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Abstract

We discuss the Gaussian graphical model (GGM; an undi-
rected network of partial correlation coefficients) and detail
its utility as an exploratory data analysis tool. The GGM
shows which variables predict one-another, allows for sparse
modeling of covariance structures, and may highlight po-
tential causal relationships between observed variables. We
describe the utility in 3 kinds of psychological datasets:
datasets in which consecutive cases are assumed indepen-
dent (e.g., cross-sectional data), temporally ordered datasets
(e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1
time series). In time-series analysis, the GGM can be used to
model the residual structure of a vector-autoregression analy-
sis (VAR), also termed graphical VAR. Two network models
can then be obtained: a temporal network and a contempora-
neous network. When analyzing data from multiple subjects,
a GGM can also be formed on the covariance structure of
stationary means—the between-subjects network. We dis-
cuss the interpretation of these models and propose estima-
tion methods to obtain these networks, which we implement
in the R packages graphicalVAR and mlVAR. The methods
are showcased in two empirical examples, and simulation
studies on these methods are included in the supplementary
materials.

Introduction

There has been a surge of network models being applied
to psychological datasets in recent years. This is consis-
tent with a general call to conceptualize observed psycho-
logical processes not merely as indicative of latent common
causes but rather as emergent behavior of complex, dynam-
ical systems in which psychological, biological, and soci-
ological components directly affect each other (Borsboom,
Cramer, Schmittmann, Epskamp, & Waldorp, 2011; Cramer
et al., 2012; Cramer, Waldorp, van der Maas, & Borsboom,
2010; Schmittmann et al., 2013; van der Maas et al., 2006).
Such relationships are typically not known, and probabilis-
tic network models (Koller & Friedman, 2009) are used to
explore potential dynamical relationships between observ-
ables (Epskamp, Maris, Waldorp, & Borsboom, in press;
van Borkulo et al., 2014). In this paper we aim to pro-
vide a methodological introduction to a powerful probabilis-
tic network model applicable in exploratory data analysis, the
Gaussian graphical model (GGM), and to propose how it can
be used and interpreted in the analysis of both cross-sectional
and time-series data.

Two lines of network research in psychology. We can
currently distinguish two distinct and mostly separate lines
of research in which networks are utilized on psychologi-
cal datasets: the modeling of cross-sectional data and the
modeling of intensive repeated measures in relatively short
time frames (e.g., several times per day during several

weeks). In cross-sectional modeling, a model is applied
to a dataset in which multiple subjects are measured only
once. The most popularly used methods estimate undirected
network models—so-called pairwise Markov random fields
(Epskamp et al., in press; Murphy, 2012). When the data
are continuous and assumed normally distributed, the GGM
can be estimated. The GGM estimates a network of partial
correlation coefficients—the correlation between two vari-
ables after conditioning on all other variables in the dataset
(Epskamp, Borsboom, & Fried, 2017). This model is ap-
plied extensively to psychological data (e.g., Cramer et al.,
2012; Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom,
2016; Isvoranu et al., 2017; Kossakowski et al., 2015; Mc-
Nally et al., 2015; van Borkulo et al., 2015).

Researchers can obtain time-series data by using the expe-
rience sampling method (ESM; Myin-Germeys et al., 2009),
in which subjects are asked several times per day to fill out a
short questionnaire using a device or smartphone app. Also,
time-series data can arise from diary studies (e.g., a question-
naire completed at the end of the day) or physiological mea-
surements, among other methods. Often, repeated measures
of one or multiple participants are modeled through the use of
(multilevel) vector autoregressive (VAR) models, which esti-
mate how well each variable predicts the measured variables
at the next time point (Borsboom & Cramer, 2013). These
models are increasingly popular in assessing intraindividual
dynamical structures (e.g., Bringmann et al., 2013; Bring-
mann, Lemmens, Huibers, Borsboom, & Tuerlinckx, 2015;
Wigman et al., 2015).

Estimating the GGM is not limited to cross-sectional data;
the model merely does not take temporal information into
account. As such, the lines of research on network modeling
of cross-sectional data and time-series data can naturally be
combined. First, GGM models can readily be estimated on
repeated measures, if these can be assumed to be temporally
independent. Second, as the VAR model can be seen as a
generalization of the GGM that takes violations of indepen-
dence between consecutive cases into account; the GGM can
be used to model the contemporaneous time level of a time-
series analysis. Finally, the between-subjects effects of n > 1
studies can also be modeled through the use of the GGM.

Outline. We show that in time-series modeling the
GGM allows researchers to extend the modeling framework
to incorporate contemporaneous and between-subjects ef-
fects. We do this by building up the model complexity in
three steps: (1) when cases can be assumed to be indepen-
dent (e.g., cross-sectional data or repeated measures in which
no auto-regression is assumed), (2) temporally ordered data
(e.g., n = 1 time-series data or n > 1 time-series data where
no individual differences are assumed), and (3) temporally
ordered data from multiple subjects (e.g., n > 1 time series).
The final level of model complexity leads to a novel contri-
bution of this paper: separation of variance into contempo-



2 SACHA EPSKAMP,1 LOURENS J. WALDORP,1 RENÉ MÕTTUS,2 DENNY BORSBOOM1

raneous, temporal, and between-subjects network structures.
We propose novel estimation procedures to estimate these
models, which we have implemented in two free software
packages: mlVAR,1 and graphicalVAR.2 We furthermore ex-
pand on existing literature by providing a comprehensive
methodological discussion of the GGM, by comparing the
GGM to structural equation modeling (SEM; Kaplan, 2000;
Wright, 1921), by providing overviews of estimation meth-
ods and software packages useable in each kind of dataset
and by discussing the interpretation of networks estimated at
the contemporaneous and between-subjects levels. We show-
case network models estimated from n > 1 time-series data
in two empirical examples by reanalyzing existing datasets
(Bringmann et al., 2013; Geschwind, Peeters, Drukker, van
Os, & Wichers, 2011; Mõttus, Epskamp, & Francis, 2017).
In the supplementary materials, we provide codes to perform
the analyses and we assess the performance of these meth-
ods in large-scale simulation studies. To aid the reader in the
various different terms used in this paper, we have included
a glossary of terms in Appendix A.

The Gaussian Graphical Model

Let yyy>C =
[
YC1 YC2 . . . YCm

]
denote a random vector

with yyyc as its realization.3 We assume yyyC is centered4 and
normally distributed with some variance–covariance matrix
ΣΣΣ:

yyyC ∼ N(000,ΣΣΣ). (1)

The subscript C denotes a case (a row in the spreadsheet). We
currently do not define the nature of the observed variables.
Thus, yyyC can consist of variables relating to one or more sub-
jects, could contain repeated measures on one or more vari-
ables, could contain variables of a single subject that do not
vary within-subject, and so forth. Consider three examples:
(1) Y1 could represent the level of anxiety of subject p on
day 1 and Y2 the level of anxiety of subject p on day 2, (2)
Y1 could represent the length of subject p and Y2 the number
of times subject p bumps his or her head, and (3) Y1 could
represent the number of cigarettes subject p smokes per day
and Y2 the number of cigarettes another subject p + 1 smokes
per day (case C then represents a dyadic pair).

Partial correlation networks. Assuming multivariate
normality, ΣΣΣ encodes all the information necessary to deter-
mine how the observed measures relate to one another. How-
ever, we will not focus on ΣΣΣ in this paper but rather on its
inverse—the precision matrix KKK:

KKK = ΣΣΣ−1.

Of particular importance is that the precision matrix can be
standardized to encode partial correlation coefficients of two
variables, given all other variables (dropping subscript C for
notational clarity; Lauritzen, 1996):5

Cor
(
Yi,Y j | yyy−(i, j)

)
= −

κi j
√
κii
√
κ j j
, (2)

in which κi j denotes an element of KKK, and yyy−(i, j) denotes the
set of variables without i and j. These partial correlations
can be graphically displayed in a weighted network, in which
each variable Yi is represented as a node, and connections
(edges) between these nodes represent the partial correlation
between two variables. When the partial correlation (thus the
corresponding element in KKK) equals zero, no edge is drawn.
Thus, modeling the inverse variance–covariance matrix, such
that every nonzero element is treated as a freely estimated pa-
rameter, allows for a sparse model for ΣΣΣ (i.e., every element
in ΣΣΣ may be nonzero while some elements in KKK are zero;
Epskamp, Rhemtulla, & Borsboom, 2017). Such a model is
termed a GGM (Lauritzen, 1996). Of note, when the sample-
variance–covariance matrix is inverted and standardized, no
partial correlation will be exactly equal to zero and the GGM
will therefore be saturated. To obtain a sparse model with
testable implications, in this paper partial correlations are
forced to zero either by using thresholding rules or regular-
ization techniques.

When drawing a GGM as a network (often termed a par-
tial correlation network), positive partial correlations are
typically visualized with blue or green edges and negative
partial correlations with red edges,6 and the absolute strength
of a partial correlation is represented by the width and satu-
ration of an edge (Epskamp et al., 2012). When a partial
correlation is zero, we draw no edge between two nodes. As
such, the GGM can be seen as a network model of condi-
tional associations; no edge indicates that two variables are
independent after conditioning on all other variables in the

1CRAN link: http://cran.r-project.org/package=mlVAR
Github link (developmental): http://www.github.com/

SachaEpskamp/mlVAR.
2CRAN link: http://cran.r-project.org/package=graphicalVAR

Github link (developmental): http://www.github.com/

SachaEpskamp/graphicalVAR.
3We use capitalized subscripts to denote random variables and

lower case subscripts to denote fixed variables. A variable can po-
tentially be fixed with respect to one subscript but random with
respect to another. Supplementary materials section 1 contains a
complete overview of the notation used in this paper.

4Because we assume data to be centered, we do not need to
model the (grand) mean vector. This simplifies notation.

5This relationship can be traced back much further. For ex-
ample, Heiser (2017) traced this relationship back to the work of
Guttman et al. (1938).

6Many publications make use of the default color setup used in
qgraph (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,
2012): green for positive edges and red for negative edges. A later
version of qgraph includes the option theme = "colorblind" us-
ing a more colorblind-friendly coloring scheme and setting the pos-
itive edge color to blue. This option has been used for all graphs
in this paper. Note that some publications (e.g., Schuurman, 2016)
also use blue and red edges but use red to denote positive and blue
to denote negative effects akin to a heat map.
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dataset. This allows us to model conditional associations,
which we might expect to be zero, rather than marginal asso-
ciations, which we rarely expect to be zero (Meehl, 1990).

To exemplify the above, suppose for three variables “fa-
tigue”, “concentration problems” and “insomnia” the true
variance–covariance matrix is:

ΣΣΣ =

 1 −0.26 0.31
−0.26 1 −0.08
0.31 −0.08 1

 .
To model this matrix, we need six parameters (three covari-
ances and three variances). The corresponding true precision
matrix becomes:

KKK = ΣΣΣ−1 =

 1.18 0.28 −0.34
0.28 1.07 0
−0.34 0 1.11

 .
Similar to SEM, a model can be devised that perfectly ex-
plains this pattern using only five parameters, because one of
the elements in KKK can be constrained to be zero (Epskamp,
Rhemtulla, & Borsboom, 2017). We can now standard-
ize this matrix and make the off-diagonal elements negative
(Equation (2)) to obtain the partial correlation matrix, which
we will denote RRR:

RRR =

 1 −0.25 0.3
−0.25 1 0

0.3 0 1

 .
This matrix can be used to draw a network as is shown in
Figure 1. This figure shows that someone who is tired is
also more likely to suffer from concentration problems and
insomnia. Furthermore, this network shows that the corre-
lation between insomnia and concentration problems can be
explained by the relationships of both variables with fatigue:
concentration problems and insomnia are conditionally inde-
pendent given the level of fatigue.

