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Fine-Grained Land Use Classification at the City
Scale Using Ground-Level Images

Yi Zhu, Xueqing Deng, and Shawn Newsam

Abstract—We perform fine-grained land use mapping at the
city scale using ground-level images. Mapping land use is
considerably more difficult than mapping land cover and is
generally not possible using overhead imagery as it requires
close-up views and seeing inside buildings. We postulate that
the growing collections of georeferenced, ground-level images
suggest an alternate approach to this geographic knowledge
discovery problem. We develop a general framework that uses
Flickr images to map 45 different land-use classes for the
City of San Francisco. Individual images are classified using
a novel convolutional neural network containing two streams,
one for recognizing objects and another for recognizing scenes.
This network is trained in an end-to-end manner directly on
the labeled training images. We propose several strategies to
overcome the noisiness of our user-generated data including
search-based training set augmentation and online adaptive
training. We derive a ground truth map of San Francisco in
order to evaluate our method. We demonstrate the effectiveness of
our approach through geo-visualization and quantitative analysis.
Our framework achieves over 29% recall at the individual
land parcel level which represents a strong baseline for the
challenging 45-way land use classification problem especially
given the noisiness of the image data.

I. INTRODUCTION

DETAILED and accurate land use information is of sub-
stantial importance towards building a smart city [1], [2],

[3], [4], such as environmental monitoring, urban planning,
resource allocation, traffic control and governmental man-
agement. Especially the transformation of land use patterns
over time contains a wealth of information for both the
government and individuals to make informative decisions.
However, traditional land use map is generated using survey-
based approaches, which cost enormous human effort. Such
map is usually updated for every 5 to 10 years, thus losing the
important information of how the urban functional structures
are changing. Hence, it is significant to develop a system
which can automatically generate accurate and up-to-date land
use map on large-scale.

Most literature on land use classification resort to high-
resolution remote sensing images [5], [6], [7]. It might be
easy to distinguish airport from residential area [8] just using
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overhead imagery. However, it is much more difficult to
determine land use in complicate urban areas from above.
Images taken at ground-level are potentially more indicative.
For example, to determine a building whether it is a restaurant
or a barber shop, overhead imagery can’t help at all whereas a
glance of ground-level images will give you the right answer.
Thus, using aerial images has a limitation that it is infeasible to
generate a fine-grained land use map, which is referred as the
“semantic gap” problem. Some recent efforts [9], [10] propose
to use other data sources that can bring more information about
the internal structure or human activities of the land to close
the semantic gap, such as point of interest (POI) [11], street
view [12], mobile phone data [13] and social multimedia [14].
However, approaches that depend on POI, street view, mobile
records and textual tweets may also face the problem that we
have limited observation inside the building.

Hence, in this work, we explore the rich online photo
collections to perform large-scale fine-grained land use map-
ping. Popular social photo sharing websites such as Facebook,
Twitter, Instagram, Pinterest, Flickr and Picasa present an all-
around view of the world and contain a wealth of information.
With more than 400 million geotagged images on Flickr
alone, there is an opportunity to automatically generate up-
to-date city-scale land use map. However, we still face many
challenges as below:

• Due to the lack of both ground truth map and training
data, there is no standard benchmark to evaluate land use
classification methods.

• Online photo collections are too large to be manually
labelled, which means that weakly supervised or unsu-
pervised learning methods are preferred.

• Ground-level web images are too noisy to be mined.
Challenges include low image quality, inaccurate geotags
and uneven spatial distribution, etc.

To address these challenges, we first introduce a ground
truth land use map of the city of San Francisco, which could
be used as a benchmark to evaluate various approaches. The
ground truth map has a three level hierarchy: 5 top classes,
16 middle classes and 45 fine-grained classes. We then train
deep Convolutional Neural Network (CNN) models to learn to
classify land use in an end-to-end manner. We propose several
strategies to overcome the noisiness of online photos, like
search-based dataset augmentation, online adaptive training,
and two-stream networks of object and scene.

Our work in this paper represents a thorough investigation
into mapping fine-grained land use types on large-scale along
with novel algorithmic contributions. The most distinctive
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Fig. 1. Fine-grained land use map. The two maps are for the same location
with different annotations. Upper: Traditional map with less than 10 land use
types. Bottom: our ground-truth map with fine-grained classes. The figure is
best viewed in color.

point between previous literature and our work is the fine
granularity. As we show in Figure 1 that traditional work
usually perform coarse-level land use classification, e.g., the
number of land use types are less than 10. However, we aim
to address the fine-grained land use classification problem,
e.g., our dataset has 45 land use types and is easily extended
to more classes. The fine granularity requirement makes the
problem more challenging yet more appealing. The salient
contributions of our work include:

• To the best of our knowledge, our work is the first to
conduct fine-grained land use mapping. The number of
land use types in finest granularity, 45, is much more

Shapefileswithout label

Shapefileswith label

Fig. 2. We introduce a fine-grained land use map of the city of San Francisco
with ground truth. Right figure is the zoomin view of the black dashed box
in the left figure. Yellow indicates a shapefile with ground truth label, and
green without. Note the sparsity (about 10% shapefiles have ground truth).
The figure is best viewed in color.

diverse than previous literature.
• We combine the Land Based Classification Standards

(LBCS) and Google places API to create a ground truth
map of the city of San Francisco. Although sparse (see
in Figure 2), it can serve as a benchmark to evaluate
various approaches using different data sources for land
use classification.

• We introduce online adaptive training technique to reduce
the impact of noisy web images during end-to-end model
learning. The strategy not only increases the accuracy of
land use classification, but also makes our trained model
more robust for domain adaptation.

• We propose to use two-stream networks, consists of an
object-centric model and a scene-centric model to further
improve the performance.

Our paper is organized as follows. After introducing related
work in Section II, we illustrate how we build the ground truth
land use map and the details of our land use classification
framework in Section III. In Section IV, we describe our
dataset, implementation details, results and geo-visualizations.
We then investigate the design options and discuss the map-
ping results of our proposed method in Section V, and present
our conclusion in Section VI.

II. RELATED WORK

Our work has several lines of related research.
Large-scale geotagged photo collections Computer vision
researchers have been leveraging large collections of geo-
tagged photos for geographic discovery for around a decade.
This includes mapping world phenomenon [15], multimedia
geolocalization [16], landmark recognition and 3D modeling
[17], smart city and urban planning [18], land cover and land
use classification [5], sentiment hotspot detection [19] and
mapping human activity [20]. The exponential growth of photo
sharing and related websites along with ever more publicly
available multimedia sources make this research paradigm
a promising direction for a range of interesting problems.
Although such open-access multimedia represents a wealth
of information, analyzing it is challenging due to how noisy
and diverse it is. Challenges specific to using this data for
geographic discovery include inaccurate location information,



3

uneven spatial distribution, varying photographer intent and
license limitations. We are mindful of these challenges and
recognize they likely temper our results.

