2 + δ2p/2

)
≥

√
δ2p/4

p
=
δ

2
.

It is easy to verify that 1
p1p is a stationary distribution for all P(k). Now for each 1 ≤ k ≤ m,

suppose X(k) = {x(k)
0 , . . . , x

(k)
n } is a Markov chain generated from transition matrix P(k)
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and initial distribution x
(k)
0 ∼ 1

p1p. Then based on the calculation in Theorem 2, the

KL-divergence between X(k) and X(l) satisfies

DKL

(
X(k)||X(l)

)
=
n

p

p∑
i=1

DKL

(
P

(k)
i· ||P

(l)
i·

)
Lemma 5
≤ 3n

p∑
i=1

‖P(k)
i· −P

(l)
i· ‖

2
2 ≤ 3n ·

λ2
P

p2
·
(
δ2 p

2

2

)
≤

3nλ2
P δ

2

2
.

Finally we set δ =
√

2 log(m)−log 2
3nλ2P

. By generalized Fano’s lemma,

inf
ŨP

sup
P∈{P(1),...,P(m)}

∥∥∥sin Θ(ŨP ,UP )
∥∥∥ ≥δ

2

(
1−

3nλ2
P δ

2 + log 2

logm

)
≥ δ

4

≥c
√
p/n

λP
,

which has finished the proof for the theorem. �

5.6 Proof of Theorem 5

Denote Z = F̃− F. Based on the intermediate step in the proof of Theorem 1, we have

‖Z‖ =
∥∥∥F̃− F

∥∥∥ ≤ C
√
µmaxτ log2(n)

n
.

with probability at least 1−n−c. Provided that σr(F1) > ‖F2‖, the one-sided perturbation

bound (Proposition 1 in [8]) yields,

∥∥∥sin Θ
(
V̂F ,VF

)∥∥∥ ≤ σr(F̃V>F ) · ‖P(F̃V)F̃V⊥‖

σ2
r (F̃V>F )− σ2

r+1(F̃)

Here, PA = A(A>A)†A> is the projection for any matrix A,

σr(F̃VF ) ≥ σr(FVF )− ‖Z‖ = σr(F1VF + F2VF )− ‖Z‖ ≥ σr(F1)− ‖Z‖,

σr+1(F̃) ≤ σr+1(F) + ‖Z‖ = min
rank(K)≤r

‖F−K‖+ ‖Z‖ ≤ ‖F− F1‖ ≤ ‖F2‖+ ‖Z‖,
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∥∥∥P(F̃VF )F̃VF,⊥

∥∥∥ =
∥∥∥P(F̃VF )PUF

F̃VF,⊥ + P(F̃VF )PUF,⊥F̃VF,⊥

∥∥∥
≤
∥∥∥P(F̃VF )UFU>F F̃VF,⊥

∥∥∥+
∥∥∥P(F̃VF )UF,⊥U>F,⊥F̃VF,⊥

∥∥∥
≤
∥∥∥U>F F̃VF,⊥

∥∥∥+

∥∥∥∥(F̃VF )
[
(F̃VF )>(F̃VF )

]−1
(F̃VF )>UF,⊥U>F,⊥F̃VF,⊥

∥∥∥∥
≤
∥∥∥U>F (F1 + F2 + Z)VF,⊥

∥∥∥+
1

σmin(F̃VF )

∥∥∥(F̃VF )>UF,⊥

∥∥∥ · ∥∥∥U>F,⊥F̃VF,⊥

∥∥∥
≤
∥∥∥U>F (F1 + F2 + Z)VF,⊥

∥∥∥
+

1

σmin((F1 + F2 + Z)VF )

∥∥∥U>F,⊥(F1 + F2 + Z)VF

∥∥∥ · ∥∥∥U>F,⊥(F1 + F2 + Z)VF,⊥

∥∥∥
(since U>FF2 = 0, F1VF,⊥ = 0, U>F,⊥F1 = 0)

=‖U>FZVF,⊥‖+
1

σmin((F1 − Z)VF )
‖U>F,⊥(F2 + Z)VF ‖ · ‖U>F,⊥(F2 + Z)VF,⊥‖

≤‖Z‖+
(‖F2‖+ ‖Z‖)2

σmin(F1)− ‖Z‖
.

Thus,

‖ sin Θ(V̂F ,VF )‖ ≤
(
‖Z‖(σr(F1) + ‖Z‖) + (‖F2‖+ ‖Z‖)2

(σr(F1)− ‖Z‖)2 − (‖F2‖+ ‖Z‖)2

)
∧ 1.

When σr(F1)− ‖F2‖ ≥ 3‖Z‖,

(σr(F1)− ‖Z‖)2 − (‖F2‖+ ‖Z‖)2 = (σr(F1)− ‖F2‖ − 2‖Z‖) (σr(F1) + ‖F2‖)

≤1

3
(σr(F1)− ‖F2‖) (σr(F1) + ‖F2‖) =

1

3

(
σ2
r (F1)− ‖F2‖2

)
‖Z‖ (σr(F1) + ‖Z‖) + (‖F2‖+ ‖Z‖)2 = ‖Z‖ (σr(F1) + 2‖F2‖+ 2‖Z‖) + ‖F2‖2

≤2‖Z2‖ (σr(F1) + ‖F2‖) + ‖F2‖2.

Thus, when σr(F1)− ‖F2‖ ≥ 3‖Z‖,

‖ sin Θ(V̂F ,VF )‖ ≤
(

6‖Z‖
σr(F1)− ‖F2‖

+
3‖F2‖2

σ2
r (F1)− ‖F2‖2

)
∧ 1

≤
(

6‖Z‖
σr(F1)− ‖F2‖

+
6‖F2‖2

σ2
r (F1)

)
∧ 1

≤

C
√
µmaxτ log2(n)/n

σr(F1)− ‖F2‖
+
C‖F2‖2

σ2
r (F1)

 ∧ 1

(49)
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On the other hand when σr(F1) − ‖F2‖ < 3‖Z‖, 6‖Z‖
σr(F1)−‖Z‖ ≥ 1 then (49) still hold.