Interpreting GGMs. This paper concerns the ex-
ploratory estimation of GGMs from various sources of data,
without prior knowledge on the model structure. Such undi-
rected network models can be interpreted in strikingly differ-
ent ways, ranging from a no causal interpretation to a strong
causal interpretation:

1. Predictive effects. The GGM can be interpreted with-
out any causal interpretation and used merely as a
tool to show which variables predict one-another. In-
terpreting the parameters associated with the model
A → B → C requires a causal interpretation, while
the predictive quality between these nodes can directly
be obtained from the equivalent GGM A — B — C:
only information on node B is needed when predict-
ing A or C. As such, the GGM can always be inter-
preted to show predictive effects and offers a powerful
exploratory tool to map out multicollinearity.

−0.25 0.3

Fatigue

InsomniaConcentration

Figure 1. A hypothetical example of a GGM on psycholog-
ical variables. Nodes represent someone’s ability to concen-
trate, someone’s level of fatigue, and someone’s level of in-
somnia. Connections between the nodes, termed edges, rep-
resent partial correlation coefficients between two variables
after conditioning on the third. Blue edges indicate positive
partial correlations, red edges indicate negative partial corre-
lations, and the width and saturation of an edge corresponds
to the absolute value of the partial correlation.

2. Indicative of causal effects. The GGM is closely tied
to causal modeling. If a causal model between ob-
served variables generated the data, then an edge A –
B appears in the GGM only if there is a causal link
between the variables (e.g., A → B or A ← B), or if
both variables cause a third variable in the data (e.g.,
A → C ← B). Exploratory estimation of such mod-
els relies on stringent assumptions (e.g., acyclicity),
suffers from a problem of many equivalent models,
and may lead to over-saturated models. The GGM,
on the other hand, is well identified and does not fea-
ture equivalent models. Therefore, at the cost of los-
ing information on the direction of effect, exploratory
search algorithms perform well in identifying a GGM.
Because of this close tie to causal modeling, edges in
the GGM may be interpreted as indicative of potential
causal pathways.

3. Causal generating model. Undirected network mod-
els have a long history of being used as data generat-
ing models in diverse scientific fields such as statistical
physics (Murphy, 2012). For example, in a simple fer-
romagnetic Ising model of two particles that tend to be
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aligned (Epskamp et al., in press), A — B, intervening
on A would impact B and intervening on B would im-
pact A. To this end, undirected network models allow
for a unique causal interpretation: one of genuine sym-
metric effects. This interpretation is discussed often in
the literature on network psychometrics, and used in
complexity research demonstrating emergent phenom-
ena (e.g., the positive manifold or phase transitions)
that may occur in such a network of cellular automata
(van der Maas et al., 2006; Cramer et al., 2016; Dalege
et al., 2016; Kruis & Maris, 2016).

In addition, the GGM is closely tied to factor analysis, allow-
ing for extensions to factor modeling through the use of net-
work modeling (Epskamp, Rhemtulla, & Borsboom, 2017).
The main focus of this paper is discussing the second inter-
pretation, while also describing how the GGM may be used
to show predictive effects. We detail these first two points
below by first showing how partial correlation coefficients
correspond to multiple regression coefficients and next dis-
cussing the relationships between the GGM and SEM. Point
3 follows from observing that the GGM is directly related
to similar undirected models such as the Ising model (Ising,
1925). A discussion on the causal interpretation of such mod-
els is beyond the scope of this paper, and we refer the reader
for this topic to Epskamp et al. (in press) and van Borkulo et
al. (2014).

The Gaussian Graphical Model and Multiple Regressions

An edge in a GGM indicates that one node predicts a con-
nected node after controlling for all other nodes in the net-
work. This can also be shown in the relationship between
coefficients obtained from least-squares prediction and the
inverse variance–covariance matrix. Let ΓΓΓ represent an k × k
matrix with zeros on the diagonal. Furthermore, let γγγi,−(i)
represent the i-th row of ΓΓΓ without the i-th element (as the
diagonal is set to zero), which contains the regression coeffi-
cients obtained in a multiple regression model:

yci = τ + γγγi,−(i)yyyc,−(i) + εci.

As such, γi j encodes how well the jth variable predicts the
ith variable. This predictive effect is naturally symmet-
ric; if knowing someone’s level of insomnia predicts his
or her level of fatigue, then conversely knowing someone’s
level of fatigue allows us to predict his or her level of in-
somnia. As a result, γi j is proportional to γ ji. There is
a direct relationship between these regression coefficients
and the inverse variance–covariance matrix (Meinshausen &
Bühlmann, 2006). Let DDD denote a diagonal matrix on which
the ith diagonal element is the inverse of the ith residual
variance: dii = 1/Var(εCi). As a result, it can be shown
(Pourahmadi, 2011) that7

KKK = DDD (III − ΓΓΓ) . (3)

Thus, κi j is proportional to both γi j and γ ji; a zero in the
inverse variance–covariance matrix indicates that one vari-
able does not predict another. Consequently, the network
tells us something about the extent to which variables predict
each other. This predictive quality is the cornerstone for how
such network models are often applied (Hastie, Tibshirani,
& Wainwright, 2015), for example in recommender-systems
that recommend users on products they might like depending
on which products the user already liked (Marsman, Wal-
dorp, & Maris, 2017). In addition to these applications and
aiding the interpretation of GGM models, this relationship
between multiple regression and undirected network edges
plays a crucial role in many network estimation procedures
(Meinshausen & Bühlmann, 2006; van Borkulo et al., 2014;
Haslbeck & Waldorp, 2016b), including the methods dis-
cussed below in this paper.

The Gaussian Graphical Model and Structural Equation
Modeling

Let ηηηC represent a set of unobserved variables, which we
assume to be jointly normally distributed with yyyC . Then, we
can form an encompassing framework for several possible
generating models:8

yyyc = BBByyyc + ΛΛΛηηηc + εεεc

εεεC ∼ N(000,ΦΦΦ)
ηηηC ∼ N(000,ΨΨΨ), (4)

in which ΦΦΦ is a diagonal matrix9, indicating that after con-
ditioning on all causes the variables are independent, BBB is
a square matrix with zeros on the diagonal of causal effects
between observed variables, and ΛΛΛ is a factor-loading matrix.
The variance–covariance matrix of ηηηC may in turn be mod-
eled in various ways to achieve complicated model setups.
The expression above is well-known in SEM, which allows
for confirmatory testing of causal models. In exploratory es-
timation, one could assume no latent variables exist and aim
estimate BBB (causal models), or one could assume no relation-
ships between observed variables exist and aim to estimate ΛΛΛ

(factor models). We contrast both to the GGM below.

7This expression may differ by a scalar, depending on the esti-
mation method. For example, by default R computes the variance–
covariance matrix by using n − 1 in the denominator, but computes
Var(εCi) by using n−m in the denominator. This denominator is can-
celled out in Equation (2) when standardizing to partial correlation
coefficients.

8This expression should not be confused with Equation (3), in
which ΓΓΓ is obtained by performing univariate multiple regressions
in which error terms are not independent.

9This matrix is often denoted using the greek letter ΘΘΘ instead
of ΦΦΦ. We use ΦΦΦ here to avoid confusion with the contemporaneous
variance–covariance matrix used below, which is not diagonal.
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Causal models. Suppose there are no unobserved
causes to any of the variables in yyyC , and the variables in yyyC

are only caused by other variables in yyyC . The corresponding
model for ΣΣΣ becomes:

ΣΣΣ = (III − BBB)−1 ΦΦΦ (III − BBB)−1> . (5)

In this expression, BBB can now be seen to encode the causal
model (Pearl, 2000). Table 1 summarizes the comparison
between such causal models and GGMs. Although useful
for generating data and confirmatory testing, we can see two
problems in exploratory estimation of BBB without any prior
knowledge. First, if m variables are included, ΣΣΣ contains
m(m + 1)/2 elements, while ΦΦΦ contains m parameters and BBB
contains m(m−1) parameters. As a result, the model above is
underidentified without stringent restrictions on BBB. One as-
sumption is that yyyC can be ordered such that BBB is lower trian-
gular, indicating that if this matrix is used to draw a directed
graph—a graph in which A→ B indicates that A causes B—
that graph does not contain any cycles, meaning that directed
edges cannot be traced from any node back to itself (e.g.,
A→ B→ A). Such a graph is called a directed acyclic graph
(DAG; Kalisch & Bühlmann, 2007; Pearl, 2000). If repeated
measures are available at the correct time scale, reciprocal ef-
fects and cycles can often be adequately modeled as acyclic
effects unfolding over time. Without such information, cy-
cles can be modeled and can be identified when exogenous
variables are present (such as the weather, time, or, depend-
ing on the modeling framework, lagged variables; Rigdon,
1995), but the interpretation of such cycles is not without
problems (Hayduk, 2009). Several software packages exist
that aim to find such a DAG (e.g., pcalg, Kalisch, Mächler,
Colombo, Maathuis, & Bühlmann, 2012; bnlearn, Scutari,
2010). The assumption of acyclicity, however, is debatable
in the context of psychological variables (Schmittmann et al.,
2013) because many effects can be plausibly assumed cyclic
(e.g., fatigue→ concentration problems→ stress→ fatigue).

Second, the same structure for ΣΣΣ can be obtained under
various different specifications of BBB. Thus, many equivalent
models can lead to exactly the same fit. This can be seen be-
cause several matrix decompositions of ΣΣΣ, such as a Cholesky
decomposition or an eigendecomposition, can be used to pro-
duce equivalently fitting BBB. The problem of equivalent mod-
els is also well-known in the literature on directed networks
and SEM (MacCallum, Wegener, Uchino, & Fabrigar, 1993;
Pearl, 2000). For example, the following three causal models
are not statistically distinguishable:

1. Concentration→ Fatigue→ Insomnia

2. Concentration← Fatigue→ Insomnia

3. Concentration← Fatigue← Insomnia

All three models only imply that concentration and insomnia
are conditionally independent given fatigue. With more vari-
ables, the number of potential equivalent models increases

drastically, making it evident that model search is likely
to fail. At best, exploratory estimation can result in a set
of equally plausible DAGs (an equivalence class; Drton &
Maathuis, 2017), each differently parameterized and each
leading to different strong causal hypotheses.