Our work is novel in that it uses a large collection of
geotagged photos to perform fine-grained land use classifi-
cation. We address several challenges mentioned above. We
build a ground truth map using Google places data for proper
evaluation. We also use region shapefiles to reduce geolocation
error. In addition, we create a very large training set (more than
two million images) consisting of Google and Flickr images
to learn a robust CNN model.
Convolutional neural networks Deep learning is advancing
a number of pattern recognition and machine learning areas.
Deep convolutional neural networks (CNNs) have resulted in
often surprising performance gains in a range of computer
vision problems [21], [22], [23]. Key to CNNs performance
is their ability to learn high-level or semantic features from
the data as opposed to the hand-crafted low- to mid-level
features traditionally used in image analysis. Visualization of
the feature maps learned by the convolutional layers during
training [24] shows how the features become increasingly
semantic, progressing from pixels, edges, color, and texture, to
motifs, parts, objects, scenes, and concepts. Another significant
benefit of the features learned by CNNs is their ability to
generalize to problems involving image datasets other than
the ones they were trained on [25]. This avoids having to
retrain the networks which can take from hours to days even
on powerful GPUs. Hence, many work adopt deep learning
to advance the state-of-the-art in land use classification [26],
[27], [28], [29], [30], [31], [32].

In this paper, we also use CNN to classify land use but
introduce a novel learning technique named online adaptive
training to reduce the impact of noisy web images during
model fine-tuning. Besides, we propose to use two-stream
networks, consists of an object-centric model and a scene-
centric model to further improve the land use classification
performance.
Land cover and land use classification Land cover and land
use classification are important tasks in geographic science.
The maps they produce are critical for a range of important
societal problems. However, land cover is distinct from land
use, despite the two terms often being used interchangeably.
Land cover is the physical material at the surface of the earth,
which includes grass, trees, bare ground, water, etc. Land use
is a description of how people utilize the land and of social-
economic activity. Land cover classification is typically per-
formed through the automated analysis of overhead imagery.
However, land use classification is more difficult since it is
often not possible from an overhead vantage point. We need
to see inside buildings to determine their use(s). We also need
to resolve details which are not discernible in today’s overhead
imagery or are only apparent from ground-level.

Researchers have performed some initial investigation into
using ground-level photo collections for land cover [33], [34]
and land use [35], [36], [37] classification. Here, we only con-
sider land use classification problem. [36] has only considered
a two-class land use problem: developed and undeveloped, and
[37] has considered a limited number of land use classes in an

university campus. Both of them avoid the challenge of lacking
ground truth land use map since they can use the off-the-shelf
city zoning map and campus map. However, when we turn
to fine-grained land use classification on large-scale instead
of these toy examples, we could not avoid these challenges.
There also exists some work [38], [39], [40] focusing on the
concept of “fine-grained” in land use classification. However,
[38] indicates fine granularity on time scale and [39] indicates
fine granularity on levels of damage. None of them refer to
the granuality of land use types.

Hence, in this paper, we create a ground truth land use
map of the city of San Francisco to serve as a benchmark for
evaluating various approaches. In addition, the number of our
land use types, 45, is a magnitude more than previous work.

III. FINE-GRAINED LAND USE CLASSIFICATION

In this section, we focus on fine-grained land use classifica-
tion. The details of the dataset construction is first illustrated
in Section III-A. In Section III-B, we describe our end-
to-end learning framework. Then we introduce the online
adaptive training strategy to reduce the impact of noisy web
images during model fine-tuning in Section III-C. Finally, we
propose the two-stream networks, consisting of an object-
centric and a scene-centric model to further improve the land
use classification accuracy in Section III-D.

A. Construction of the Database

Database Structure
In this work, we aim to deal with real-world land use classifi-
cation problem (a.k.a, zoning problem). The first challenge we
are facing is that we need to design a ground truth database
for both training and evaluation. The database should have a
well-defined structure with multiple hierarchies, consisting of
diversified and meaningful land use categories.

Previous literature adopt two ways to avoid building the
ground truth database. One is manually define the land use
classes in a controlled environment such as university campus
[37], where the land use map can be easily derived. The other
is to use coarse zoning information provided by government
to train and evaluate their models.

Here, we construct the database in a principled way by
following the LBCS1: a consistent model for classifying land
uses based on their characteristics. The LBCS model extends
the notion of classifying land uses by refining traditional cat-
egories into multiple dimensions, such as activities, functions,
building types, site development character, and ownership
constraints. Each dimension has its own set of categories and
subcategories. These multiple dimensions allow users to have
precise control over land use classifications. Here, we pick
the Function dimension. “Function” refers to the economic
function or type of establishment using the land, which is the
natural way of doing land use classification.

However, directly using the LBCS Function standard is
infeasible because we don’t have a corresponding ground truth

1More detailed information of the LBCS standard can be found in
https://www.planning.org/lbcs/
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Fig. 3. Sample images from our training dataset. For each class, we display 4 images. The images are arranged in the order of closeness to that land use
type from left to right. Note the noisiness contained in the web-crawled dataset. The figure is best viewed in color.

to evaluate the performance of our method. As mentioned in
related work, it takes enormous manual effort to come up with
the ground truth for such large-scale land use classification
problem. Fortunately, Google places API2 provides us a list
of places types, most of those correlate well with land use.
Although the Google records are spatially sparse (see in Figure
2), they are relatively accurate and updated every year, which
can be regarded as ground truth for our problem at hand. Thus
we could make a well-defined ontology with ground truth by
combining LBCS Function standard and Google places API.

Since we aim to classify land use using only user con-
tributed social multimedia (e.g., Flickr images), we face the
challenge that for some land use types, people rarely take
photos. For example, “atm” due to privacy issues. And some
places types from Google places are not indicating land use,
such as “roofing contractor”. Hence, we remove the classes
that are (1) without enough online photos; (2) not land use
indicative and (3) have no ground truth from Google places.

In this manner, we obtain the final database structure. It
is a 3-level hierarchy, with 5 top classes, 16 middle classes
and 45 bottom classes. The five top classes are: (1) Residence
or accommodation functions; (2) General sales or services;
(3) Transportation, communication, information, and utilities;
(4) Arts, entertainment and recreation; (5) Education, public
admin, health care and other institution. The full hierarchy is
given in the Appendix A.

There are at least two benefits of having such annotated land
use map3. First, researchers could use our map to evaluate
their methods for land use/cover classification, no matter
what the inputs are. For example, they can use Twitter texts,

2https://developers.google.com/places/
3The annotated land use map will be released in GIS compatible format to

facilitate research in this field.