Similarly, one can show∥∥∥sin Θ
(
ÛF ,UF

)∥∥∥ ≤ C‖Z‖
σr(F1)− ‖F2‖

+
C‖F2‖2

σ2
r (F1)

≤

 C

σr(F1)− ‖F2‖

√
µmaxτ log2(n)

n
+
C‖F2‖
σr(F1)

 ∧ 1.

Next we consider the second part on the misclassification rate of r-means. By Proposition

1, VF is piece-wise linear with respect to partitions G1, . . . , Gr. Then we write VF = MX,

where M and X are the membership and probability matrices, respectively:

M ∈ Rp×r, Mij =

{
1, i-th state ∈ Gj
0, i-th state /∈ Gj .

(50)

X ∈ Rr×r, X ≥ 0. (51)

Since VF = MX is an orthogonal matrix, X>M>MX = Ir, note that MM = diag(n1, . . . , nr),

we have X>diag(n1, . . . , nr)X = Ir, then diag(n
1/2
1 , . . . , n

1/2
r )X is an orthogonal matrix,

which implies

‖X[s,:]‖22 =
1

|Gs|
, X>[s,:]X[t,:] = (|Gs| · |Gt|)−1/2 · 1{s=t}, ∀1 ≤ i, j ≤ p.

This implies for any two states i, j, if i ∈ Gs, j ∈ Gt, then

‖(VF )[i,:] − (VF )[j,:]‖22 =‖X[s,:] −X[t,:]‖22 = ‖X[s,:]‖22 + ‖X[t,:]‖22 + 2X>[s,:]X[t,:]

=
1

|Gs|
+

1

|Gt|
− 2 (|Gs| · |Gt|)−1/2 · 1{s=t}

=

{
0, i and j belong to the same group;

1
|Gs| + 1

|Gt| , otherwise.

Next, we apply the approximation for r-means (see, e.g. Lemma 5.3 in [24]), we have

r∑
i=1

|Si| ·
1

|Gi|
≤4(4 + 2ε) min

O∈Or
‖V̂F −VO‖2F ≤ Cr

∥∥∥sin Θ
(
V̂F ,VF

)∥∥∥2

≤C
(

rµmaxτ log2(n)

n(σr(F1)− ‖F2‖)2
+
Cr‖F2‖4

σ4
r (F1)

)
∧ r.

which has finished the proof for this theorem. �

5.7 Proof of Theorem 6 and Corollary 3

In order to show this result, we introduce the following lemma to characterize the `2 error

of F̃.
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Lemma 1. Suppose K is an order-bβc smooth kernel. Recall that the kernel estimation for

F is

F̃(a, b) =
n∑
i=1

1

h
K

(
a−Xk−1

h
,
b−Xk

h

)
.

Provided that n ≥ C log(n)τ ,

E
∥∥∥F̃− F

∥∥∥2

F
= E

∫
R2

(
F̃(a, b)− F(a, b)

)2
dadb ≤ C

(
τ log(n)

n

) 4β
4β+2

.

The proof of Lemma 1 is postponed to the appendix. By Lemmas 1 and 4, we have

E
∥∥∥F̂− F

∥∥∥2

F
≤ CE

∥∥∥F̃− F
∥∥∥2

F
≤ C

(
τ log(n)

n

) 4β
4β+2

.

By Cauchy-Schwarz inequality,

E
∥∥∥F̂− F

∥∥∥
`1

= E
∫ ∣∣∣F̂(a, b)− F(a, b)

∣∣∣ dadb
≤C

(∫ (
F̂(a, b)− F(a, b)

)
dadb

)1/2

≤ C
(
τ log(n)

n

) 2β
4β+2

.

By Lemma 3,

E‖P̂−P‖`1 = E
∫
‖P̂(a, ·)−P(a, ·)‖`1da ≤ E

∫
2‖F̂− F‖`1

µmin
da ≤ C

µmin

(
τ log(n)

n

) 2β
4β+2

.

By Wedin’s perturbation bound [49],

E
{∥∥∥sin Θ

(
ÛF ,U

)∥∥∥
F
,
∥∥∥sin Θ

(
V̂F ,V

)∥∥∥} ≤ ‖F̃− F‖F
σr(F)− σr+1(F)

∧
√
r

≤ C

σr(F)− σr+1(F)

(
τ log(n)

n

) 2β
4β+2

∧
√
r.

�
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6 Technical Lemmas

We collect the technical lemmas for the main results in this section. The first Lemma

2 demonstrates a sufficient and necessary condition for being transition and frequency

matrices of some ergoic Markov chain.

Lemma 2 (Basic properties of transition and frequency matrix for ergodic Markov process).

P,F ∈ Rp×p are the transition matrix and frequency matrix of some ergodic Markov process

if and only if

P ∈ P, P =

{
P :

0 ≤ Pij ≤ 1;∀1 ≤ i ≤ p,
∑p

j=1 Pij = 1,

∀I ⊆ {1, . . . , p},P[I,Ic] 6= 0

}
, (52)

and F ∈ F , F =

{
F ∈ Rp×p :

F1p = F>1p, 1>p F1p = 1

∀I ⊆ {1, . . . , p},F[I,Ic] 6= 0

}
. (53)

Proof of Lemma 2. We first consider the condition for F. When F ∈ Rp×p is the

frequency matrix of some ergodic Markov chain, we have F = diag(µ)P, where µ and P

are the corresponding stationary distribution and stochastic matrix. Then

F1p = diag(µ)P1p = diag(µ)1p = µ;

F>1p = P>diag(µ)1p = P>µ = µ = F1p

1>p F1p = 1>p µ = 1.

Here we used the fact that µ>P = µ> and P1p = 1p. Next, since the Markov is ergodic,

µi > 0 for any i. Thus for any I ⊆ {1, . . . , p}, F[I,Ic] = diag(µI) ·P[I,Ic] 6= 0. This implies

F ∈ F .