Causal modeling and the GGM. The undirected GGM
offers an attractive alternative to exploratory DAG estima-
tion: the GGM is saturated rather than overidentified if all
edges are present (KKK contains the same number of unique el-
ements as ΣΣΣ), does not feature equivalent models10 (there is
only one unique inverse for ΣΣΣ), does not suffer from a ques-
tionable direction of causal effect, does not require the as-
sumption of acyclicity, and is easily parameterized using par-
tial correlation coefficients (Epskamp, Rhemtulla, & Bors-
boom, 2017). These benefits come, however, at the cost of
losing information on the direction of effect. To investigate
the structure of a GGM under the causal model of Equa-
tion (5), in which observed variables can only be caused by
other observed variables, we can invert that expression to ob-
tain:

KKK = (III − BBB)>ΦΦΦ−1 (III − BBB) , (6)

in which ΦΦΦ−1 is still a diagonal matrix. It becomes evident
that there is no longer a matrix inversion needed and that the
sparsity in BBB directly corresponds to the sparsity in KKK; the
GGM thus acts on the same level as causal modeling. We can
derive that κi j equals zero if there is no directed edge between
node i and j (e.g., Yi → Y j or Yi ← Y j) and if there is no com-
mon effect of node i and node j (e.g., Yi → Yk ← Y j; Koller
& Friedman, 2009)11. Thus, assuming a causal model as in
Equation (5) generated the data, an edge in a GGM emerges
as a result of a direct causal effect between the variables, or
as a result of the fact that both variables have a common ef-
fect on a third variable. Note that within the causal model
of Equation (5), there are no latent common causes by as-
sumption. Edges in the GGM can therefore be indicative of
potential causal effects.

A note on common effects. As mentioned above and
shown in Table 1, conditioning on a common effect may in-
duce a spurious edge in the GGM. In this case, the sign of
the edge can be informative: two positive causal effects from
two variables on a third lead to a negative partial correlation.
As such, when observing an edge of an unexpected sign in
the GGM, this may be indicative of a common effect, es-
pecially when the marginal correlation coefficient between
the two variables was of the different sign. It should also
be noted that conditioning on a common effect might cancel

10Note that the uniqueness of the GGM relates to the psycho-
metric model: for every ΣΣΣ there is only one unique inverse KKK and
vice versa. When estimating a GGM from data, different estimation
methods may lead to different estimated GGMs

11A common effect node is also termed a “collider” in the litera-
ture on causal modeling.
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Table 1
Overview of Causal Models (Directed Networks) and Gaussian Graphical Models (Undirected Networks)

Causal model Gaussian graphical model

ΣΣΣ−1 = (III − BBB)>ΦΦΦ−1 (III − BBB) = KKK

A⊥⊥ C | B

+ +

A

B

C

+ +

A

B

C

A⊥⊥ C | B

+ +

A

B

C

+ +

A

B

C

A 6⊥⊥ C | B

+ +

A

B

C

+ +

−A

B

C

R packages (confirmatory) Any SEM package lvnet (fit measures); qgraph (fit mea-
sures); ggm (estimation only); GLASSO
(estimation only)

R packages (exploratory) pcalg; bnlearn qgraph (EBICglasso function);
GLASSO (no automatic tuning pa-
rameter selection); huge; parcor;
BDgraph; lvnet (for GGM at latent or
residual level of SEM)

Pros Causal interpretation; allows for con-
firmatory testing of causal hypotheses;
can detect common effect structures

No equivalent models; fast struc-
ture and parameter estimation using
LASSO; edges parametrizable as par-
tial correlation coefficients; edges in-
terpretable as predictive effects; latent
variables result in clusters; edges can be
indicative of potential causal effects

Cons Exploratory estimation requires as-
sumption of acyclicity; many equiva-
lent models; direction of effect poorly
or not identified; strongly depends on
assumption of no latent variables

No direction of effect; common ef-
fect structure can induce spurious edge;
LASSO estimation assumes true model
is sparse
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out a weak effect between two variables. In addition, be-
cause edges may be induced due to conditioning on a com-
mon effect, the GGM does not estimate a skeleton graph, a
causal network with arrowheads removed (an edge may be in
the GGM that is not in the causal model). Skeleton graphs
can also be estimated from data (e.g., Kalisch, Maechler, &
Colombo, 2017), but are not parameterized and rely on many
separate conditional independence tests, potentially leading
to power issues.

Factor models. Suppose that, instead of assuming no
unobserved causes as in (5), we take the generating model
of (4) and only allow for unobserved causes of the observed
variables. Then, (4) reduces to the well known factor model
(Brown, 2014). The corresponding model for ΣΣΣ now be-
comes:

ΣΣΣ = ΛΛΛΨΨΨΛΛΛ> + ΦΦΦ,

which can subsequently be inverted to obtain an expression
for the equivalent GGM. Golino and Epskamp (2017) pro-
vide a detailed derivation of this inverted expression and
show that a factor in the factor model will lead to its indica-
tors to cluster (all nodes connected to each other with strong
edges) in the GGM. This result is in line with mathematical
equivalences between factor models and network models of
binary variables (Marsman, Borsboom, et al., 2017; Kruis
& Maris, 2016; Epskamp et al., in press; Marsman, Maris,
Bechger, & Glas, 2015). As there is only one unique inverse
to ΣΣΣ, there is only one unique GGM for every factor model.
Conversely, however, one GGM may be equivalent to many
different factor models (e.g., all possible rotations of ΛΛΛ).

Due to these equivalences, network modeling and factor
modeling are closely connected. A natural first step in per-
forming an exploratory factor analysis would be to estimate
and draw a GGM model and investigate if the nodes cluster
as would be expected by a factor model. Cluster-detection
algorithms on the GGM could even be performed to investi-
gate the number of factors to extract (Golino & Epskamp,
2017). Of note, however, is that many GGM estimation
methods will always aim to estimate sparse GGM (i.e., KKK
contains exact zeroes), which is not expected given a fac-
tor model (except when latent variables are orthogonal). As
such, estimating a sparse network does not provide evidence
that a latent variable model could not have generated the
data (Epskamp, Kruis, & Marsman, 2017; Epskamp et al., in
press). GGM modeling can further be used to augment factor
analysis by modeling the latent variable variance–covariance
matrix ΨΨΨ or the residual variance–covariance matrix ΦΦΦ as a
GGM (Epskamp, Rhemtulla, & Borsboom, 2017). Model-
ing ΨΨΨ as a GGM leads to a latent network model, which can
be used in exploratory estimation of relationships between
latent variables. Modeling ΦΦΦ as a GGM leads to a residual
network model, which may be used to estimate factor models
while local independence is structurally violated (Epskamp,
Rhemtulla, & Borsboom, 2017; Pan, Ip, & Dubé, 2017).

A note on spurious edges. When interpreting edges in
the GGM as indicative of potential causal effects it is impor-
tant to note that edges in a GGM may also result from latent
variables. Such edges are termed spurious, and cannot be
accounted for unless the latent variable is explicitly modeled
(e.g., by using the residual network model described above).
The same problem occurs in exploratory DAG estimation, in
which case a latent variable may induce a directed edge in
the causal network. Furthermore, such spurious associations
may arise in any statistical model, to the extent that unmea-
sured latent variables are involved. Here, the downside that
GGM loses information on direction of effect turns into an
upside: when an edge is indicative of a causal effect, GGMs
do not retrieve the direction of effect, however, when an edge
is spurious due to the influence of a latent variable, the GGM
also does not introduce a strong causal hypothesis on what
would happen under intervention.

Estimating GGMs From Different Sources of Data

Data with Independent Cases

A GGM can be estimated in datasets where cases can be
assumed to be independent. Three common examples of
such data are cross-sectional data, in which every subject is
only measured once on a set of response items, aggregated
data, in which only one mean score per variable per sub-
ject is included in the dataset, or n = 1 time-series data that
feature large intervals between measurement occasions. In
time-series data featuring shorter intervals, a GGM can be
estimated as well; in this case, the network could be termed
a contemporaneous network. However, as we argue in the
next section on temporally ordered data, better methods ex-
ist that take temporal information into account in addition to
modeling the contemporaneous effects in a GGM.

Estimation. In cross-sectional data analysis, only one
observation per subject is available; thus, we cannot expect
to estimate subject-specific means or GGM networks. It is
typically assumed that the subjects all share the same distri-
bution. That is,

yyyP ∼ N (000,ΣΣΣ) ,

in which yyyP denotes the random response of subject P on all
items. Similarly, in n = 1 time-series data we can make a
similar assumption:

yyyT ∼ N (000,ΣΣΣ) ,

in which yyyT denotes the random response of a subject on all
items at time point T . In both cases, the full likelihood can be
readily obtained, and the variance–covariance matrix ΣΣΣ can
reliably be estimated using maximum likelihood estimation
(MLE), least-squares estimation, or Bayesian estimation.
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Regularization. The MLE solution of KKK—the precision
matrix encoding a GGM—can be obtained by standardizing
the inverse sample variance–covariance as per Equation (2).
To obtain a sparse network, model search can be performed
by iteratively adding and removing edges and fitting the cor-
responding GGM structure (Epskamp, Rhemtulla, & Bors-
boom, 2017). In recent literature, it has become increas-
ingly popular to use regularization techniques, such as pe-
nalized MLE, to jointly estimate model structure and pa-
rameter values (Costantini et al., 2015; van Borkulo et al.,
2014). The least absolute shrinkage and selection opera-
tor (LASSO; Tibshirani, 1996) has been shown to perform
well in quickly estimating model structure and parameter es-
timates of a sparse GGM (Friedman, Hastie, & Tibshirani,
2008; Meinshausen & Bühlmann, 2006; Yuan & Lin, 2007).
A particularly popular variant of LASSO is the graphical
LASSO (GLASSO; Friedman et al., 2008), which directly
penalizes elements of the inverse variance–covariance ma-
trix (Witten, Friedman, & Simon, 2011; Yuan & Lin, 2007).
The GLASSO algorithm is useful as it is typically faster
than other GGM estimation algorithms (which conduct mul-
tiple separate regressions and then combine the results using
Equation 3), and requires only an estimate of the variance–
covariance matrix rather than raw data (Epskamp & Fried,
2017). LASSO utilizes a tuning parameter which can be cho-
sen in a way that optimizes cross-validated prediction accu-
racy or that minimizes information criteria such as the ex-
tended Bayesian information criterion (EBIC; Chen & Chen,
2008). Estimating a GGM with the GLASSO algorithm in
combination with EBIC model selection has been shown to
work well in retrieving the true network structure (Epskamp,
2016; Foygel & Drton, 2010). For an introduction to this
methodology aimed at empirical researchers, we refer the
reader to Epskamp and Fried (2017).

Software. Several software packages allow for GGM
estimation as described above. MLE can be performed
in any programming language and in many statistical pro-
grams by inverting and subsequently standardizing the sam-
ple variance–covariance matrix. In the open-source statis-
tical programming language R (R Core Team, 2017), au-
tomated procedures have been implemented in the corpcor
package (Schafer et al., 2017) and the qgraph (Epskamp et
al., 2012) package. The qgraph package also supports thresh-
olding via significance testing or false discovery rates. The
GLASSO algorithm is implemented in the glasso (Friedman,
Hastie, & Tibshirani, 2014) and huge (Zhao et al., 2015)
packages. EBIC-based tuning parameter selection using the
glasso package has been implemented in the qgraph pack-
age. The huge package also allows for selection of the tun-
ing parameter using cross validation or EBIC. The parcor
package (Krämer, Schäfer, & Boulesteix, 2009) implements
other LASSO variants to estimate the GGM. The BDgraph
package (Mohammadi & Wit, 2015) implements a Bayesian

method to estimate the undirected structure. Finally, fitting
an estimated GGM to data can be done in the R packages ggm
(Marchetti, Drton, & Sadeghi, 2015) and lvnet (Epskamp,
Rhemtulla, & Borsboom, 2017).