Instagram images, YouTube videos, remote sensing images,
and even sensor signals from internet-of-things. Second, a
good benchmark can enable fair comparison and facilitate
research in this field.

Training and Mapping Set
Once the ontology is ready, we start to collect our dataset for
training deep CNN models to classify land use.

The mapping set, which is actually the test set, consists
of the geotagged Flickr images from San Francisco region of
year 2016. We download a total of 96, 382 images. Due to the
noisy geotags and uneven spatial distribution, we would like
to keep as many photos as possible to do the final mapping
for better geo-visualization. But how to come up with a large
and diverse training set? We note, however, that we do not
need location information for the training images, all we need
is label information. We thus propose a search based approach
to build the training set.

Specifically, we perform keyword search on Google images.
The keyword is the name of each bottom class. To increase
the size of training set, we perform multiple related keyword
searches for each category. For example, for bottom class
“school”, we could use other keywords such as “elementary
school”, “high school”, “adult school”, etc. We find the top
retrievals are largely relevant. This strategy results in a total of
35, 478 images for a single category “school”. And following
this method, we build an initial training set with more than 1
million images.

However, there exists one concern that since we will use
Flickr images to do the final mapping, the domain gap
between Google images and Flickr images may harm the
generalization of our trained model. Most Google images have
clean background, whereas most Flickr images have large
faces or humans, have been photoshoped or have complex
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Fig. 4. Overview of our fine-grained land use classification framework. The input are batches of mixed images downloaded from Flickr and Google. We train
two CNN models to learn complementary object information and scene information. During inference, their prediction scores are fused with equal weights.
The online adaptive training strategy is outlined in red dashed lines during backward model weights update, to reduce the impact of hard examples. The figure
is best viewed in color.

background. Hence, we perform another keyword search on
Flickr to augment the initial training set. Note that, in order to
avoid duplicates in training and test set. We download these
Flickr images from other cities far away from San Francisco,
like Paris, Atlanta, New York, Dallas etc.

In the end, our final training set consists of over 2 million
images. We randomly split the dataset with a ratio of 0.8 to
0.2 for training and validation of our CNN model. Sample
images of our crowd-sourced dataset can be seen in Figure 3.

This search based strategy has three benefits: (1) it results
in a balanced, rich training set; (2) it preserves all the images
in San Francisco with location information for mapping; and
(3) the data labeling procedure is efficient and automated.
Although we may concern that using web data may introduce
additional label noise, many literature demonstrate that certain
level of noise doesn’t impact the performance of deep neural
network, and sometimes even improve the generalization abil-
ity of the trained model [41].

Geo-filtering with shapefiles
We use the polygonal outlines of the land use regions we
want to classify to filter noisy images and to produce more
precise maps. These irregularly shaped polygons are known
as shapefiles in geographical information systems (GIS) and
are widely available. Figure 2 shows the shapefiles for our
problem. Using the shapefiles has two benefits:

• Filtering: We ignore the images which do not fall in one

of the regions we want to classify. In our experiment, in
order to tolerate the geolocation error of web images,
we dilate the shapefiles. We regard a photo that is 5
meters away from the region boundary is still within this
region. This removes a lot of noisy (unrelated) images
and reduces our dataset from 96, 382 images to 58, 418.

• Precision: The ground truth land use map in Figure 2
was generated using the shapefiles. It is very precise and
could be published with very few modifications such as
overlaying the street network.

Compared with the tiling and discretization approach of
previous work [42], [43], [44], incorporating shapefiles results
in maps which are more map-like. They are significantly more
geo-informative visually.

B. End-to-End Learning

Most traditional approaches for land use/cover classification
adopt a two stage pipeline [8], which first extract image
features (like color histogram, shape, texture, Scale Invariant
Feature Transform (SIFT), GIST, or deep CNN features) and
then train an image classifier (like logistic regression, support
vector machine (SVM), or shallow neural network). This two
stage framework has the following shortcomings: (1) The two
stages are independent of each other, hence the solution may
stuck in local minimal, and can not achieve a global optimal
solution. (2) Image features need to be cached, at least during
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Fig. 5. Sample geo-visualizations in downtown San Francisco. Though each shapefile (building) may contain multiple land use types, we show the one with
majority votes for clear visualization. Slashed regions are correct predictions with respect to Google Map. The figure is best viewed in color.

training stage, which is computational and storage forbidden
for large-scale applications.

Recent approaches use an end-to-end learning strategy with
deep neural networks. However, most land use/cover literature
focus on remote sensing images, rare work use social multi-
media. The challenges mainly come from two perspectives,
one is the lack of ground truth dataset to evaluate, the other
is the noisiness and uneven spatial distribution of the online
photo repositories.

To overcome these challenges, in this work, we collected
a weakly annotated dataset with more than 2 million images,
distributed over 45 land use types, and organized in a three-
level hierarchy. Such large-scale dataset could compensate the
noisiness of online images and be used to train an effective
deep CNN model for land use classification.

Training a CNN model is straightforward. We use the
keywords as image labels, and train a 45-way classifier. One
thing to notice is that, in order to cross the domain gap between
Google images and Flickr images, our input to the CNN is
comprised of images from both domains. To be specific, we
use a batch size of 256 during training, half of which is
from Google images, and the other half comes from Flickr.
We adopt ResNet101 [45] as our network architecture due to
its good trade-off between accuracy and efficiency. We also
explore other model architectures, like AlexNet [21], VGG16
[46], GoogleNet [47], ResNet34 [45] and DenseNet121 [48].
The implementation details can be seen in Section IV-B. We
report their performance on our validation set with discussion
in Section V-A.

C. Online Adaptive Training

Using deep CNN models, especially their pretrained models
[49], we can leverage the powerful learned representations to
adapt to many tasks and achieve promising results. However,
such transfer learning require the problem is well-defined and
the fine-tuning dataset at hand is also large and clean.

As for our problem, the social multimedia is labelled
by keywords search, not manually annotated. Such weakly
labelled dataset will lead to bad local minimum or model
collapse during training. Manually cleaning the dataset would

be ideal, but it is unrealistic with respect to the exponential
growth of social multimedia. Thus, we need to tolerate the
noisiness and try to learn useful visual representation from
weakly annotated samples, similar as the recent released large-
scale dataset, WebVision [50] and YouTube-8M [51].