On the other hand when F ∈ F , we define µ = F1p, P = diag(µ−1)F. Since F[{i},{i}c] 6=
0, we have µi 6= 0 for any 1 ≤ i ≤ p. Then F is well-defined. In addition, µ and P satisfies

the following properties.

1>p µ = 1>p F1p = 1, Pij ≥ 0, P1p = diag(µ−1)F1p = diag(µ−1)µ = 1p,

µ>P = µ>diag(µ)F = 1>p F = (F>1p)
> = (F1p)

> = µ,

∀I ⊆ {1, . . . , p},P[I,Ic] = diag(µ−1
I ) · F[I,Ic] 6= 0.

(54)

By comparing above properties with the definition of ergodic transition matrix (52), we

can see F is indeed a frequency matrix of some ergodic Markov process.

The proof for the transition matrix (52) is similar and more straightforward. Thus, we

have finished the proof of this lemma. �

The next Lemma 3 characterizes the `1 distance between two vectors after `1 normal-

ization, which will be used in the upper bound argument in the main context of the paper.
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Lemma 3. Suppose u, v 6= 0 are two vectors of the same dimension, then∥∥∥∥ u

‖u‖1
− v

‖v‖1

∥∥∥∥
1

≤ 2‖u− v‖1
max{‖u‖1, ‖v‖1}

. (55)

If one replace u, v by univariate function, the similar result still holds.

Proof of Lemma 3.∥∥∥∥ u

‖u‖1
− v

‖v‖1

∥∥∥∥
1

≤
∥∥∥∥u− v‖u‖1

∥∥∥∥
1

+

∥∥∥∥ v

‖u‖1
− v

‖v‖1

∥∥∥∥
1

≤ ‖u− v‖1
‖u‖1

+
|‖u‖1 − ‖v‖1|
‖u‖1

≤2‖u− v‖1
‖u‖1

.

Similarly,
∥∥∥ u
‖u‖1 −

v
‖v‖1

∥∥∥
1
≤ 2‖u−v‖1

‖v‖1 , which implies (55). �

The following Lemma 4 demonstrate the error for truncated singular value decomposi-

tion.

Lemma 4. Suppose Ã and A are any two matrices of the same dimension, Â = Ãmax(r).

Then the following inequality holds,∥∥∥Â−A
∥∥∥
F
≤ 2
√

2r
∥∥∥Ã−A

∥∥∥+ 2
√

2r‖A−max(r)‖+ ‖A−max(r)‖F . (56)

If rank(A) ≤ r, we also have ∥∥∥Â−A
∥∥∥
F
≤ 2‖Ã−A‖F . (57)

The results still hold if A and A are two bivariate operators.

Proof of Lemma 4. Note that Â and Amax(r) are both of rank-r, thus Â −Amax(r) is

of rank at most 2r, and ‖Â−Amax(r)‖F ≤
√

2r‖Â−Amax(r)‖. By Weyl’s inequality [50],

σr+1(Ã) ≤ σr+1(A) + ‖A− Ã‖. Therefore,

‖Â−A‖F ≤‖Â−Amax(r)‖F + ‖A−max(r)‖F ≤
√

2r‖Â−Amax(r)‖+ ‖A−max(r)‖F

≤
√

2r
(
‖Ã−A‖+ ‖Ã−max(r)‖+ ‖A−max(r)‖

)
+ ‖A−max(r)‖F

≤
√

2r
(
‖Ã−A‖+ σr+1(Ã) + σr+1(A)

)
+ ‖A−max(r)‖F

Weyl’s inequality
≤

√
2r
(
‖Ã−A‖+ 2σr+1(A) + ‖Ã−A‖

)
+ ‖A−max(r)‖F

=2
√

2r‖Ã−A‖+ 2
√

2r‖A−max(r)‖+ ‖A−max(r)‖F ,

which yields (56). For (57), we have∥∥∥Â−A
∥∥∥
F
≤‖Â− Ã‖F + ‖Ã−A‖F = min

rank(M)≤r
‖Ã−M‖F + ‖Ã−A‖F

≤‖Ã−A‖F + ‖Ã−A‖F = 2‖Ã−A‖F .
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Our next lemma characterizes the equivalence between KL divergence and `2 distance

between two discrete distribution vectors.

Lemma 5. For any two distributions u, v ∈ Rp, such that
∑p

i=1 ui = 1,
∑p

i=1 vi = 1. If

there exists a, b > 0 such that a ≤ ui, vi ≤ b for 1 ≤ i ≤ p, then the KL-divergence and `2

norm distance are equivalent, in the sense that,

a

2b2
‖u− v‖22 ≤ DKL(u||v) ≤ b

2a2
‖u− v‖22, (58)

Here DKL(u||v) =
∑p

i=1 ui log(ui/vi) is the KL-divergence between u and v.

Proof of Lemma 5. By Taylor’s expansion, there exists ξi between ui and vi, such that

log(vi/ui) = log(vi)− log(ui) =
vi − ui
ui

− (vi − ui)2

2ξ2
i

,

Thus,

DKL(u||v) =

p∑
i=1

−ui log(vi/ui) =

p∑
i=1

{
−(vi − ui) +

ui(vi − ui)2

2ξ2
i

}

≤
p∑
i=1

b(ui − vi)2

2a2
=

b

2a2
‖u− v‖22;

DKL(u||v) =

p∑
i=1

−ui log(vi/ui) =

p∑
i=1

{
−(vi − ui) +

ui(vi − ui)2

2ξ2
i

}

≥
p∑
i=1

a(ui − vi)2

2b2
=

a

2b2
‖u− v‖22,

which has finished the proof for this lemma. �

Lemma 6 (Exponential Decay of Markov Mixing Rate). Suppose τ(ε) is either the discrete

or continuous Markov mixing time defined in (5), ε ≤ δ < 1/2, then

τ(ε) ≤ τ(δ) ·
(⌈

log(ε/δ)

log(2δ)

⌉
+ 1

)
. (59)

Proof of Lemma 6. We denote {e(i)}pi=1 as the canonical basis for Rp, namely e(i) is

equal to 1 in its i-th entry and equal to 0 elsewhere. For any vector θ ∈ Rp, we also use

θ+, θ− ∈ Rp to denote the positive and negative parts of θ, respectively, i.e.