Temporally Ordered Data of a Single Subject

In line with a call for more intraindividual and person-
based research (Molenaar, 2004), an increasingly popular
form of data pertains to n = 1 time series, in which a single
individual is measured repeatedly over a period of time. One
such situation is in clinical practice (Kroeze et al., 2017; Ep-
skamp et al., 2018), where a patient can be measured several
times per day over a period of a few weeks. We will limit our
discussion to data obtained in a relatively short time-frame so
that we can reasonably assume the model will remain stable
over time. Then, we can apply the methodology above to
obtain a GGM for the n = 1 data. However, such an analysis
does not take temporal ordering of data into account (i.e.,
relationships between measurement occasions) and only in-
vestigates contemporaneous relationships between variables
(e.g., within the same measurement occasion). This is im-
portant for several reasons. First, valuable information, es-
pecially in the context of dynamical relationships, might be
contained at the temporal level rather than at the contem-
poraneous level. Second, not taking temporal ordering into
account might bias the estimated contemporaneous relation-
ships (see Section 4 of the supplementary materials). For
example, if one variable causes itself and another variable at
the next time, then not taking temporal ordering into account
turns that variable into a latent cause, which would produce
an edge in the GGM. Third, temporal information is needed
when constructing the joint likelihood over time (e.g., to ob-
tain the information retained in a system over time; Epskamp,
2017a; Quax, Kandhai, & Sloot, 2013). Finally, temporal
information can aide in distinguishing reciprocal and cyclic
effects by regarding these as acyclic effects unfolding over
time.

Vector Auto-regression. The simplest way to deal with
temporal ordering of cases is to incorporate the effect
between consecutive measurements (Shumway & Stoffer,
2010; Hamilton, 1994; Chatfield, 2016). This is called a
Lag-1 model because it includes both measurements at the
current time point t as well as measurements from the previ-
ous time point t − 1. We will focus our discussion on Lag-
1 models, noting that everything below also generalizes to
more complicated models (e.g., Lag-2 models). In intraindi-
vidual analysis, VAR (Brandt & Williams, 2007; Rosmalen,
Wenting, Roest, de Jonge, & Bos, 2012) has gained substan-
tive footing in visualizing temporal information through net-
works. The lag-1 VAR model can be denoted as a regression
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model on the previous measurement occasion:

yyyt = BBByyyt−1 + εεεt

εεεT ∼ N(000,ΘΘΘ). (7)

The model matrix BBB encodes temporal predictive effects from
variables on variables in the next measurement occasion, and
can be used to obtain a directed network, which we term the
temporal network. The variance–covariance matrix ΘΘΘ can
be inverted (KKK(ΘΘΘ) = ΘΘΘ−1) to obtain a GGM modeling effects
within the same measurement occasion, after controlling for
temporal effects. These can be displayed again as a network,
which we term the contemporaneous network.

Temporal networks. Temporal networks, encoded by BBB,
have grown popular in recent psychological literature (e.g.,
Bringmann et al., 2013, 2015; Wigman et al., 2015; Bos et
al., 2017; Snippe et al., 2017; Klippel et al., 2017). A tem-
poral network is formed by combining a lagged variable yt−1
and current variable yt into a single node, connected with di-
rected edges which are weighted according to the regression
parameters contained in BBB.12 Thus, an edge in the temporal
network indicates that a node predicts another node (or itself
in the common case of self-loops) at the next measurement
occasion, after controlling for all other variables at the pre-
vious measurement occasion. Temporal prediction is central
to the concept of Granger causality in the economic litera-
ture (Eichler, 2007; Granger, 1969), and it satisfies at least
the temporal requirement for causation (i.e., the cause must
precede the effect). Temporal networks may thus highlight
potential causal pathways. While temporal networks are typ-
ically cyclic, they can also be interpreted as summarizing a
DAG unfolding over time.

Contemporaneous networks. In addition to temporal ef-
fects, VAR analyses also include contemporaneous effects,
which can be modeled as a GGM. We will term this model-
ing framework (a VAR model with contemporaneous effects
explicitly modeled and portrayed as a GGM) graphical VAR
(GVAR; Wild et al., 2010).13 A useful equivalent way to
denote a GVAR model is by using a conditional Gaussian
distribution:

yyyT | yyyT−1 = yyyt−1 ∼ N (BBByyyt−1,ΘΘΘ) .

Which is equivalent to Equation (7). Now, it becomes evident
that if consecutive cases can be assumed to be independent,
and thus BBB = OOO, the GVAR model is exactly the same as the
GGM model described above for independent cases. Thus,
the GVAR model can be seen as a generalization of the GGM
model to temporally ordered data. GVAR only differs from
regular VAR in that the contemporaneous structure is mod-
eled and represented as a GGM, instead of being saturated.
This leads to a strikingly different interpretation of the VAR
model; the VAR model can be seen as an inclusion of tempo-
ral effects on a GGM.

Exercising

Energetic

Temporal network

Exercising

Energetic

Contemporaneous network

Figure 2. A hypothetical example of two network structures
obtained from a GVAR analysis. The network on the left in-
dicates the temporal network, demonstrating that a variable
predicts another variable at the next time point. The network
on the right indicates the contemporaneous network, demon-
strating that two variables predict each other at the same time
point.

Temporal and contemporaneous information. Figure 2
shows a hypothetical example of the two network structures
obtained in a GVAR analysis and shows how they might
plausibly differ. The left panel shows the temporal network.
The self-loop shows that whenever the subject in question
felt energetic (or tired) this person also felt more (or less) en-
ergetic in the next measurement. The temporal network also
shows us that after exercising, this person felt less energetic.
The contemporaneous network in the right panel shows a
plausible reverse relationship: Whenever this person exer-
cised, he or she felt more energetic in the same measurement
occasion. In psychology, there will likely be many causal
relationships that occur much faster than the lag interval of
a typical ESM study; in this case, these pathways will be
captured in the contemporaneous network. For example, if
someone is experiencing bodily discomfort, that will imme-
diately negatively affect that person’s ability to enjoy him or
herself (Epskamp et al., 2018). Especially when the measure-
ment is on blocks of time (e.g., “since the last measurement
did you feel ...”), such effects are likely to be caught in the
contemporaneous network.

Estimation. Estimating saturated (fully connected tem-
poral and contemporaneous networks) GVAR models is
straightforward. First, one needs to estimate temporal effects

12Note, in graph theory it is common to encode a network using
a weights matrix in which the row indicates the node of origin and
the column indicates the row of destination. As such, to obtain the
directed weights matrix to draw a temporal network BBB needs to be
transposed.

13Wild et al. (2010) do not use the term graphical VAR in the ex-
act same way we do, and use it more to refer to graphical modeling
in a VAR framework, including structural VAR. We use the term
here as described because having an explicit term helps in contrast-
ing GVAR from, e.g., structural VAR.



10 SACHA EPSKAMP,1 LOURENS J. WALDORP,1 RENÉ MÕTTUS,2 DENNY BORSBOOM1

of a regular VAR model by performing multivariate multi-
ple regression of all variables on the previous measurement
occasion,

yyyt = BBByyyt−1 + εεεt,

or by estimating univariate models for every variable,

yti = βββiyyyt−1 + εti,

in which βββi denotes the ith row of BBB. Next one can invert
the variance–covariance matrix of the residuals to obtain a
GVAR model. Step-wise model selection in latent network
models (Epskamp, Rhemtulla, & Borsboom, 2017) can also
be used to estimate sparse GVAR models. Missing data
can be handled in default ways of SEM or regression mod-
els (e.g., listwise deletion and full-information maximum
likelihood), or by using more sophisticated techniques such
as Bayesian estimation (Schuurman, Grasman, & Hamaker,
2016) or the Kalman filter (Harvey, 1990; Kim, Nelson, et
al., 1999).

Novel estimation methods. A promising recent method
for estimating VAR models is the Bayesian dynamical SEM
implementation in version 8 of Mplus (Muthén & Muthén,
2017; Asparouhov, Hamaker, & Muthén, 2016), which in-
cludes handling of missing data, measurement invariance and
latent variables. Mplus can be used to estimate saturated
GVAR models, and to perform model selection in the tem-
poral network of a GVAR model. Model selection in the
contemporaneous network of a GVAR model is not yet im-
plemented, but credibility intervals around contemporaneous
effects can be obtained by manually inverting each sampled
residual variance–covariance matrix (these can be stored us-
ing the BPARAMETERS option).

When estimating GVAR models, regularization methods
can be used similar to the estimation of GGMs on non-
temporally ordered data. Abegaz and Wit (2013) proposed
to apply LASSO estimation to jointly estimate the tempo-
ral and contemporaneous network structures using the mul-
tivariate regression with the covariance estimation (MRCE)
algorithm described by Rothman, Levina, and Zhu (2010).
MRCE involves iteratively optimizing BBB, using cyclical-
coordinate descent, and KKK(ΘΘΘ), using the GLASSO algorithm
(Friedman et al., 2008; ?, ?). EBIC model selection can be
used to obtain the best performing model. This methodol-
ogy has been implemented in two open source R packages:
sparseTSCGM (Abegaz & Wit, 2015), which aims to esti-
mate the model on repeated multivariate genetic data, and
graphicalVAR (Epskamp, 2017b), which was designed to es-
timate the model on the psychological data of a single sub-
ject. The graphicalVAR package also allows for unregular-
ized multivariate estimation.

An alternative to estimating GVAR models is to estimate
structural VAR (SVAR; Chen et al., 2011) models, also called
unified SEM (Gates, Molenaar, Hillary, Ram, & Rovine,

2010). In SVAR, the contemporaneous effects are modeled
using a directed network instead of an undirected network.
The sparsity of the undirected GVAR contemporaneous net-
work corresponds in the same way to the sparsity of the di-
rected contemporaneous network in SVAR as how the GGM
corresponds to causal models (edges arise in the GGM due to
edges in the causal network or conditioning on common ef-
fects). The temporal SVAR network is sparser than the tem-
poral GVAR network, as contemporaneous mediators can be
controlled for in SVAR but not in GVAR. A saturated SVAR
model can be obtained by using regressions on the previous
time-point as mentioned above, followed by transforming
the contemporaneous variance–covariance matrix (e.g., by
using a Cholesky decomposition on its inverse; Lütkepohl,
2005) and subsequently transforming the temporal effects to
take contemporaneous mediators into account. This tech-
nique of obtaining an SVAR model leads to multiple solu-
tions (Beltz & Molenaar, 2016). Step-wise model selection
can also be used to estimate sparse SVAR, for example by us-
ing model selection in (unified) SEM (Gates et al., 2010) or
Bayesian dynamical SEM models (Muthén & Muthén, 2017;
Asparouhov et al., 2016).