Noted that, even the dataset is noisy, our directly trained
CNN achieves moderate accuracy as seen in Table I. There-
fore, we propose to use the trained model to perform an
online adaptive training, as an unsupervised dataset cleaning
procedure. This strategy is used to reduce the impact of
noisy instances during model fine-tuning. Specifically, given
the trained model, we perform fine tuning. We feed a batch
of images to the network, forward computing to obtain the
land use prediction scores. We would like to pick the samples
with distinct prediction scores to perform back propagation,
and discard those samples with uniform distributed prediction
scores. The intuition is that, if the prediction scores are
distinct, this sample may be easier for our model to classify.
On the other hand, if the prediction scores are nearly uniform
distribution, it indicates that this sample could easily confuse
our model.

Let yi = [yi1, yi2, ..., yin] represent the prediction (softmax)
scores of training instance i, n denotes the number of classes,
which is 45 in our situation. We calculate a probability score
to determine whether to keep or discard this sample,

pi = max(0, 2− exp |max(yi)− ȳi|) (1)

Here, ȳi is the mean of prediction scores yi. When the
difference between the maximum and average of the prediction
scores of one training instance is large, pi is low towards 0.
The loss of this training instance will be back propagated
to update the model weights. Otherwise, the smaller the
difference, the higher the probability of this instance being
ignored. In the extreme case, when max(yi) = ȳi, pi will
be 1, which means we would not calculate the gradients
with respect to this sample. In our experiments, we set the
threshold to be 0.5 for pi. Alternatively, we could perform soft
weighting, which means we use the probability pi to weight
the importance of each sample instead of setting a threshold
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TABLE I
LAND USE CLASSIFICATION PERFORMANCE: BOTH IMAGE-LEVEL
CLASSIFICATION AND SHAPEFILE-LEVEL MAPPING ACCURACY.

Classification Mapping
Method Accuracy Precision Recall F1 Score

SIFT 29.16 4.56 12.85 3.37
SIFT + Fisher Vector Encoding 31.20 5.01 13.67 3.67

ResNet101 fc Layer (Pre-trained) 37.87 7.92 18.98 5.59

ResNet101 (Fine-Tuned) 43.90 10.57 21.67 7.10
ResNet101 (Adaptive, Object) 46.73 12.30 25.41 8.29
ResNet101 (Adaptive, Scene) 42.93 10.11 20.09 6.89

ResNet101 (Two-Stream) 49.54 14.21 29.06 9.54

to discard it. We explore both soft and hard selection scheme,
but do not observe much difference.

The positive sampling strategy is similar to the idea of
hard negative mining [52], [53]. Hard negative mining is an
useful strategy to optimize machine learning models without
leveraging extra data. At the same time, it may speed up
the convergence because it put more attention on the hard
examples during training. But in our situation, we are not
working on hard examples, but discard them. Because our
dataset already contains relative amount of noisy training
instances.

In all, our training procedure has two stages. First stage,
we perform a conventional end-to-end learning for land use
classification. Second stage, we fine tune the trained model
using the proposed online adaptive training strategy. We only
back propagate the gradients with distinct prediction scores.
In this way, our model learns good visual representations
through the easy examples without being impacted by the
noisy samples.

D. Two stream: Object and Scene

The proposed online adaptive training can reduce the impact
of noisy instances and balance the gap between Google and
Flickr images during model learning. As shown in Table I,
this strategy dramatically improve the performance of land use
classification. However, our problem is still very challenging
due to scene variations, different viewpoints and low image
quality etc.

As we know, classifying land usage from user-generated
images is a very high-level task. One need to understand which
objects are showing, is there human in the picture, is there
human-object interaction, what is the context, etc. Based on
those semantic clues, we can infer what functionality this place
may be used for. Inspired by multi-modal learning [54], [55],
we propose a two-stream architecture: one is object-stream,
the other is scene-stream.

The object-stream is the CNN model pretrained on Im-
ageNet dataset [49], aiming to encode object information.
Most land use/cover literature use such object-centric models
because we can extract good semantic features from these pre-
trained models. Moreover, the features generalize well across
domains. However, we argue that the scene information is also
important in determining land use/cover. Thus we propose
to use scene-stream, a scene-centric model, to complement
the object-stream and use context information to help classify
land use. The scene-centric model is pretrained on Places365

dataset [56]. Both streams are then fine tuned on our dataset
as above. Implementation details are described in Section
IV-B. The reason we split the task to two sub-tasks is two-
fold. First, the availability of two large-scale datasets lead
to better pretrained CNN models. Second, we can explicitly
encode object and scene information for effective land use
classification due to their complementarity.

Note that, there is a possibility that the object model and
scene model will collapse into one model after fine-tuning.
In order to keep the complementarity between the two pre-
trained models, we freeze part of the model parameters. For
example, we fix the weights of the first four convolution groups
of ResNet101 during fine-tuning. In this case, the low-level
and mid-level features remain object- and scene- oriented.

Our overall framework for fine-grained land use classifica-
tion can be seen in Figure 4.

IV. EXPERIMENTS

In this section, we first describe our dataset in Section
IV-A and the implementation details in Section IV-B. Then we
report the performance of our proposed approach in Section
IV-C. We also analyze the experimental results followed by
visualization and discussion.

A. Dataset

Our dataset includes two set, one is the training set, the
other is the mapping set with ground truth land use types.

The training set is constructed through keyword search on
both Google images and Flickr images. The final training
set consists of 2, 159, 460 images spread over 45 land use
categories. Each category has around 45, 000 images and is
balanced in general. We split the dataset with a ratio of 0.8 to
0.2 for training and validation of our CNN model. The image-
level classification accuracy of our CNN model is evaluated
on the validation set.

The mapping set consists of Flickr images in the region
of San Francisco over year 2016. These images has geotags.
We downloaded a total of 96, 382 images, however, after geo-
filtering, the final mapping set has 58, 418 images. We use
the places data from Google places API as ground truth to
evaluate our mapping performance. The evaluation metric is, if
an image falls into the region of a shapefile, and our predicted
land use type corresponds to (one of) the ground truth land use
types from Google places, then we regard it as a correct land
use mapping. Note that there may exist mixed land use types
for a single shapefile. We adopt precision, recall and F1 score
to report our mapping accuracy. Precision is calculated as the
correct mappings divided by our predictions, while recall is
calculated as the correct mappings divided by ground truth
Google records.

B. Implementation Details

For the CNNs, we use the PyTorch toolbox. For all the
experiments and speed evaluation, we use a workstation with
an Intel Core I7 (4.00GHz) and 4 NVIDIA Titan X GPUs.
End-to-End learning: We use ResNet101 as our network
architecture, and pre-train it on ImageNet challenges [49].
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Fig. 6. Image-level land use classification accuracy versus training epochs.
Without online adaptive training, the accuracy come to a plateau after epoch
12 (blue curve). With the strategy, the accuracy improves further (red curve).