(θ+)j = min{θj , 0}, (θ−)j = −max{θj , 0}, 1 ≤ j ≤ p. (60)
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Clearly θ+ ≥ 0, θ− ≥ 0, and θ = θ+ − θ−. Suppose k = τ(δ), then for any distribution

θ ∈ Rp with
∑

i θi = 1, θi ≥ 0, and any integer k′ ≥ k, we must have

1

2

∥∥∥Pk′θ − µ
∥∥∥

1
=

1

2

∥∥∥∥∥
p∑
i=1

Pk′θie
(i) − µ

∥∥∥∥∥
1

≤
p∑
i=1

|θi| ·
1

2

∥∥∥Pk′e(i) − µ
∥∥∥

1
≤

p∑
i=1

|θi| · δ = δ. (61)

When θ and µ are both distributions,
∑p

j=1 Pkθj =
∑p

j=1 µj = 1, then
∑p

j=1(Pkθ−µ)j = 0,

and ∥∥∥∥(Pkθ − µ
)

+

∥∥∥∥
1

=

∥∥∥∥(Pk′θ − µ
)
−

∥∥∥∥
1

=
1

2

∥∥∥Pkθ − µ
∥∥∥

1
. (62)

Next, we consider any integer k′ ≥ 2k, then k′ − k. One can calculate that

1

2

∥∥∥Pk′θ − µ
∥∥∥

1
=

1

2

∥∥∥Pk′−k(Pkθ − µ)
∥∥∥

1
=

1

2

∥∥∥Pk′−k
[
(Pkθ − µ)+ − (Pkei − µ)−

]∥∥∥
1

≤1

2

∥∥∥∥Pk′−k (Pkθ − µ)+

‖(Pkθ − µ)+‖1
− µ

∥∥∥∥
1

· ‖(Pkθ − µ)+‖1

+
1

2

∥∥∥∥Pk′−k (Pkθ − µ)−
‖(Pkθ − µ)−‖1

− µ
∥∥∥∥

1

· ‖(Pkθ − µ)−‖1

(61)(62)

≤ δ
(∥∥∥(Pkθ − µ)+

∥∥∥
1

+
∥∥∥(Pkθ − µ)−

∥∥∥
1

)
≤ δ‖Pkθ − µ‖ ≤ 1

2
(2δ)2.

By induction, one can show for any integers l, we must have

∀k′ ≥ lk, 1

2
‖Pk′θ − µ‖1 ≤

1

2
(2δ)l.

Note that δ < 1/2, ε ≤ δ, we set l = d log(ε/δ)
log(2δ) e+ 1. Then for any k′ ≥ kl,

1

2

∥∥∥Pk′θ − µ
∥∥∥

1
≤ 1

2
(2δ)l ≤ 1

2
(2δ)

log(ε/δ)
log(2δ)

+1
=

1

2
2δ · (ε/δ) = ε, (63)

which implies τ(ε) ≤ kl = τ(δ) · (dlog(ε/δ)/ log(2δ)e+ 1), and complete the proof for (59).

The proof for continuous case is similar after replacing P by P. Thus we have finished the

proof for Lemma 6. �

The next Lemmas 7 and 8 relates the Markov mixing time to Cheeger’s constant and

eigen-gap condition. The detailed proofs were given in [30] and [28].

Lemma 7 (Markov Mixing Time and Cheeger’s Constant). Suppose P ∈ Rp×p is an ergodic

Markov chain transition matrix with p states and stationary distribution µ. Let

Φ = min
Ω⊆{1,...,p},µ(Ω)

∑
i∈Ω,j∈ΩcµiPij∑

i∈Ω µi
(64)

be the Cheeger’s constant, then the mixing time, defined as (5), satisfies the following upper

bound,

τ(ε) ≤ 2

Φ2
log

(
1

2εµmin

)
. (65)
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Lemma 8 (Markov Mixing Time and Eigen-gap Condition). Suppose P ∈ Rp×p is an er-

godic and reversible Markov chain transition matrix with p states and stationary distribution

µ. Suppose λ2 is its second largest eigen-value, then

τ(ε) ≤ 1

1− λ2
log

(
1

2εµmin

)
. (66)

Lemma 9 (Markov Chain Concentration Inequality). Suppose P ∈ Rp×p is an ergodic

Markov chain transition matrix on p states {1, . . . , p}. P is with stationary distribution µ

and the Markov mixing time τ(ε) defined as (5). Recall the frequency matrix is defined as as

F = diag(µ)P. Given a Markov chain with (n+ 1) observable states X = {x0, x1, . . . , xn},
we introduce the empirical stationary distribution µ̃ and empirical frequency matrix as

µ̃ =
1

n

n∑
k=1

exk , where exk is the indicator for xk, i.e., (exk)i =

{
1, xk = i;

0, xk 6= i;
(67)

F̃ =
1

n

n∑
k=1

Ek, where Ek ∈ Rp×p, (Ek)ij =

{
1, (xk−1, xk) = (i, j)

0, otherwise.
(68)

When n ≥ Cµmax/α, α = τ (min{t/2, µmax}) + 1, we have

∀t > 0, P
(∥∥∥F̃− F

∥∥∥ ≥ t) ≤ 2αp exp

(
− (tn/α)2/8

2nµmax/α+ tn/(6α)

)
; (69)

P

∥∥∥F̃− F
∥∥∥ ≥ C

√
µmaxτ(

√
µmax/n) log(n)

n

 ≤ n−c0 (70)

P (‖µ̃− µ‖∞ ≥ t) ≤ 2α exp

(
− (tn/α)2/8

2nµmax/α+ tn/(6α)

)
(71)

P

‖µ̃− µ‖∞ ≥ C
√
µmaxτ(

√
µmax/n) log(n)

n

 ≤ n−c0 (72)

for some constants C, c, c0 > 0. Furthermore,

• if P has Cheeger’s constant Φ defined as (64),

P

∥∥∥F̃− F
∥∥∥ ≥ C

√
µmax log(1/µmin) log2(n)

nΦ2

 ≤ n−c0 , (73)

P

‖µ̃− µ‖∞ ≥ C
√
µmax log(1/µmin) log2(n)

nΦ2

 ≤ n−c0 , (74)

for some uniform constants C, c, c0 > 0.
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• if P is reversible with second largest eigenvalue λ2 < 1, then

P

∥∥∥F̃− F
∥∥∥ ≥ C

√
µmax log(1/µmin) log2(n)

n(1− λ2)

 ≤ n−c0 (75)

P

‖µ̃− µ‖∞ ≥ C
√
µmax log(1/µmin) log2(n)

n(1− λ2)

 ≤ n−c0 (76)

for some uniform constantc C, c, c0 > 0.