Temporally Ordered Data of Multiple Subjects

A type of data that is increasingly common due to the
emergence of ESM studies is time series of multiple sub-
jects (e.g., Bringmann et al., 2013, 2015; Mõttus et al., 2017;
Schmiedek, Lövdén, & Lindenberger, 2010; Wigman et al.,
2015). Such datasets pose a promising gateway to study
both intraindividual dynamics and between-subjects overlap
as well as their differences. Here, we assume that the number
of time points might differ per person and that measurement
occasions are nested in people. We can model the temporal
data of every person with an individual GVAR model:

yyy[t,p] = µµµp + BBBp

(
yyy[t−1,p] − µµµp

)
+ εεε[t,p]

εεε[T,p] ∼ N(000,ΘΘΘp)

ΘΘΘ−1
p = KKK(ΘΘΘ)

p ,

in which µµµp indicates the stationary mean vector of subject
p (which enters the model because we can no longer assume
within-subject means are zero without loss of generality), BBBp

encodes the person-specific temporal network, and KKK(ΘΘΘ)
p en-

codes the person-specific contemporaneous GGM.
Multilevel modeling. To gain insight in the general net-

work structure over subjects we can investigate the individ-
ual networks at a second level. Doing so is termed multi-
level modeling, explained in more detail in section 2.1 of the
supplementary materials. Let BBB∗ and KKK(ΘΘΘ)

∗ encode the ex-
pected temporal and contemporaneous network when select-
ing a person at random. Furthermore, we can assume without
loss of generality that data are grand-mean centered. We then
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obtain:

E (µµµP) = 000
E (BBBP) = BBB∗

E
(
KKK(ΘΘΘ)

P

)
= KKK(ΘΘΘ)

∗ .

Here, BBB∗ and KKK(ΘΘΘ)
∗ now encode the average parameters in the

population: the fixed effects. Deviations from these fixed ef-
fects, such as BBBp − BBB∗, are often called random effects. Be-
sides the individual network structures, researchers often aim
to estimate the structure and parameters of these fixed effects
because these tell us something about the average intraindi-
vidual effect. Researchers also aim to estimate the variance–
covariance structure of the random effects because it tells
us something about individual differences (Bringmann et al.,
2013).

The random effects can be modeled by assuming a sec-
ond level normal distribution on all the parameters. This can
be complicated, however, especially when modeling partial
correlation coefficients in such a way (e.g., any hierarchical
model for KKK(ΘΘΘ) needs to take into account that this matrix
must remain positive definite). The interpretation of, for ex-
ample, correlations between different temporal or contempo-
raneous edges is also difficult. Therefore, we only focus here
on a subset of the parameters where we can easily interpret
the second-level model: the mean structure. As a result, if
a multivariate normal is assumed for all parameters, then it
is also assumed for the marginal distribution of the means—
regardless of other parameters:

µµµP ∼ N (000,ΩΩΩ) .

Again, we can invert the variance–covariance matrix to ob-
tain a GGM,

KKK(ΩΩΩ) = ΩΩΩ−1,

which we will term the between-subjects network, a network
between stationary means of different subjects.14 As such,
estimating the GVAR model on n > 1 time-series analysis
allows for the separation of variance into three distinct net-
work structures: temporal networks, contemporaneous net-
works, and the between-subjects network.

Estimation. In this section, we outline several different
ways in which individual network structures as well as fixed
effect network structures may be estimated. We first discuss
applying the methodology of estimating n = 1 GVARs dis-
cussed above to both pooled data as well as data of each sub-
ject separately, followed by a discussion of different multi-
level estimation procedures that take clustering of the data
into account. An overview of these methods is also included
in Table 2.

Pooled and individual LASSO estimation. First, we can
estimate a GVAR model for every subject to obtain subject-
specific estimates for the temporal and contemporaneous net-
works. Similarly, we can estimate fixed-effects networks by

estimating a GVAR model on the entire within-subjects cen-
tered dataset, using the sample means of every subject on ev-
ery variable as a plug-in for the within-subject means. Con-
sequently, we can estimate the between-subjects network by
estimating a GGM on the sample means of each subject on
all variables. We can readily apply the LASSO regulariza-
tion methods described earlier for this purpose: the method-
ology outlined by Abegaz and Wit (2013) to estimate tempo-
ral and contemporaneous networks and the methodology out-
lined by Foygel and Drton (2010) to estimate the between-
subjects GGM. We term this framework pooled and indi-
vidual LASSO estimation and have implemented it in the R
package graphicalVAR (Epskamp, 2017b). The performance
of pooled and individual LASSO estimation is assessed in
simulations reported in section 3 of the supplementary mate-
rials.

Multilevel estimation. The second and third procedures
described in Table 2 make use of multilevel modeling
(Hamaker, 2012). Two main benefits of this approach are
(1) instead of estimating the VAR model in each subject,
only the fixed effects and variance–covariance of the ran-
dom effects need to be estimated, and (2) afterwards, esti-
mates of subject-specific parameters can be obtained, which
are somewhat pulled together (termed shrinkage). Shrinkage
allows the estimation of the model for one subject to borrow
information from other subjects. Multilevel estimation can
be performed by specifying the multivariate model using hi-
erarchical Bayesian Monte-Carlo sampling methods or by in-
tegrating over the distribution of the random effects (Gelman
& Hill, 2006; Schuurman, Grasman, & Hamaker, 2016).

Multivariate Bayesian multilevel. Bayesian multivari-
ate estimation has proven to be powerful in estimating mul-
tivariate multilevel models, especially given its flexibility in
adding measurement error, latent variables and in handling
missing data (Schuurman, Houtveen, & Hamaker, 2015).
Recently, the dynamic SEM methodology implemented in
Mplus version 8 (Muthén & Muthén, 2017; Asparouhov et
al., 2016) has made estimation of multivariate multilevel
VAR models much faster and more user-friendly than other
Bayesian software routines. Specifying a temporal VAR
model with correlated random effects is straightforward and
relatively fast to compute with a moderate number of vari-
ables (e.g., 6). At the time of writing, Mplus does not return
partial correlations by default, but these can be obtained by

14Of note, it is also possible to invert and standardize the full
random effects variance–covariance matrix, which would lead to
different between-subjects relationships between the means as well
(partial correlations after conditioning on other means and all other
between-subject parameters such as edges). We do not do that here
as (a) such a network is hard to interpret, and (b) most estimation
methods we mention do not return the full random effects variance–
covariance matrix (especially the correlations between temporal and
contemporaneous edges are hard to obtain).
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using the BPARAMETERS option and manually inverting
the sampled variance–covariance matrices. Mplus allows for
specifying random effects on the contemporaneous covari-
ances and thus, by extension, allows for estimating random
contemporaneous networks in addition to random temporal
networks. Specifying such a model can be done by speci-
fying dummy latent variables for the residual covariance be-
tween each pair of variables (a prior guess on the sign of
the covariance is needed). Doing so, however, can signifi-
cantly increase computation length especially when all ran-
dom effects are allowed to correlate. To facilitate estima-
tion, we have implemented a function generating Mplus code
for a multilevel GVAR model and subsequently running the
model using the MplusAutomation package (Hallquist & Wi-
ley, 2017) in version 0.4 of the mlVAR package, which can be
called using estimator = "Mplus" and requires the Mplus
program to be installed.

Two-step multilevel VAR. A downside of multivariate
estimation is that the number of random effect covariances
to be estimated increases quadratically with the number of
variables. Forcing random effects to be uncorrelated helps,
but places strict assumptions on the model. Bringmann et
al. (2013) proposed to estimate multilevel VAR models us-
ing univariate models instead, using a frequentist estimation
procedure. In this work, the multilevel VAR model is es-
timated by sequentially estimating univariate multilevel re-
gression models of one variable given all lagged variables.
Doing so ignores several correlations of random effects be-
cause many parameters are not estimated in the same model,
simplifying the analysis: only correlations between incom-
ing edges to the same node and the intercept of that node are
included in an univariate model. This method scales up well
to approximately eight variables when estimating correlated
random effects and around 20 variables when estimating or-
thogonal random effects (or by using a moving window ap-
proach; Bringmann et al., 2015). Of note, when specifying
orthogonal random effects not all random effects are assumed
to be uncorrelated, merely the ones used in the same univari-
ate model.

The methodology of Bringmann et al. (2013) does not es-
timate contemporaneous or between-subjects networks. To
this end, we extended the algorithm in a framework we term
two-step multilevel VAR. The details of this estimation pro-
cedure are explained in Section 2 of the supplementary ma-
terials. In short, we extend the methodology of Bringmann et
al. (2013) by within-subject centering and by adding subject
sample means as between-subjects predictors (as discussed
by e.g., Hoffman & Stawski, 2009; Curran & Bauer, 2011;
Hamaker & Grasman, 2014). This allows us to estimate
between-subjects networks by collecting regression coeffi-
cients as in Equation (3) and symmetrizing the resulting ma-
trix.15 In a second step, we take the residuals of the first anal-
ysis and again perform sequential univariate multilevel re-

gression models to predict each residual from all other resid-
uals in the same measurement occasion. Again, these can
be collected, as in Equation (3), and symmetrized to obtain
contemporaneous networks. Networks can be thresholded by
removing all effects that are not significant. For the between-
subjects and contemporaneous networks, this results in two
p-values for every edge—either both can be required to be
significant (“and”-rule) or an edge can be included if one of
the two p-values is significant (“or”-rule). Using the “and”-
rule means erring more on the side of caution (sparser net-
work), whereas using the “or”-rule means erring more on
the side of discovery. We have implemented two-step multi-
level VAR in the mlVAR package, which can be called using
estimator = "lmer" (the default).

Choosing the estimation method. The choice of which
estimator to use is not trivial and depends on the interests of
the researcher. In Table 2 we list some pros and cons of each
of the methodologies. In particular, multilevel estimation can
be very complicated and is harder in high-dimensional set-
tings. Assuming normally distributed parameters can also be
problematic because doing so imposes that subjects cannot
differ on the structure of the networks, merely on their pa-
rameterization. When a parameter (e.g., a temporal edge) is
zero in some subjects but nonzero in others, then this param-
eter cannot be normally distributed (the distribution would
peak at 0). Therefore, it is currently hard to estimate dif-
ferently structured individual networks (different edges set
to be exactly 0 between subjects) in multilevel estimation.
Nonetheless, multilevel estimation particularly shines in that
when estimating an individual network, researchers can bor-
row information from other subjects. We have performed
simulation studies to assess the performance of the two pro-
posed methods in this paper: pooled and individual LASSO
estimation and two-step multilevel VAR. We report the re-
sults of these studies in Section 3 of the supplementary ma-
terials, which shows that both methods adequately detect the
true fixed-effect network structures with increasing sample
size. Having more time points per subject helps to esti-
mate the contemporaneous and temporal networks, and hav-
ing more subjects helps to estimate the between-subject net-
works. Two step multilevel VAR performs well in estimating
intraindividual networks when the number of observations is
low, but does not perform subject-specific model selection:
all estimated intra-individual networks are saturated and con-
tain all edges. Pooled and aggregated LASSO estimation
does estimate the structure of intraindividual networks, but
performs poorer in intraindividual parameter estimation with
fewer observations as no information is borrowed from other
subjects.