During fine tuning, we change the last layer to a 45-way
classifier. The model is trained using stochastic gradient decent
algorithm with the default parameter values. The batch size is
set to 256. The initial learning rate is set to 0.01 and is divided
by 10 every 5 epoch. We end our training at epoch 12.
Online Adaptive Training Given the fine-tuned model, we
perform online adaptive training. We feed a batch of images
to the network, forward computing to obtain the land use
prediction scores. We write a custom loss layer to compute the
cross entropy loss according to (1). We only pick the samples
with distinct prediction scores to perform back propagation,
and discard those samples with uniform distributed prediction
scores. Since the model is already fine-tuned, the initial
learning rate is set to 10−5, and divided by 10 every one epoch.
We stop the training at epoch 4.
Two-Stream We also use ResNet101 as our scene-centric
model architecture, and pre-train it on Places challenges [56].
The fine tuning details are the same as our object-centric
model training. Note that, we fix part of the model parameters
during fine-tuning in order to keep their complementarity.
We perform late fusion to combine the results of our object
stream and scene stream. Late fusion is weighted averaging of
the predicted softmax scores from the two CNN models, the
weights are set to be equal for the two models.

C. Results

In this section, we evaluate our proposed method for fine-
grained land use classification. We first compare the results
from our initial end-to-end learned model with other non deep
learning approaches. We then show the effectiveness of online
adaptive learning strategy in the situation of using noisy web
data. Finally, we indicate the advantage of combining object
and scene information from two-stream networks. We also
follow the experimental results with a discussion.

The results are shown in Table I, which are evaluated on
two metrics. One is the image-level classification accuracy,
the other is the shapefile-level land use mapping accuracy.

The image-level classification accuracy is computed based on
the keyword labels, while the shapefile-level land use mapping
accuracy is calculated based on the proposed ground truth land
use map of San Francisco.

Image-level Classification Result:

Top section of Table I: Here we list the performance of tradi-
tional two-stage approaches. We choose SIFT as the baseline
image descriptor. In addition, we compare SIFT with deep fea-
tures, which are extracted from the last fully-connected layer
from ResNet101 model pre-trained on ImageNet challenges.
Note that the ResNet101 model here is not fine-tuned on our
data, it is only used as a generic feature extractor. We can see
that deep features achieves much higher image classification
accuracy than traditional SIFT features. This observation is
as expected because deep features are more semantic and
generalized as demonstrated in other fields. We also use Fisher
Vector encoding of SIFT to obtain better global features but
observe limited improvement. Once we obtain the features, we
use SVM as our classifier. We choose C equal to 1 and keep
other parameters as default.
Bottom section of Table I: Here we list the performance of
our proposed method and show the improvement brought
by each strategy. First, we fine tune the deep networks
on our data. Despite noisy, our end-to-end trained model
outperforms the above approach using the pre-trained model
as a generic feature extractor. This indicates that end-to-end
learning is better than two-stage method, especially during
domain transfer learning. Second, we show the effectiveness of
our proposed online adaptive training strategy. It improves 3%
over the end-to-end trained model by discarding hard examples
during fine-tuning. As we can see in Figure 6, the image-level
classification accuracy come to a plateau after epoch 12 (blue
curve) without online adaptive training. With our proposed
method, the accuracy improves further (red curve). Finally, by
combining results from another stream, scene-centric model,
we achieve an accuracy of 49.54% on an image classification
task with 45 classes. This result is promising given how much
noise does our crowd-sourcing dataset have (as shown in
Figure 3).

Shapefile-level Mapping Result:

Different from image-level classification, here, we demonstrate
how image classifier trained on web images can be used to
classify land use types on real map. We observe that the
land use mapping performance is closely related to the image
classification accuracy. The higher the image classification ac-
curacy, the higher the precision and recall of land use mapping.
Due to the large number of images we collected and their
uneven spatial distribution and noisiness, the precision is low
as expected because there are too many false positives. Hence
we only report the recall rate in our following experiments.
With good practice mentioned above, our final two-stream
networks outperforms the baseline SIFT feature by 17% on
the challenging 45-classes land use mapping problem.

We also show sample geo-visualizations in Figure 5. The
four regions are randomly picked from downtown San Fran-
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Fig. 7. Per-class image-level classification accuracy (green) versus shapefile-level mapping recall (blue). The figure is best viewed in color.

cisco. Though each shapefile (building) may contain multiple
land use types, we show the one with majority votes for clear
visualization. We can see that our predictions are reasonable
in most cases. For example, in the top left image, there exist
many restaurants and a clothing store, which corresponds well
to Google map. For the bottom right image, most of our
results are correct. There is a Macy store, a hotel, and several
parking structures. However, the library prediction is wrong
because that building is an university. But after a sanity check,
we actually have university prediction for that shapefile, it
is just library has more photos and win the majority votes.
Hence, we demonstrate the effectiveness of our approach both
quantitatively and qualitatively.

Note that in deep learning era, with powerful CNNs, re-
searchers can saturate the performance on many datasets over
a bunch of tasks in a fast-ever pace. However, we only achieve
29.06% recall rate on our ground truth map using state-
of-the-art deep network. Here emerges the two challenges,
one is the inaccurate crowd-sourced data, the other is the
fine granularity requirement. Similar challenges also happen
in other areas, such as action recognition. [57] proposed a
new dataset named Charades, which is a crowd-sourced fine-
grained action recognition/localization benchmark. Its scale is
similar to previous dataset like ActivityNet [58], but state-
of-the-art action recognition approach [59], [60] only has an
recognition accuracy about 15%, while same approach can
achieve more than 70% on ActivityNet. Thus, fine-grained
land use mapping is a much more challenging problem than
traditional land use problem in literature. We provide a ground
truth map and a strong baseline to enable benchmarking future

TABLE II
CNN ARCHITECTURE SEARCH.

Method Accuracy (%) Speed (fps)
AlexNet 36.45 68.9
VGG16 43.88 25.6

GoogleNet 42.03 7.8
ResNet34 43.12 19.4
ResNet101 46.73 6.4

DenseNet121 47.29 3.8

algorithms.

V. DISCUSSION

In this section, we first perform a CNN architecture search
in terms of accuracy and efficiency for land use classification
in Section V-A. Section V-B compares the per-class image-
level classification accuracy with mapping recall rate, while
Section V-C investigates why and how object and scene model
are complement. In Section V-D we illustrate the difference
between training on different dataset granularity. Finally, we
use other data sources like Instagram images to demonstrate
the domain adaptation ability of our method in Section V-E.