Proof of Lemma 9. Let n0 = bn/αc, and without loss of generality, assume n is a multiple

of α. The more general case where n is not a multiple of α can be derived similarly.

We introduce the “thin” matrix sequences, e
x̃
(l)
k

and Ẽ
(l)
k , as

ẽ
(l)
k = exkα+l − E

(
exkα+l

∣∣ex(k−1)α+l

)
, l = 1, . . . , α; k = 1, . . . , n0;

Ẽ
(l)
k = Ekα+l − E

(
Ekα+l|E(k−1)α+l

)
, l = 1, . . . , α; k = 1, . . . , n0. (77)

By Jensen’s inequality, for any l = 1, . . . , α, k = 1, . . . , n0,∥∥∥E(exkα+l∣∣ex(k−1)α+l

)∥∥∥
2
≤ E‖exkα+l‖2 ≤ 1,

∥∥E (Ekα+l|E(k−1)α+l

)∥∥ ≤ E‖Ekα+l‖ ≤ 1,

(78)

which implies ∥∥∥ẽ(l)
k

∥∥∥
2
≤ 2,

∥∥∥Ẽ(l)
k

∥∥∥ ≤ 2. (79)

Now we develop the concentration inequalities of the partial sum sequences for any fixed l.

Note that for any given Ẽ
(l)
k−1 and e

x̃
(l)
k−1

, i.e. given the values of (xkα+l−1, xkα+l) pair, the

conditional distribution of exkα+l−1
satisfies

xkα+l−1|x(k−1)α+l ∼ e>x(k−1)α+l
Pα−1, k = 1, . . . , n0.

For convenience, we denote µ̃ = ex(k−1)α+lP
α−1 . By our mixing time assumption,

‖µ̃− µ‖1 =
∥∥∥e>x(k−1)α+l

Pα−1 − µ
∥∥∥

1
≤ min{t/2, µmax}. (80)

(80) will be crucial to our later analysis. Note that

Ẽ
(l)
k = Ekα+l − E

(
Ekα+l

∣∣∣x(k−1)α+l

)
, where Ekα+l = exkα+l−1

· e>xkα+l , (81)

P
(
Ekα+l = eie

>
j

∣∣∣x(k−1)α+l

)
=P
(

(xkα+l−1, xkα+l) = (i, j)
∣∣∣x(k−1)α+l

)
=
(
e>x(k−1)α+l

Pα−1
)
i
·Pij = µ̃iPij ,

(82)
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we can further calculate that

E
(
Ekα+lE

>
kα+l

∣∣∣x(k−1)α+l

)
=

p∑
i=1

p∑
j=1

eie
>
i µ̃iPij =

p∑
i=1

eie
>
i µ̃i

=diag (µ̃) = diag(µ) + diag (µ̃− µ)

�µmaxIp + ‖µ̃− µ‖1 · Ip � 2µmaxIp;

(83)

E
(
E>kα+lEkα+l

∣∣∣x(k−1)α+l

)
=

p∑
i=1

p∑
j=1

eje
>
j {µ̃iPij}

=

p∑
i=1

p∑
j=1

eje
>
j {µiPij}+

p∑
i=1

p∑
j=1

eje
>
j {(µ̃i − µ)iPij}

�
p∑
j=1

eje
>
j µj +

p∑
j=1

eje
>
j ‖µ̃− µ‖1 ·max

ij
Pij (since µ>P = µ)

�µmaxIp + ‖µ̃− µ‖1 · Ip � 2µmaxIp.

(84)

Therefore,

0 �E
(
Ẽ

(l)
k (Ẽ

(l)
k )>

∣∣∣Ẽ(l)
k−1

)
=E

{(
Ekα+l − E(Ekα+l|x(k−1)α+l)

) (
Ekα+l − E(Ekα+l|x(k−1)α+l)

)> ∣∣∣x(k−1)α+l

}
=E

{
Ekα+1E

>
kα+1

∣∣∣x(k−1)α+l

}
− E

{
Ekα+l

∣∣∣x(k−1)α+l

}
E
{

E>kα+l

∣∣∣x(k−1)α+l

}
�E

{
Ekα+1E

>
kα+1

∣∣∣x(k−1)α+l

}
� 2µmaxIp.

Similarly,

0 �E
(

(Ẽ
(l)
k )>Ẽ

(l)
k

∣∣∣Ẽ(l)
k−1

)
=E

{(
Ekα+l − E(Ekα+l|x(k−1)α+l)

)> (
Ekα+l − E(Ekα+l|x(k−1)α+l)

) ∣∣∣x(k−1)α+l

}
=E

{
E>kα+1Ekα+1

∣∣∣x(k−1)α+l

}
− E

{
E>kα+l

∣∣∣x(k−1)α+l

}
E
{

Ekα+l

∣∣∣x(k−1)α+l

}
�E

{
E>kα+1Ekα+1

∣∣∣x(k−1)α+l

}
� 2µmaxIp,

which means for 1 ≤ k ≤ n0, 1 ≤ l ≤ α,

max
{∥∥∥E((Ẽ

(l)
k )>Ẽ

(l)
k

∣∣∣Ẽ(l)
k−1

)∥∥∥ , ∥∥∥E(Ẽ
(l)
k (Ẽ

(l)
k )>

∣∣∣Ẽ(l)
k−1

)∥∥∥} ≤ 2µmaxIp. (85)