15Standardizing regression parameters from nodewise multilevel
models to partial correlation coefficients does not lead to perfectly
identical estimates.
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Table 2
Three Methods of Estimating GVAR Models With n > 1 Subjects

Pooled and individual LASSO
estimation

Bayesian multilevel Two-step frequentist multilevel

Software graphicalVAR (Epskamp,
2017b); sparseTSCGM
(Abegaz & Wit, 2015).

MPlus 8 (Muthén & Muthén,
2017; Asparouhov et al.,
2016); mlVAR (wrapper around
Mplus).

mlVAR (Epskamp, Deserno, &
Bringmann, 2017).

Estimation (1) Joint multivariate LASSO
estimation with EBIC model
selection (Abegaz & Wit, 2013)
of within-subjects centered data
to obtain fixed effects tempo-
ral and contemporaneous net-
works. (2) GLASSO algo-
rithm with EBIC model selec-
tion (Foygel & Drton, 2010)
on sample means of subjects
to obtain between-subject net-
work. (3) Step (1) repeated for
each individual dataset to ob-
tain subject-specific networks.

MCMC sampling from mul-
tivariate hierarchical model
(e.g., Schuurman, Grasman, &
Hamaker, 2016).

(1) Sequential univariate
multilevel regression models
on previous measurement
(similar to Bringmann et al.,
2013), with within-subject
centered lagged variables as
within-subjects level predictors
and sample-means of all other
variables as between-subjects
predictor. (2) Sequential
multilevel regression models
using the residuals of (1):
residuals of one variable are
predicted by residuals of all
other variables in the same
measurement occasion.

Pros Fast estimation of fixed effects;
scales up well to large numbers
of nodes; model selection in
individual networks; temporal
and contemporaneous networks
obtained in the same analysis.

Borrowing information in
individual network estimation
from other subjects; all model
parameters and random-effect
(co)variances can be estimated;
credibility intervals can be
obtained for edges and descrip-
tive statistics (e.g., centrality;
density); advanced extensions
such as measurement error
and latent variable modeling
possible; powerful handling of
missing values.

Borrowing information in indi-
vidual network estimation from
other subjects; scales up well to
8 nodes (correlated random ef-
fects) or 20 nodes (orthogonal
random effects); many random
effect variances correlations can
be estimated; fast estimation of
individual networks.

Cons Fixed effects estimated on
pooled data; Subject specific
networks estimated without
borrowing information from
other subjects (no multilevel
structure); between-subjects
network estimated in a different
model; very slow to estimate
subject-specific networks; poor
handling of missing values.

Relatively slow estimation, es-
pecially in higher dimensional
models; no model selection
(thresholding possible via cred-
ibility intervals); complicated
to estimate contemporaneous
random effects.

Slow estimation in larger
datasets; no model selection
(fixed effects can be thresh-
olded using significance);
combination of many different
models; does not scale up well
past 20 nodes; poor handling of
missing values.

Note. The software listed only concerns user-friendly automated software because all these models could readily be implemented in most
programming languages or Bayesian sampler packages.
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GIMME. Finally, when analyzing n > 1 data, another
option is to estimate SVAR models instead. A promising
estimation procedure to estimate such models over many
individuals, while dealing with potential heterogeneity, is
“group iterative multiple model estimation” (GIMME; Gates
& Molenaar, 2012), which is implemented in R using the
gimme package (Lane, Gates, Molenaar, Hallquist, & Pike,
2016). In GIMME, no multilevel structure is imposed and
subject-specific networks are allowed to differ in structure.
Information from other subjects is borrowed, however, in that
the structure of individual networks can be based on other
subjects (e.g., an edge can be included because it is present
in many other subjects). No shrinkage is induced on the pa-
rameter estimates that are nonzero (as would be the case in
multilevel or hierarchical Bayesian modeling). A variant of
GIMME that estimates the GVAR or a combination of struc-
tural and GVAR models has not yet been developed, and we
note that this may be a promising avenue for further research.

Interpreting GGMs Estimated from Between-subjects
Data

This paper describes the estimation of network models
on data from different subjects (both cross-sectional as well
as person-wise average scores). Cross-sectional network
modeling is often criticized for inappropriately taking cross-
sectional results to be reflective of within-person causal pro-
cesses (e.g., Bos & Wanders, 2016; Bos et al., 2017), as it can
be shown that such results will not equal within-person pro-
cesses except under strong assumptions (Molenaar, 2004).
To this end, this section discusses the interpretation of GGMs
estimated from data of different subjects. We first argue that
cross-sectional data may be interpreted as a between-subjects
analysis, assuming that between-subjects variance is domi-
nant, and next discuss the interpretation of potential causal
effects at the between-subjects level.

Cross-Sectional Data Analysis

Within- and between-subjects variation. A type of data
to which the GGM is currently often applied is data be-
longing to multiple subjects that are all measured only once
(e.g., Isvoranu et al., 2017; van Borkulo et al., 2015). Such
a dataset is often termed cross-sectional data, and such an
analysis is often termed a between-subjects analysis. How-
ever, the term between-subjects analysis might not be war-
ranted, as it is difficult to distinguish between within-subject
variation around an individual’s stable mean and between-
subject variation of such stable within-subject means using
only cross-sectional data (Hamaker, 2012). It is well known
that subjects might respond differently when measured mul-
tiple times (Lord, Novick, & Birnbaum, 1968). As such,
the single observation per subject leads to the time point and
the subject being random: yyy[T,P]. We might make the argu-
ment that two distinct sources of variation cause the outcome

(Bolger & Laurenceau, 2013). Repeated measures of a sub-
ject (here p) are distributed according to an unique within-
subject model:

yyy[T,p] ∼ N(µµµp,ΣΣΣp),

That is, of a particular response, the subject’s score is a com-
posite of the average stationary score µµµp and random devi-
ation.16 These average stationary scores also differ in the
population. Thus, we need to model the average stationary
scores of a random subject P with a separate distribution:

µµµP ∼ N(000,ΩΩΩ),

in which we can assume, without loss of generality, an over-
all mean of 000. We can invert the variance–covariance matrix
ΩΩΩ to obtain a GGM:

KKK(ΩΩΩ) = ΩΩΩ−1.

This GGM corresponds to a between-subjects network. The
matrix ΣΣΣp can also be inverted and standardized to a GGM to
obtain a within-subject network:

KKK p = ΣΣΣ−1
p .

We will term this network a within-subjects network.
The value of a cross-sectional analysis. It is immedi-

ately clear that with only one response per subject we cannot
hope to estimate subject-specific variance-covariance matri-
ces ΣΣΣp (and as a result individual GGMs). Moreover, even if
we assume that within-subject effects are equal across sub-
jects (denoted with ΣΣΣ∗ below), this still leaves us without
an estimable model because µµµ is also assumed to be nor-
mally distributed. The co-variation between responses thus
becomes an unidentified blend of ΣΣΣ∗ and ΩΩΩ: A and B may
correlate in cross-sectional data because people who score
on average high on A also score on average high on B (trait-
level variation in ΩΩΩ), or because when people deviate from
their average on A they also tend to deviate from their av-
erage on B (state-level variation in ΣΣΣ∗). Even when within-
and between-subjects effects are assumed not to correlate, the
GGM estimated on such data becomes

KKK = (ΣΣΣ∗ + ΩΩΩ)−1 ,

which is not a simple function of the between-subjects GGM
and the within-subjects GGM. Only when no short-term
within-subject variation, ΣΣΣ∗ = OOO, or no between-subjects
variation, ΩΩΩ = OOO, is assumed does the cross-sectional GGM
correspond exactly to one of the two networks.

16Section 4 of the supplementary materials show that when con-
secutive cases (t and t + 1) are assumed dependent, such a zero-
order network may result from a mixture of temporal and contem-
poraneous effects as described above. The discussion here does not
concern estimation of model parameters and hence does not require
an assumption of independence of cases.
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Cross-sectional data analysis thus cannot disentangle
between-subjects relationships from short term within-
subjects relationships (Hamaker, 2012). For example, cross-
sectional analysis cannot distinguish whether or not fatigue
and concentration correlate because whenever people feel fa-
tigued they also concentrate poorly (a within-subjects effect)
or because people who are on average fatigued also tend to
concentrate poorly on average (a between-subjects effect).
However, preliminary simulation results show that the result-
ing cross-sectional GGM generally does not contain edges
that are not present in either the within- or between-subjects
network (Epskamp, 2018). Depending on the ratio of within-
to-between person variance, the cross-sectional analysis will
pick up the within-subject network, the between-subject net-
work, or a mixture of the two. As such, if one assumes
between-subject variance to be dominant, the cross-sectional
results may be interpreted as mainly reflecting between-
subjects relations.

Cross-sectional analysis as between-subjects analysis.
An important consideration is that a typical cross-sectional
questionnaire or interview is vastly different than a typical
ESM questionnaire, and many cross-sectional studies aim
to measure variables that are more stable over time and for
which a time-series analysis might not make sense. Good
examples of this are recent network analyses in the area of
schizophrenia (Isvoranu, Borsboom, van Os, & Guloksuz,
2016; Isvoranu et al., 2017), in which the impact of envi-
ronmental factors (e.g., childhood trauma, urbanization) on
psychotic symptoms and general psychopathology was stud-
ied. Such variables do not vary much over time; therefore, a
cross-sectional analysis seems more suitable here. Other ex-
amples are questionnaires asking participants to rate symp-
toms over a period of several weeks or to describe them-
selves as “I am a person who. . . ” In such cases, the cross-
sectional network may be interpreted as a between-subjects
network, of which we discuss the interpretation below. Note
that some research indicates that state-level variance (how
a person feels at the moment) does influence self-reported
scores given trait-level (how a person feels on average) in-
structions (Brose, Lindenberger, & Schmiedek, 2013), indi-
cating that this interpretation of cross-sectional results should
be taken on a case-by-case basis depending on the topic stud-
ied.

Within- and between-subjects effects

In contrast to prior work on multilevel VAR modeling
(e.g., Bringmann et al., 2013, 2015; Wigman et al., 2015;
Pe et al., 2015), in this paper between-subjects effects are
conceptualized in addition to the within-subjects effects in
a separate GGM. Furthermore, in contrast to prior work,
cross-sectional networks are not interpreted to be reflective
of within-subject effects, but rather to potentially reflect a
between-subjects structure, assuming that observed scores

are not dominated by state-like variance (but see Brose et al.,
2013). This raises the question on how such models could
be interpreted. In particular, if edges in the GGM are inter-
preted as generating hypotheses to potential causal pathways,
the question is raised how such causal effects can occur at the
between-subjects level. This section therefore discusses the
topic of causation at the between-subjects level. Here, we
interpret the stationary means as being locally stationary: the
average of a subject in a relatively short time span of mea-
surement (e.g., a few weeks). As such, we do not interpret
the mean vector µµµP as a lifetime average. Instead, we assume
it could change, potentially due to experimental intervention.
As a result, we argue that the between-subjects network can
also be indicative of potential causal pathways—regardless
of whether it is estimated from a cross-sectional interview
concerning variables that are not expected to vary much over
time or obtained from estimating the means from time-series
data. To simplify the argumentation below, we do not discuss
separate temporal and contemporaneous networks but only
general within-subjects networks (a GGM of within-subject
data without taking temporal ordering into account).