A. CNN Architecture Search

As we know, CNN architecture is crucial for its performance
on different tasks, e.g., the depth, width and the internal con-
nections of the CNN. We perform a CNN architecture search to
find the best network for classifying land use types given noisy
web images in terms of the trade-off between accuracy and
efficiency. Here, we compare several architectures, AlexNet,
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Fig. 8. Per-class image-level classification accuracy of the object stream (green), scene stream (blue) and two-stream (red). We observe that object and scene
information are complementary for recognizing most land use types. The figure is best viewed in color.

VGG16, GoogleNet, ResNet34, ResNet101 and DenseNet121.
These architectures are well designed and have been widely
used in many areas.

The results can be seen in Table II. Here, we only report
the image classification accuracy of the object-centric model.
The speed is evaluated using frame per second (fps) metric.
The higher the fps, the faster the model runs.

In general, we obtain better performance with deeper
networks. There is one interesting observation that VGG16
performs better than ResNet34 despite that VGG16 has 16
layers while ResNet34 has 34 layers. In addition, ResNet34
performs better than VGG16 on object recognition task in
ImageNet challenges [49]. This demonstrates that VGG16 is
a more robust model which has good generalization towards
noisy dataset.

DenseNet121 performs the best due to its deeper network,
implicit supervision and being less prone to overfitting. How-
ever, it is both memory and time consuming. Considering
the trade-off between accuracy and efficiency, we choose
ResNet101 as our CNN architecture.

B. Image Classification versus Land Use Mapping
In Section IV-C, we find that land use mapping performance

is closely related to the image classification accuracy. Intu-
itively, this makes sense because a better image classification
model will lead to better performance for the following task.
Here, we explore their relationships in details by comparing
the per-class accuracy. The results can be seen in Figure 7.

We observe that the recall rate and image classification
accuracy for some categories do not correlate. For example,

the “bicycle store” class, the image classification accuracy
is almost 80% because our object model can easily detect
bicycles to determine its land use. However, when we do the
mapping, the recall rate is lower than 10%. The reason maybe
that the bicycle stores are usually small places, the noisiness
of the web images and the inaccurate geotag will lead to bad
mapping performance. For some other land use types, like
“bank”, “local government office”, “courthouse” and “library”,
the number of photos used for mapping is quite small due to
privacy issue or photographer intent. Thus their land use recall
rate is also very low.

In general, a better land use image classification model will
lead to better land use mapping performance, but this may not
be the case for some land use types. Fine-grained land use
classification remains challenging due to a variety of reasons,
such as uneven spatial distribution, inaccurate geotags, low
image quality, lack of images for some land use types etc. It
is a problem beyond pure pixel-level image understanding, but
requires human common knowledge.

C. Object and Scene

As evidenced in Table I, two-stream networks outperform
each single of them, which indicates that object and scene
stream should be complementary to each other. In this section,
we further investigate why and how they are complement.

We compare the per-class accuracy of the object model,
scene model and two-stream models as in Figure 8. We make
two observations: (i) Object model obtains better performance
for most land use types than scene model. This maybe because
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TABLE III
IMAGE-LEVEL CLASSIFICATION ACCURACY ON DIFFERENT DATASET

GRANULARITY.

Method 45-way 16-way 5-way
Fine Granularity 46.7 61.8 75.6

Middle Granularity − 60.2 68.4
Coarse Granularity − − 49.3

land use is determined by how people use the land, and objects
are usually more indicative than scenes. For example, object
model outperforms scene model on class “bicycle stores” by
a large margin because the existence of a bicycle is important
to determine its land use. However, the surrounding scene of
a bicycle store may be similar to other land use types. (ii)
Object and scene model are complementary to each other. 39
out of 45 classes obtain better performance due to late fusion
of the two models. For the other 6 classes, their performance
decrease are quite marginal.

The top 5 classes with the most improvement (amount
in parenthesis) after incorporating scene model are “veteri-
nary” (18.12%), “amusement park” (12.30%), “movie theater”
(11.04%), “stadium” (10.97%) and “church” (9.86%). We
believe that the scene cue is important for the recognition of
these land use types because there are no specific objects that
are related to the classes.

The 6 classes that has decreased performance are “hair
care” (−3.77%), “fire station” (−2.49%), “shopping mall”
(−2.31%), “art gallery” (−2.04%), “school” (−1.68%) and
“police station” (−1.20%). The reason is because the perfor-
mance of our scene model on these 6 classes are not promising
which lower the overall performance.

D. Fine to Coarse

In some circumstances, we do not need land use maps with
such fine granularity. The 16 middle classes or the 5 top classes
will meet our requirements. There is a question that should we
train a model with fine granularity and combine the results
later to get higher level predictions, or we directly train a
model with coarse granularity. Here, we investigate this issue
by training another 16-way and 5-way classifier on our dataset.

We call our 45-way classifier as fine granularity model, 16-
way classifier as middle granularity model and 5-way classifier
as coarse granularity model. The results are shown in Table
III. We can see that training on fine granularity is beneficial.
The model can learn discriminant features for different land
use types. We can achieve an accuracy of 61.8% for 16 middle
classes and 75.6% for 5 top classes. The middle granularity
model performs worse than fine granularity model because
these 16 classes may correlate in pixel space. A single model
can not differentiate them without human common knowledge.
The coarse granularity model performs the worst, with an
accuracy of only 49.3%, slightly better than random guess.
This is because the images within one class are so different
that will easily confuse the model. For example, the “General
sales or services” top class includes many concepts that are
visually quite different, like bank and bakery, hair care and

restaurant. The model may learn nothing given such serious
intra-class variance.

E. Comparison to Other Data Source

In this section, we aim to explore using other data source
like Instagram images to evaluate the land use mapping
performance. On one hand, this will show the robustness of
our proposed method and good transfer learning capability. On
the other hand, we show that the ground truth land use map
of San Francisco can serve as a benchmark to evaluate other
algorithms using various data sources.

We download a total of 121, 567 images within the city
of San Francisco in the year of 2014 using Instagram API4.
We directly use the trained models to classify each image to
its predicted land use types. The recall rate of the land use
mapping performance is 17.3%, although lower than the best
result 29.03%, we demonstrate good domain adaptation ability
of our model. The accuracy is similar to 18.9%, that of using
pre-trained deep CNN models as generic feature extractor.
Note that, Instagram images are quite different compare to
Flickr images in style. Most Instagram images are selfie or
selfie-like, which describes near-sight scenes. This is usually
not useful towards recognition of land use types. We could use
other data sources, like tweets or Youtube videos, to further
evaluate our method, but we leave it for future work.