Next, the predictable quadratic variation process of the martingale satisfies∥∥∥∥∥
n0∑
k=1

E
(
Ẽ

(l)
k (Ẽ

(l)
k )>

∣∣∣Ẽ(l)
k−1

)∥∥∥∥∥ ≤
n0∑
k=1

∥∥∥E(Ẽ
(l)
k (Ẽ

(l)
k )>

∣∣∣Ẽ(l)
k−1

)∥∥∥ ≤ 2n0µmax,
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∥∥∥∥∥
n0∑
k=1

E
(

(Ẽ
(l)
k )>Ẽ

(l)
k

∣∣∣Ẽ(l)
k−1

)∥∥∥∥∥ ≤
n0∑
k=1

∥∥∥E((Ẽ
(l)
k )>Ẽ

(l)
k

∣∣∣Ẽ(l)
k−1

)∥∥∥ ≤ 2n0µmax.

Now by matrix Freedman’s inequality (Corollary 1.3 in [47]), we know

P

(∥∥∥∥∥ 1

n0

n0∑
k=1

Ẽ
(l)
k

∥∥∥∥∥ ≥ t/2
)
≤ 2p exp

(
− (tn0)2/8

2n0µmax + tn0/6

)
. (86)

Next, we shall note that

E
(
Ekα+l

∣∣∣x(k−1)α+l

)
− diag(µ)P

=

p∑
i=1

p∑
j=1

ei

(
e>x(k−1)α+l

Pα−1
)
i
Pije

>
j − diag(µ)P

=diag
(
e>x(k−1)α+l

Pα−1
)

P− diag(µ)P,

thus∥∥∥E(Ekα+l

∣∣∣x(k−1)α+l

)
− diag(µ)P

∥∥∥ ≤ ‖(µ̃− µ)P‖ = max
u,v∈Rp

‖u‖2=‖v‖2=1

u>diag(µ̃− µ)Pv

≤ max
u,v∈Rp

‖u‖2=‖v‖2=1

p∑
i=1

|ui(µ̃i − µi)Pijvj | ≤
p∑
i=1

p∑
j=1

|(µ̃i − µi)Pij | ≤ ‖µ̃− µ‖1
(80)

≤ t/2.

(87)

The last but one equality is due to
∑p

j=1 |Pij | =
∑p

j=1 Pij = 1 for all i. Combining (77),

(86), and (87), we have for any l = 1, . . . , α,

P

(∥∥∥∥∥ 1

n0

n0∑
k=1

Ekα+l − F

∥∥∥∥∥ ≥ t
)
≤ 2p exp

(
− (tn0)2/8

2n0µmax + tn0/6

)
.

Finally, we only need to combine these “thin” summation sequences as follows,

P
(
‖F̃− F‖ ≥ t

)
= P

(∥∥∥∥∥ 1

α

α∑
l=1

1

n0

n0∑
k=1

Ekα+l − F

∥∥∥∥∥ ≥ t
)

≤P

(
max

1≤l≤α

∥∥∥∥∥
n0∑
k=1

1

n0
Ekα+l − F

∥∥∥∥∥ ≥ t
)
≤ α max

1≤l≤p
P

(∥∥∥∥∥
n0∑
k=1

1

n0
Ekα+l − F

∥∥∥∥∥ ≥ t
)

≤2αp exp

(
− (tn0)2/8

2n0µmax + tn0/6

)
,

which has finished the proof for the error bound of F̃.

The proof for ‖µ̃− µ‖∞ is similar. Note that for any index j ∈ {1, . . . , p},(
ẽ

(l)
k

)
j

=
(
exkα+l

)
j
− E

((
exkα+l

)
j

∣∣∣ex(k−1)α+l

)
=1{xkα+l=j} − E

(
1{xkα+l=j}

∣∣∣x(k−1)α+l

)
.

39



Clearly 0 ≤ E
(

1{xkα+l=j}

∣∣∣x(k−1)α+l

)
≤ 1, which implies

∣∣∣(ẽ(l)
k )j

∣∣∣ ≤ 1. Additionally,

E
(
ẽ

(l)
k

)2

j
= Var

(
1{xkα+l=j}

∣∣x(k−1)α+l

)
≤ E

(
12
{xkα+l=j}

)
=
(
e>x(k−1)α+l

Pα
)
j

≤µj +
(
e>x(k−1)α+lP

α − µ>
)
j
≤ 2µmax.

By Freedman’s inequality (e.g. Theorem 1.6 in [17] and Theorem 1.1 in [47]), for any

1 ≤ j ≤ p,

P

(∣∣∣∣∣
n0∑
k=1

(ẽ
(l)
k )j

∣∣∣∣∣ ≥ t/2
)
≤ 2 exp

(
−t2/8

2n0µmax + t/6

)
On the other hand,∥∥∥E(exkα+l∣∣∣ex(k−1)α+l

)
− µ

∥∥∥
∞

=
∥∥∥e>x(k−1)α+l

Pα − µ>
∥∥∥
∞
≤
∥∥∥e>x(k−1)α+l

Pα − µ>
∥∥∥

1
≤ t

2
∧µmax.

Combining the two inequality above, we have

P

(∣∣∣∣∣
n0∑
k=1

(ẽ
(l)
k )j

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−t2/8

2n0µmax + t/6

)
. (88)

Therefore,

P (‖µ̃− µ‖∞ ≥ t) = P

(∥∥∥∥∥ 1

α

α∑
l=1

1

n0
exkα+l

∥∥∥∥∥ ≥ t
)

≤P

(
max

1≤l≤α

∥∥∥∥∥
n0∑
k=1

1

n0
exkα+l

∥∥∥∥∥ ≥ t
)
≤ 2α exp

(
−(tn0)2/8

2n0µmax + tn0/6

)
,

(89)

which has developed the `∞ upper bound for µ̃− µ. �

Proof of Lemma 1. We first define

Ek : R2 → R, Ek(a, b) =
1

h2
K

(
a− xk−1

h
,
b− xk
h

)
− F(a, b).