Simpson’s paradox. Hamaker (2012) described an ex-
ample of how within- and between-subject effects can
strongly differ from each other. Suppose we let people write
several texts, and we measure the number of spelling errors
they make and the number of words per minute they type
(typing speed). We would expect to see the seemingly para-
doxical network structures shown in Figure 3, Panel (a). We
would expect a positive relationship in the within-subjects
network (e.g., typing faster than your average leads to mak-
ing more errors). Conversely, we would expect a negative re-
lationship in the between-subject network (e.g., people who
type fast, on average, generally make fewer spelling errors).
This is because people who type fast, on average, are likely
to be more skilled in writing (e.g., a courtroom stenographer)
and are less prone to make a lot of spelling errors, compared
to someone who types infrequently. Panel (b) of Figure 3
shows another example in which the structures might differ
(Hoffman, 2015; provided by Hamaker, 2017). These net-
work structures show that when people exert more physical
activity than their average they likely experience an elevated
heart rate, while people who on average are often physically
active likely have a lower average heart rate. Such a different
effect depending on the level of analysis is well known in the
statistical literature as Simpson’s paradox (Simpson, 1951).

Interventionist accounts of causation. The different
ways of thinking about the effects of manipulations in time-
series models can be organized in terms recently devel-
oped from interventionist accounts of causation (Woodward,
2005). According to Woodward, causation is fleshed out
in terms of interventions: X is a cause of Y if an inter-
vention (natural or experimental) on X leads to a change
in Y . Statistically, the interventionist account is compat-
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Physical
activity

Heartrate

Within−subjects

Physical
activity

Heartrate

Between−subjects 

(b) Example based on Hoffman (2015); Hamaker (2017).
Figure 3. Two hypothetical examples of differing within- and
between-subject networks. The networks on the left indicates
the within-subject network, showing that personal deviations
from the means predict each other at the same time point,
and the networks on the right indicates the between-subjects
network, showing how the means of different subjects relate
to one another.

ible with, for example, Pearl’s (2000) semantics in terms
of a “do-operator.” Here, an intervention on X is repre-
sented as Do (X = x), and the causal effect on Y is for-
mally expressed as E (Y | Do (X = x)). Pearl distinguished
this from the classical statistical association, in which no
intervention is present, and we get the ordinary regression
E (Y | See (X = x)). This notation is useful here, because it
can be used to show how different kinds of causal manipula-
tions, each at the intraindividual level, can produce a signal in
either the between-subjects or the within-subjects network.

Cashing out causal effects in terms of interventions is use-
ful for understanding the intervention Do (X = x). We can
think of this in terms of a random shock to the system, which
sets X to value x at a particular time point and evaluates the
effect on another variable Y shortly afterwards. If we want to
gauge this type of causal relationship, we might look at the
within-subjects VAR model. Consider Hamaker’s (2012) ex-
ample regarding typing errors: If a researcher forced a person
to type very fast, that researcher would need to evaluate the
within-subject data, which would show a positive association
between typing speed and the number of errors. In this ex-
ample, between-subjects data would be misleading because
individual differences would probably yield a negative corre-
lation between speed and accuracy—faster typists are more
likely to make less errors.

Interventions at the mean level. However, we can also
think of a manipulation that sets X to value x in a differ-
ent way, for instance, by inducing a long-term change in

the system that leads it to converge on X = x in expecta-
tion. To evaluate the effect of this type of intervention, it
is important to consider the behavior of the system as it re-
lates to the changes of the intercept of X. When analyzing
time-series data gathered in a relatively short time-span, the
within-subjects VAR network as discussed here cannot rep-
resent the relevant effects, because it assumes stationarity.
However, such effects will be visible in the between-subjects
network, which may thus contain important clues to the be-
havior of the system under potential changes in the intercept
of one variable. In terms of Panel (b) of Figure 3, if we are
interested in the effect of changing someone structurally—
reducing the heart rate of a person on average—our preferred
source of hypothesis generation would likely stem from the
between-subjects model, as the corresponding within-subject
model using the methods described in this paper only models
deviations from the stationary mean. Such hypotheses could
then be further investigated by using experimental design or
lengthier longitudinal data analysis.

Many such examples can be envisioned, especially in the
field of psychopathology. For instance, short-term deviations
from the mean in abusing a substance might not immedi-
ately develop tolerance or lead to one suffering from work
or life inferences, but a subject who abuses a substance on
average over a long time period might develop these prob-
lems (example based on variables used by Rhemtulla et al.,
2016). A between-subjects network could similarly show
that loneliness mediates the effect of losing a spouse on de-
pressive symptoms (Fried et al., 2015) or highlight the pos-
sible effects of childhood trauma and urbanization on psy-
chotic symptoms (Isvoranu et al., 2016, 2017)—both cases
in which within-subjects networks based on short-term de-
viations from the average seem less applicable. This analy-
sis is important because it shows that, even though relevant
causal interventions in psychology will typically operate at
the intra-individual level, evidence for the effect of such in-
terventions may arise at either the within- or the between-
subjects level depending on the nature of the intervention.

Empirical Examples

Reanalysis of Mõttus et al. (2017)

We reanalyzed the data of Mõttus et al. (2017) to pro-
vide an empirical example of the multilevel VAR methods
described above. This data consists of two independent
ESM samples, in which items tapping three of the five Five-
Factor Model (neuroticism, extraversion, and conscientious-
ness; McCrae & John, 1992) domains were administered, as
was an additional question that asked participants how much
they had exercised since the preceding measurement occa-
sion. Sample 1 consisted of 26 people providing 1,323 ob-
servations in total, and Sample 2 consisted of 62 people pro-
viding a total of 2,193 observations. Participants in Sample 1
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answered questions three times per day, whereas participants
in Sample 2 answered questions five times per day. In both
samples, the minimum time between measurements was two
hours. For more information about the samples and the spe-
cific questions asked, we refer readers to Mõttus et al. (2017).

To obtain an easier and more interpretable example, we
first only analyzed questions aimed as measuring the ex-
traversion trait and the question measuring exercise. This
lead to five variables of interest: questions pertaining to feel-
ing outgoing, energetic, adventurous, or happy and the ques-
tion measuring participants’ exercise habits. We analyzed
the data using the two-step multilevel VAR procedure as de-
scribed in detail in the Section 2 of the supplementary mate-
rials. We used the mlVAR package, version 0.4, for the esti-
mation of this model. Because the number of variables was
small, we estimated the model using correlated temporal and
contemporaneous random effects. We ran the model sepa-
rately for both samples and computed the fixed effects for the
temporal, contemporaneous, and between-subjects networks.
Correlations of the edge weights indicated that all three net-
works showed high correspondence between the two samples
(temporal network: 0.82, contemporaneous network: 0.94,
between-subjects network: 0.70). Owing to the degree of
replicability, we combined the two samples and estimated
the model on the combined data.

Results. Figure 4 shows the estimated fixed effects of
the temporal, contemporaneous, and between-subjects net-
work. In these figures, only significant edges (α = 0.05)
are shown. In the contemporaneous and between-subjects
networks, an edge was retained if one of the two regressions
on which the partial correlation is based was significant (the
so-called “or” rule; van Borkulo et al., 2014). These results
are in line with the hypothetical example shown in Figure 2:
People who exercised were more energetic while exercising
and less energetic after exercising. In the between-subjects
network, no relationship between exercising, feeling ener-
getic, and feeling adventurous was found. The between-
subjects network, however, showed a strong relationship be-
tween feeling adventurous and exercising: People who, on
average, exercised more also felt, on average, more adven-
turous. This relationship was not present in the temporal
network and much weaker in the contemporaneous network.
Also noteworthy is that people were less outgoing after exer-
cising. Figure 5 shows the standard deviation of the random
effects in the temporal and contemporaneous networks. The
largest individual differences in the temporal network were
found in the auto-regressions, and the largest individual dif-
ferences in the contemporaneous network were found in re-
lationship between exercising and feeling energetic.

In addition to using only the extraversion and exercise
items, we also ran the model on all 17 administered items
in the dataset. In this analysis, we used orthogonal random
effects to estimate the model because correlated random ef-

fects cannot be estimated with such a large number of vari-
ables. Figure 6 shows the estimated fixed effects of the three
network structures; it can be seen that indicators of the three
traits tend to cluster together in all three networks. Regard-
ing the node exercise, we found the same relationships be-
tween exercise, energetic, and adventurous (also found in the
previous example) in the larger networks. Furthermore, we
noted that exercising was connected to feeling angry in the
between-subjects network but not in the other networks. Fi-
nally, there was a between-subjects connection between exer-
cising and feeling self-disciplined: People who, on average,
exercised more also felt, on average, more self-disciplined.

Reanalysis of Bringmann et al. (2013)

To showcase additional information that can be obtained
using the GGM model, we reanalyzed the dataset used and
made publicly available by Bringmann et al. (2013), which
has been collected by Geschwind et al. (2011). This dataset
contains ESM measures of 129 participants, which was col-
lected in two periods over 6 days each: a baseline period
and a posttreatment period (mindfulness treatment and a con-
trol group). Participants answered 60 measurements per pe-
riod. Similar to Figure 1 of Bringmann et al. (2013), we
analyzed only the baseline dataset on the six items selected
by Bringmann et al. (2013). We estimated the networks us-
ing three modeling frameworks discussed in Table 2. First,
we analyze data using multilevel Bayesian estimation using
Mplus version 8 (model generated using the mlVAR pack-
age). We estimated correlated random effects for the tem-
poral effects but only fixed effects for the contemporaneous
effects (making these random led to slow convergence). The
model was estimated using three chains that ran until con-
vergence. Nights were handled by adding a row of miss-
ing values between consecutive days. Second, we analyzed
the data using two-step multilevel VAR estimation as imple-
mented in the mlVAR package, using an “and”-rule and es-
timating correlated random temporal and contemporaneous
effects. Finally, we estimated the data using pooled and indi-
vidual LASSO estimation using the graphicalVAR package,
using γ = 0.25. In the final two analyses, we did not regress
the first measurement of the day on the last measurement of
the previous day, and removed all pairs of lagged and current
variables that contained missing responses. The final sam-
ple size was 5,927 observations. Edges were retained if they
were significant at the α = 0.05 level, or if 0 was not included
in the 95% credibility interval.