VI. CONCLUSION

We introduce a ground truth fine-grained land use map in
city-scale and present a framework for land use classification
using georeferenced ground-level images. Our dataset struc-
ture has a 3-level hierarchy, with 5 top classes, 16 middle
classes and 45 bottom classes. To the best of our knowledge,
the number of land use types in finest granularity, 45, is
much more diverse than previous literature. Our two-stream
models, together with the online adaptive training strategy,
achieve promising results on the challenging 45-way land use
classification problem. We believe our provided ground truth
map can encourage further research on fine-grained land use
classification and our results serve as a strong baseline.

In the future, we would like to improve our two-stream
models in the following directions. First, we plan to explore
multi-model information, such as text, audio, video or various
input signals, to investigate their complementarity. Second,
we adopt the idea of human-in-the-loop since fine-grained
land use mapping problem is a very challenging problem.
We probably need human knowledge to produce accurate
land use map for governmental or industrial use such as
city zoning map. Third, based on the observation that object-
stream usually achieve better performance than scene-stream,
we could explore further on object stream by applying off-the-
shelf object detectors. Such local approach may achieve better
performance and provide evidence for which object(s) are the
key factor to determine the land use.

4We pick year 2014 instead of 2016 is because Instagram recently limits
its API from massive downloading of user images with location information.



12

REFERENCES

[1] Y. Yamagata and H. Seya, “Simulating a Future Smart City: An
Integrated Land Use-Energy Model,” Applied Energy, 2013.

[2] M.-L. Marsal-Llacuna and M.-B. Lpez-Ibez, “Smart Urban Planning:
Designing Urban Land Use from Urban Time Use,” Journal of Urban
Technology, 2014.

[3] J. Rawat and M. Kumar, “Monitoring Land Use/Cover Change using
Remote Sensing and GIS Techniques: A Case Study of Hawalbagh
Block, District Almora, Uttarakhand, India,” The Egyptian Journal of
Remote Sensing and Space Science, 2015.

[4] Y. Liu, J. Peng, L. Jiao, and Y. Liu, “PSOLA: A Heuristic Land-
Use Allocation Model Using Patch-Level Operations and Knowledge-
Informed Rules,” PLOS ONE, 2016.

[5] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, “Land Use
Classification in Remote Sensing Images by Convolutional Neural
Networks,” arXiv preprint arXiv:1508.00092, 2015.

[6] B. Zhao, B. Huang, and Y. Zhong, “Transfer Learning With Fully
Pretrained Deep Convolution Networks for Land-Use Classification,”
IEEE Geoscience and Remote Sensing Letters, 2017.

[7] M. Li, K. M. de Beurs, A. Stein, and W. Bijker, “Incorporating Open
Source Data for Bayesian Classification of Urban Land Use From VHR
Stereo Images,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 2017.

[8] Y. Yang and S. Newsam, “Bag-Of-Visual-Words and Spatial Extensions
for Land-Use Classification,” in ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, 2010.

[9] T. Hu, J. Yang, X. Li, and P. Gong, “Mapping Urban Land Use by Using
Landsat Images and Open Social Data,” Remote Sensing, 2016.

[10] X. Deng and S. Newsam, “Quantitative Comparison of Open-Source
Data for Fine-Grain Mapping of Land Use,” in ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems,
2017.

[11] S. Jiang, A. Alves, F. Rodrigues, J. Ferreira, and F. C. Pereira, “Mining
Point-of-Interest Data from Social Networks for Urban Land Use
Classification and Disaggregation,” Computers, Environment and Urban
Systems, 2015.

[12] J. Kang, M. Krner, Y. Wang, H. Taubenbck, and X. X. Zhu, “Building
Instance Classification using Street View Images,” ISPRS Journal of
Photogrammetry and Remote Sensing, 2018.

[13] T. Pei, S. Sobolevsky, C. Ratti, S.-L. Shaw, T. Li, and C. Zhou, “A New
Insight into Land Use Classification Based on Aggregated Mobile Phone
Data,” International Journal of Geographical Information Science, 2014.

[14] X. Liu, J. He, Y. Yao, J. Zhang, H. Liang, H. Wang, and Y. Hong,
“Classifying Urban Land Use by Integrating Remote Sensing and
Social Media Data,” International Journal of Geographical Information
Science, 2017.

[15] D. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg, “Mapping
the World’s Photos,” in International World Wide Web Conference
(WWW), 2009.

[16] J. Hays and A. A. Efros, “IM2GPS: Estimating Geographic Information
from a Single Image,” in International Conference on Computer Vision
and Pattern Recognition (CVPR), 2008.

[17] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the World from
Internet Photo Collections,” International Journal of Computer Vision,
2008.

[18] S. Paldino, I. Bojic, S. Sobolevsky, C. Ratti, and M. C. Gonzalez,
“Urban Magnetism Through The Lens of Geo-tagged Photography,”
arXiv preprint arXiv:1503.05502, 2015.

[19] Y. Zhu and S. Newsam, “Spatio-Temporal Sentiment Hotspot Detection
using Geotagged Photos,” in ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, 2016.

[20] Y. Zhu, S. Liu, and S. Newsam, “Large-Scale Mapping of Human
Activity using Geo-Tagged Videos,” in ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2017.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in International Conference
on Neural Information Processing Systems (NIPS), 2012.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation,”
in International Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[23] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale Video Classification with Convolutional Neural
Networks,” in International Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[24] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-
tional Networks,” in European Conference on Computer Vision (ECCV),
2014.

[25] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and Trans-
ferring Mid-level Image Representations Using Convolutional Neural
Networks,” in International Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[26] Y. Zhong, F. Fei, and L. Zhang, “Large Patch Convolutional Neural Net-
works for the Scene Classification of High Spatial Resolution Imagery,”
Journal of Applied Remote Sensing, 2014.

[27] O. A. B. Penatti, K. Nogueira, and J. A. dos Santos, “Do Deep Features
Generalize from Everyday Objects to Remote Sensing and Aerial Scenes
Domains?” in International Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[28] Q. Weng, Z. Mao, J. Lin, and W. Guo, “Land-Use Classification via
Extreme Learning Classifier Based on Deep Convolutional Features,”
IEEE Geoscience and Remote Sensing Letters, 2017.

[29] F. P. S. Luus, B. P. Salmon, F. van den Bergh, and B. T. J. Maharaj, “Mul-
tiview Deep Learning for Land-Use Classification,” IEEE Geoscience
and Remote Sensing Letters, 2015.

[30] L. Tracewski, L. Bastin, and C. C. Fonte, “Repurposing a Deep Learning
Network to Filter and Classify Volunteered Photographs for Land Cover
and Land Use Characterization,” Geo-spatial Information Science, 2017.

[31] D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep Learning Earth
Observation Classification Using ImageNet Pretrained Networks,” IEEE
Geoscience and Remote Sensing Letters, 2016.