Then F̃−F = 1
n

∑n
k=1 Ek. Let α = τ(ε) + 1 be an integer, where 0 < ε < 1/2 is a constant

to be determined later, and n0 = bn/αc. We first assume n is a multiple of α without loss

of generality. The proof for the case when n is not a multiple of n0 can be derived similarly.

We introduce the following lemma to characterize the second moments among the ma-

trices {Ek}nk=1.

Lemma 10. Under the setting of Lemma 1, if α ≤ k, α ≤ k1 ≤ k1 + α ≤ k2, then the

following upper bound for the second moments of Ek1 and Ek2 hold,

E
∫

Ek(a, b)
2dadb ≤ Ch4β +

C

h2
; (90)
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E
∫

Ek1(a, b)Ek2(a, b)dadb ≤ Ch4β +
Cε

h2
. (91)

Furthermore, for any general k,

E
∫

Ek(a, b)
2dadb ≤ C +

C

h2
. (92)

Here, F(a, b) = µ(a)P(a, b). C is a constant only depending on the kernel K.

Next we introduce the following “thin” sequence of the original Markov chain {Ek(a, b)}nk=1,

E
(l)
k = Ekα+l, l = 1, . . . , α, k = 1, . . . , n0. (93)

By Lemma 10, we have

E ‖F− F‖2F =E
∫ (

1

n

n∑
i=1

Ek(a, b)

)2

dadb =
1

n2

∫ ( α∑
k=1

Ek(a, b) +

α∑
l=1

n0∑
k=2

Ek

)2

dadb

≤2α

n2

∫ 
α∑
k=1

E2
k(a, b) +

α∑
l=1

(
n0∑
k=2

E
(l)
k (a, b)

)2
 dadb

Lemma 10
≤ 2α

n2

{
α

(
C +

C

h2

)
+ α

(
n0

(
Ch4β +

C

h2

)
+ n2

0

(
Ch4β +

4ε

h2

))}
≤4α2n2

0

n2
· Ch4β +

Cα2n0

n2h2
+
Cα2n2

0ε

n2h2

≤Ch4β +
Cα

nh2
+

ε

h2
.

(94)

Let ε = 1/n, by Lemma 6, α = τ(1/n) + 1 ≤ Cτ log(n). We thus have

E
∥∥∥F̃− F

∥∥∥2

F
≤ Ch4β +

Cτ log(n)

nh2
. (95)

It is easy to see that h = n
− 1

4β+2 achieves the minimum of the right hand side of (95), that

is

E
∥∥∥F̃− F

∥∥∥2

F
≤ C

(
τ log(n)

n

) 4β
4β+2

. (96)

This has finished the proof for Lemma 1. �

Proof of Lemma 10. For convenience, we denote

Kq =

(∫
|K(a, b)|qdadb

)1/q

, ∀q ≥ 1.
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as the `q norm of kernel K. In particular, K∞ = maxa,b |K(a, b)|. Let µ̃k be the marginal

density of xk, then F̃k(a, b) = µ̃k(a)P(a, b) is the joint density of (xk−1, xk). When α ≤ k1,

by definition of α, we must have

‖µ̃k − µ‖`1 =

∫
|µ̃k(a)− µ(a)| da ≤ ε.

Then the `1 distance between F̃k and F are upper bounded as∥∥∥F̃k − F
∥∥∥
`1

=

∫
|(µ̃k(a)− µ(a)) F(a, b)| dadb

≤
∫
|µ̃k(a)− µ(a)|µ(a)da ≤ µmaxε.

(97)

Thus, EE2
k1

has the following variance-bias decomposition,

E ‖Ek‖2F =

∫
EE2

k(a, b)dadb

≤
∫

(EEk(a, b))
2 dadb+

∫
Var (Ek(a, b)) dadb,

(98)

which is a typical bias-variance decomposition. Next, we analyze these two terms respec-

tively. For the variance,∫
Var(Ek(a, b))dadb =

∫
Var

(
1

h2
K

(
a− xk−1

h
,
b− xk
h

))
≤
∫

E
1

h4
K2

(
a− xk−1

h
,
b− xk
h

)
dadb = E

∫
1

h4
K2

(
a− xk−1

h
.
b− xk
h

)
d
(a
h

)
d

(
b

h

)
=

1

h2
E
∫
R2

K2(a, b)dadb =
K2

2

h2
.

(99)

Next, we consider the bias. For each fixed a, b ∈ R,

EEk =
1

h2
EK

(
a− xk−1

h
,
b− xk
h

)
− F(a, b)

=

∫
1

h2
K

(
a− xk−1

h
,
b− xk
h

)(
F̃k(xk−1, xk)− F(a, b)

)
dxk−1dxk

=

∫
1

h2
K

(
a− xk−1

h
,
b− xk
h

)(
F̃k(xk−1, xk)− F(a, b)

)
dxk−1dxk

=

∫
1

h2
K

(
a− xk−1

h
,
b− xk
h

)(
F̃k(xk−1, xk)− F(xk−1, xk)

)
dxk−1dxk

+

∫
1

h2
K

(
a− xk−1

h
,
b− xk
h

)
(F(xk−1, xk)− F(a, b)) dxk−1dxk.

(100)
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We analyze the squared loss for the two terms respectively as follows. Note that for all

a, b ∈ R, ∣∣∣∣ 1

h2

∫
K

(
a− xk−1

h
,
b− xk
h

)(
F̃k(xk−1, xk)− F(xk−1, xk)

)
dxk−1dxk

∣∣∣∣
≤ 1

h2

∫
K∞

∣∣∣F̃k(xk−1, xk)− F(xk−1, xk)
∣∣∣ dxk−1dxk ≤

εK∞
h2

.

Thus,∫
1

h4

{∫
K

(
a− xk−1

h
,
b− xk
h

)(
F̃(xk−1, xk)− F(xk−1, xk)

)
dxk−1dxk

}2

dadb

≤K∞ε
h2
·
∫

1

h2

∣∣∣∣K(a− xk−1

h
,
b− xk
h

)∣∣∣∣ ∣∣∣F̃(xk−1, xk)− F(xk−1, xk)
∣∣∣ dxk−1dxkdadb

≤K∞ε
h2

∫
|K(a, b)| dadb ·

∫ ∣∣∣F̃k(xk−1, xk)− F(xk−1, xk)
∣∣∣ dxk−1dxk

≤K∞K1ε
2

h2
.

(101)

Next, since K is order-bβc kernel and F ∈ H(β, L), similarly to the argument in nonpara-

metric kernel density estimation (see, e.g., Proposition 1.5 in [48]), given that F belongs to

the Nikol’ski class H(β, L), we have∫ {∫
1

h2
K

(
a− xk−1

h
,
b− xk
h

)
(F(xk−1, xk)− F(a, b)) dxk−1dxk

}2

dadb ≤ C0h
4β,

(102)

where C0 = L
bβc
∫
|u|bβc · |K(u)|du. Thus, (100), (101), and (102) together yield∫∫

R2

(EEk(a, b))
2 dadb ≤ C0h

4β +
K∞K1ε

2

h2
. (103)

With (98), (99), and (103), and ε ≤ 2, we have

E
∫
R2

E2
k(a, b)dadb ≤ Ch4β +

C

h2
,

where the constant C only depends on K and L, but not β and h. Then we have finished

the proof for the first part of this lemma.

We consider (91) next. The key for proving (91) is the fact that Ek1 and Ek2 are

nearly independent when k1 + α ≤ k2 hold. First, note that the joint distribution for

xk−1, xk, xl−1, xl in the given setting can be written as

f(xk1−1, xk1 , xk2−1, xk2) = µ̃k1−1(xk1−1)P(xk1−1, xk1)Pk2−k1−1(xk1 , xk2−1)P(xk2−1, xk2),
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which satisfies the following inequality

‖f − F‖`1∥∥∥µ̃k1−1(xk1−1)P(xk1−1, xk1)Pk2−k1−1(xk1 , xk2−1)P(xk2−1, xk2)

− F(xk1−1, xk1)F(xk2−1, xk2)
∥∥∥
`1

≤
∥∥∥{µ̃k1−1(xk1−1)− µ(xk1−1)}P(xk1−1, xk1)Pk2−k1−1(xk1 , xk2−1)P(xk2−1, xk2)

∥∥∥
`1

+
∥∥∥µ̃k1−1(xk1−1)P(xk1−1, xk1)

{
Pk2−k1−1(xk1 , xk2−1)− µ(xk2−1)

}
P(xk2−1, xk2)

∥∥∥
`1

≤‖µ̃k−1 − µ‖`1 + ‖Pk2−k1−1(xk1 , ·)− µ‖`1 ≤ 2ε.

(104)

In other words, two densities f(xk−1, xk, xl−1, xl) and F(xk−1, xk)F(xl−1, xl) are very close

in `1 norm.

Therefore, we have

E
∫

Ek1(a, b)Ek2(a, b)dadb

=

∫
Ek1(a, b)Ek2(a, b)f(xk1−1, xk1 , xk2−1, xk2)dxk1−1dxk1dxk2−1dxk2dadb

=

∫
Ek1(a, b)Ek2(a, b)F(xk1−1, xk1)F(xk2−1, xk2)dxk1−1dxk1dxk2−1dxk2dadb

+

∫
Ek1(a, b)Ek2(a, b)dadb · {f − F} (xk1−1, xk1 , xk2−1, xk2)dxk1−1dxk1dxk2−1dxk2dadb.

We analyze the two terms separately.∫
Ek1(a, b)Ek2(a, b)F(xk1−1, xk1)F(xk2−1, xk2)dxk1−1dxk1dxk2−1dxk2dadb

=

∫
R2

{∫
R2

(
1

h2
K

(
a− x
h

,
b− y
h

)
− F(a, b)

)
F(x, y)dxdy

}2

dadb

=

∫
R2

{∫
R2

(
1

h2
K

(
a− x
h

,
b− y
h

)
− F(a, b)

)
F(x, y)dxdy

}2

dadb

For fixed a, b ∈ R, ∫
R2

(
1

h2
K

(
a− x
h

,
b− y
h

)
− F(a, b)

)
F(x, y)dxdy

=

∫
R2

1

h2
K

(
a− x
h

,
b− y
h

)
F(x, y)dxdy − F(a, b)

=

∫
R2

1

h2
K

(
a− x
h

,
b− h
h

)
(F(x, y)− F(a, b)) dxdy.

Then (102) implies∫ {∫
R2

1

h2
K

(
a− x
h

,
b− y
h

)
(F(x, y)− F(a, b)) dxdy

}2

dadb ≤ Ch4β.
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Next, for fixed xk1−1, xk1 , xk2−1, xk2 ∈ R, the following upper bound holds for the integral

on a, b,∫
|Ek1(a, b)Ek2(a, b)| dadb ≤

∫ [
E2
k1(a, b) + E2

k2(a, b)
]
dadb

≤
∫ [

2

h4
K2

(
a− xk1−1

h
,
b− xk1
h

)
+

2

h4
K2

(
a− xk2−1

h
,
b− xk2
h

)
+ 4F(a, b)2

]
dadb

≤ 4

h2
‖K‖2`2 + 4‖F‖2`2 .

(105)

Thus, ∣∣∣ ∫ Ek1(a, b)Ek2(a, b) · {f − F} (xk1−1, xk1 , xk2−1, xk2)dxk1−1dxk1dxk2−1dxk2dadb
∣∣∣

≤
∫ (

4

h2
‖K‖2`2 + 4‖F‖2`2

)
|{f − F}(xk1−1, xk1 , xk2−1, xk2)| dxk1−1dxk1dxk2−1dxk2

(104)

≤ 8ε

(
4

h2
‖K‖2`2 + 4‖F‖2`2

)
.

To sum up,

E
∫

Ek1(a, b)Ek2(a, b) ≤ Ch4β +
Cε

h2
.

where C only relies on K, L, and ‖F‖`2 . �
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