[32] P. Helber, B. Bischke, A. Dengel, and D. Borth, “EuroSAT: A Novel
Dataset and Deep Learning Benchmark for Land Use and Land Cover
Classification,” arXiv preprint arXiv:1709.00029, 2017.

[33] H. Oba, M. Hirota, R. Chbeir, H. Ishikawa, and S. Yokoyama, “Towards
Better Land Cover Classification Using Geo-tagged Photographs,” IEEE
International Symposium on Multimedia, 2014.

[34] D. M. Theobald, “Development and Applications of a Comprehensive
Land Use Classification and Map for the US.” PLOS ONE, 2014.

[35] S. Shekhar, P. R. Schrater, R. R. Vatsavai, W. Wu, and S. Chawla,
“Spatial Contextual Classification and Prediction Models for Mining
Geospatial Data,” IEEE Transactions on Multimedia, 2002.

[36] D. Leung and S. Newsam, “Proximate Sensing: Inferring What-Is-Where
From Georeferenced Photo Collections,” in Internatial Conference on
Computer Vision and Pattern Recognition (CVPR), 2010.

[37] Y. Zhu and S. Newsam, “Land Use Classification Using Convolutional
Neural Networks Applied to Ground-Level Images,” in ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems, 2015.

[38] J. Untenecker, B. Tiemeyer, A. Freibauer, A. Laggner, F. Braumann, and
J. Luterbacher, “Fine-Grained Detection of Land Use and Water Table
Changes on Organic Soils over the Period 1992-2012 using Multiple
Data Sources in the Drmling Nature Park, Germany,” Land Use Policy,
2016.

[39] N. Attari, F. Ofli, M. Awad, J. Lucas, and S. Chawla, “Nazr-CNN: Fine-
Grained Classification of UAV Imagery for Damage Assessment,” arXiv
preprint arXiv:1611.06474, 2016.

[40] Y. Zhang, Q. Li, H. Huang, W. Wu, X. Du, and H. Wang, “The Combined
Use of Remote Sensing and Social Sensing Data in Fine-Grained Urban
Land Use Mapping: A Case Study in Beijing, China,” Remote Sensing,
2017.

[41] L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian, “DisturbLabel:
Regularizing CNN on the Loss Layer,” in Internatial Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[42] D. Leung and S. Newsam, “Exploring Geotagged Images for Land-Use
Classification,” in ACM workshop on Geotagging and its applications
in multimedia, 2012.

[43] “Geograph Britain and Ireland - photograph every grid square!”
[Online]. Available: http://www.geograph.org.uk/

[44] J. D. Wickhama, S. V. Stehmanb, L. Gassc, J. Dewitzd, J. A. Fryd, and
T. G. Wadea, “Accuracy Assessment of NLCD 2006 Land Cover and
Impervious Surface,” Remote Sensing of Environment, 2013.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[46] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in International Conference on
Learning Representations (ICLR), 2015.

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
in International Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

http://www.geograph.org.uk/


13

[48] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017.

[49] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
ageNet: A Large-Scale Hierarchical Image Database,” in International
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[50] W. Li, L. Wang, W. Li, E. Agustsson, J. Berent, A. Gupta,
R. Sukthankar, and L. V. Gool, “WebVision Challenge: Visual Learning
and Understanding With Web Data,” arXiv preprint arXiv:1705.05640,
2017. [Online]. Available: http://www.vision.ee.ethz.ch/webvision/

[51] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadara-
jan, and S. Vijayanarasimhan, “YouTube-8M: A Large-Scale Video
Classification Benchmark,” arXiv preprint arXiv:1609.08675, 2016.

[52] Q. You, J. Luo, H. Jin, and J. Yang, “Robust Image Sentiment Analysis
Using Progressively Trained and Domain Transferred Deep Networks,”
in AAAI Conference on Artificial Intelligence, 2015.

[53] A. Shrivastava, A. Gupta, and R. Girshick, “Training Region-based
Object Detectors with Online Hard Example Mining,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[54] K. Simonyan and A. Zisserman, “Two-Stream Convolutional Networks
for Action Recognition in Videos,” International Conference on Neural
Information Processing Systems (NIPS), 2014.

[55] J. Hu, L. Mou, A. Schmitt, and X. X. Zhu, “FusioNet: A Two-Stream
Convolutional Neural Network for Urban Scene Classification using
PolSAR and Hyperspectral Data,” in Joint Urban Remote Sensing Event
(JURSE), 2017.

[56] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
Deep Features for Scene Recognition using Places Database,” in Inter-
national Conference on Neural Information Processing Systems (NIPS),
2014.

[57] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and
A. Gupta, “Hollywood in homes: Crowdsourcing data collection for
activity understanding,” in European Conference on Computer Vision
(ECCV), 2016. [Online]. Available: http://allenai.org/plato/charades/

[58] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “ActivityNet:
A Large-Scale Video Benchmark for Human Activity Understanding,” in
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[59] Y. Zhu and S. Newsam, “Depth2Action: Exploring Embedded Depth for
Large-Scale Action Recognition,” in European Conference on Computer
Vision Workshop, 2016.

[60] Y. Zhu, Z. Lan, S. Newsam, and A. G. Hauptmann, “Hidden Two-
Stream Convolutional Networks for Action Recognition,” arXiv preprint
arXiv:1704.00389, 2017.

APPENDIX A
FULL DATASET HIERARCHY

We list the full dataset hierarchy in 3-level as below. There
are 5 top classes, 16 middle classes and 45 bottom classes.

1) Residence or accommodation functions
a) Hotels, motels, or other accommodation services

• lodging
2) General sales or services

a) Retail sales or service
• bicycle store
• car service
• department store
• home goods store
• book store
• clothing store
• jewelry store
• shoe store
• bakery
• pharmacy
• shopping mall

b) Finance and Insurance
• bank

c) Business, professional, scientific, and technical ser-
vices
• post office
• travel agency
• veterinary care

d) Food services
• restaurant
• coffee house
• night club
• bar

e) Personal services
• hair care

3) Transportation, communication, information, and utili-
ties

a) Transportation service
• bus station
• subway station
• train station
• parking

b) Communications and information
• library

4) Arts, entertainment and recreation
a) Performing arts or supporting establishment

• art gallery
• movie theater
• stadium

b) Museums and other special purpose recreational
institutions
• aquarium
• museum
• zoo

c) Amusement, sports, or recreation establishment
• park
• amusement park
• gym

5) Education, public admin, health care and other institu-
tion

a) Educational services
• school
• university

b) Public administration
• city hall
• courthouse
• local government office

c) Public safety
• fire station
• police station

d) Health and human services
• hospital

e) Religious institutions
• church
• temple

http://www.vision.ee.ethz.ch/webvision/
http://allenai.org/plato/charades/
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