Results. Figure 7 shows the resulting network struc-
tures, and shows that all three methods are mostly aligned.
Unsurprisingly, the temporal networks are very similar to
those reported by Bringmann et al. (2013).17 Both the tem-
poral and contemporaneous network are in line with what

17The networks differ because the estimation of temporal effects
differs in that measures are within-subjects centered and subject
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Figure 4. The estimated fixed effects of the three network structures obtainable in multilevel VAR. The model is based on
ESM data of 88 people providing a total of 3,516 observations. Due to differences in the scale of the networks, the temporal
network was drawn with a different maximum value (i.e., the value indicating the strongest edge in the network) than the
contemporaneous and between-subjects networks. Edges that were not significantly different from zero were removed from
the networks.
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Figure 5. The networks showing the standard deviation of
random effects in the temporal and contemporaneous net-
works. Due to scale differences, networks were plotted using
different maximum values.

would be expected under a unidimensional auto-correlated
latent variable model (many edges selected, low-rank struc-
ture, edges of expected sign) with the exception of the pos-
itive temporal edge from “fearful” to “pleasant” in the two-
step multilevel network (which was not selected by the other
methods). Of note is that Bayesian multilevel estimation re-
sulted in a sparser temporal network. This difference in spar-
sity is possibly because the multivariate Bayesian multilevel
approach more accurately represents the uncertainties in pa-
rameter estimation, while two-step multilevel VAR estimates
the model piecewise and pooled LASSO estimation does not
take the multilevel structure into account. Remarkable is
the positive edge between “sad” and “relaxed” in the two-
step multilevel between-subjects network, which is based
on two significant positive Level 2 regression coefficients
(β = 0.202, p = 0.046 and β = 0.151, p = 0.036) where

the estimated between-subjects correlation is strongly nega-
tive (−0.53). This edge is especially remarkable since both
nodes are strongly connected to other nodes in the network.
The Bayesian multilevel between-subjects network showed
a similar positive edge between “cheerful” and “worry”.
This is noteworthy because under a unidimensional factor
model, we would not expect partial correlation coefficients to
switch sign from marginal correlation coefficients (Holland
& Rosenbaum, 1986; van Bork, Grasman, & Waldorp, 2016).
A possible way the partial correlation coefficient switches
sign is if it has been conditioned on one or more common
effects between the two variables of interest (in this case, po-
tentially “worry,” “pleasant,” or “fearful”). Of course, these
effects must be interpreted with great care, especially given
the high p-values; we did not control for multiple compar-
isons, and the same edges are not retained in the other meth-
ods. Still, it is noteworthy that if this edge is weak or nonex-
istent, the between-subjects structure is still not in line with
a unidimensional factor model. In such a factor model, “sad”
and “relaxed”(which feature the most connections) would be
expected to have a strong negative edge between them (a de-
pression factor would lead to “sad” having a strong positive
factor loading and “relaxed” having a strong negative factor
loading).

Discussion

We discussed the Gaussian graphical model (GGM;
Lauritzen, 1996), an undirected network model of partial cor-
relation coefficients, and discussed its utility in the analysis
of psychological datasets. The GGM presents a promising
exploratory data analysis tool that allows for different levels

means are included as Level 2 predictors.
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Figure 6. The estimated fixed effects of the three network structures based on all 17 variables administered. Only significant
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(b) Fixed effect network structures estimated via two-step multilevel estimation.
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Figure 7. Reanalysis of the Geschwind et al. (2011) dataset used by Bringmann et al. (2013).
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of interpretation: (1) Edges in the GGM can be interpreted
without reliance on a causal interpretation and merely used
to show which variables predict each other. (2) Causal ef-
fects between variables result in an edge, whereas the lack of
a causal effect results in no edge, except in the presence of la-
tent variables or a common effect. The GGM can, therefore,
be seen as hypothesis generating structures that highlight po-
tential causal pathways. (3) Undirected models can be used
and interpreted as causal data-generating process and have
been used as such in several fields of research.

The GGM can readily be estimated on any dataset that
contains multiple observations of the same variables (e.g.,
multiple people in cross-sectional data or multiple responses
in time-series data). LASSO regularization methods perform
especially well in estimating such a GGM structure. In tem-
porally ordered data (e.g., n = 1 time series), the graphical
VAR (GVAR; Wild et al., 2010) model generalizes the GGM
to incorporate temporal effects. We showed how two network
structures can be obtained: a temporal network, which is a di-
rected network of regression coefficients between lagged and
current variables, and a contemporaneous network, which is
a GGM describing the relationships that remain after control-
ling for temporal effects. In temporally ordered data of multi-
ple subjects (e.g., n > 1 time series), the natural combination
of cross-sectional and time-series data came by adding a third
network structure: the between-subjects network, which is
a GGM that describes relationships between the stationary
means of subjects. We proposed two methods to estimate the
three network structures: (1) two-step multilevel estimation,
which we implemented in the open source R package mlVAR,
and (2) pooled and individual VAR model estimations using
LASSO regularization, which we implemented in the open
source R package graphicalVAR.

Limitations and Challenges

Multilevel estimation. The presented methods are not
without problems and have several limitations. With regard
to multilevel estimation, first, multivariate estimation of the
multilevel VAR model is not yet feasible for larger datasets.
As such, the proposed two-step multilevel VAR combines
univariate models. Doing so, however, means that not all
parameters are in the same model. In addition, univariate
models do not readily provide estimates of the contempora-
neous networks, which must be estimated in a second step.
Second, even when multivariate estimation is possible, it is
still challenging to estimate a multilevel model on contempo-
raneous networks due to the requirement of positive definite
matrices. Third, when more than approximately eight vari-
ables are measured, estimating the multilevel models with
correlated random effects is no longer feasible in open source
software. In this case, orthogonal random effects can be
used, which induce a level of parsimony that may not be
substantively plausible. Finally, even when orthogonal esti-

mation is used, multilevel analysis runs very slowly in mod-
els with more than 20 variables. As such, multilevel VAR
analysis of high-dimensional datasets is not yet feasible. To
this end, we discussed pooling within-subject centered data
and estimating fixed-effects models using LASSO regular-
ization (Abegaz & Wit, 2013). This performed on par with
multilevel estimation in higher sample sizes and allows re-
searchers to scale up the analysis. However, individual net-
work estimation using separate VAR models does not bor-
row information from other subjects and performs poorly in
low sample sizes. Promising developments are new LASSO
methods in which shrinkage from subject-specific parame-
ters to their mean is attained through penalization rather than
hierarchical modeling (Hastie et al., 2015). Future research
should investigate the utility of such models in estimating in-
dividual network structures that might differ in structure but
borrow information from other subjects in its estimation.

VAR modeling assumptions. These limitations on the
estimation methods come with more limitations in the sta-
tistical models themselves. VAR modeling, especially, is
not without problems and faces severe challenges (Hamaker,
Ceulemans, Grasman, & Tuerlinckx, 2015; Hamaker &
Wichers, 2017). We made several assumptions that can be
problematic. For instance, in characterizing the likelihood of
time-series data, we need to assume that the conditional dis-
tribution of variables at time t given time t − 1 are the same
for all t. That raises two distinct assumptions: (1) The differ-
ence in time between measurements are roughly equal, and
(2) the parameters do not change over time. Equidistance in
time is especially important for the interpretation of temporal
networks. Promising work is being done in this area where
VAR networks can be estimated on nonequidistant datasets
(Driver, Oud, & Voelkle, 2017; Oravecz, Tuerlinckx, & Van-
dekerckhove, 2009; Oud & Jansen, 2000). The assumption
of stationarity is needed to estimate structures when data are
limited but might not be tenable especially in longer time se-
ries (Rovine & Walls, 2006). Promising time-varying estima-
tion procedures are being developed (Bringmann et al., 2016;
Haslbeck & Waldorp, 2016a), but are not yet extended to the
GVAR framework. Furthermore, the interpretation of tempo-
ral coefficients when represented as a network is not without
discussion, and several different methods for standardization
exist (Bulteel, Tuerlinckx, Brose, & Ceulemans, 2016; Schu-
urman, Ferrer, de Boer-Sonnenschein, & Hamaker, 2016).18

Normality. Another particularly important assumption
made in this paper is that of multivariate normality. Indeed,
Equation (1) makes this assumption and all other equations
follow from this. The assumption of normality is not without

18We standardized every dataset before analyzing and used the
standardization of Wild et al. (2010) for temporal networks in n = 1
and pooled temporal networks. GGMs are readily standardized
by using partial correlation coefficients (Equation (2)), which have
been used in all GGMs shown in this paper.
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problems (Terluin, de Boer, & de Vet, 2016). However, it
is not always straightforward to deal with these issues, be-
cause violations of normality may arise for many different
reasons. When data are not normally distributed, then they
cannot be represented properly using only the means vec-
tor and variance–covariance matrix. As a result, the GGM
does not properly characterize the joint likelihood function.
When data are measured on a different scale (Stevens, 1946),
a different graphical model can be used, such as the Ising
model for binary data (Epskamp et al., in press; van Borkulo
et al., 2014) or a mixed graphical model for categorical and
Poisson-distributed variables as well as binary and Gaussian
variables (Haslbeck & Waldorp, 2016b). Such models have
yet to be extended to time-series analysis, especially in sep-
arating temporal and contemporaneous effects as the GVAR
model does. When data are continuous but not normal, mul-
tiple reasons can (again) contribute to this. When the un-
derlying process is normal but the measured variables are
on a transformed scale, transforming data back to normal
should offer a solution (Liu, Lafferty, & Wasserman, 2009),
but when the process itself is nonnormal, such as skewed
residuals, the entire modeling framework does not correctly
capture the likelihood. Finally, multivariate normality as-
sumes all relationships between variables are linear. When
this is not the case, the GGM and VAR model (which fit lin-
ear effects) will not properly describe the data. We encourage
future researchers to focus on the problem of normality and
to develop new methods of overcoming these challenges.

Interpretation. Finally, it should be noted that when tak-
ing a causal interpretation of edges, all methods discussed
in this paper are exploratory in nature and can only gener-
ate hypotheses—they do not confirm causal relations. The
analyses showcased in this paper can also be used with-
out relying on a causal interpretation and allow researchers
to obtain insights into the predictive relationships present
in the data—regardless of theory with respect to the data-
generating model. Under the assumptions of multivariate
normality, stationarity, and the Lag-1 factorization, the net-
works show how variables predict each other over time (tem-
poral network), within time (contemporaneous network), and
on average (between-subjects network). Furthermore, during
the thresholding of edges in the multilevel analyses, we did
not apply a correction for multiple testing by default. We
deliberately chose this because our aim was to present ex-
ploratory hypothesis-generating structures, and not correct-
ing for multiple testing yields greater sensitivity.

Conclusion

This paper provides a methodological overview of how
the GGM can be used in various different kinds of psycho-
logical data. The GGM can be used to map out unique
variance in cross-sectional data or at the contemporaneous
and between-subjects levels of time-series analysis. We con-

trasted this method to exploratory estimation of causal mod-
els. While losing information on the direction of effect, es-
timating GGMs offers an attractive alternative in that these
models are uniquely identified, well parameterized, closely
related to causal models and also offer exploratory insight
on predictive effects between observed variables. When the
aim is to discover psychological dynamics, the GGM can be
used as a hypothesis generating technique inspiring future re-
search or therapy directions (Epskamp et al., 2018; Kroeze et
al., 2017). For example, an effect found in a cross-sectional
analysis could inspire a time-series study, a contemporane-
ous effect could inspire a shorter time-lag time-series study
and a between-subjects effect could inspire lengthy longitu-
dinal studies. All network structures may inspire experimen-
tal design, or to gather a mixture of observational and ex-
perimental data (Magliacane et al., 2017). The GGM thus
provides a powerful addition to the exploratory toolbox in
behavioral research.
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Appendix A. Glossary of terms

Term Explanation

Undirected network A network model in which nodes are connected by edges (also termed links)
without arrowheads.

Directed network A network model in which nodes are connected by edges with arrowheads, as-
sumed to display causal effects or temporal prediction.

Gaussian graphical model An undirected network model in which observed variables are represented with
nodes. Nodes are connected with an edge if two variables are not independent
after conditioning on all other observed variables. Edges are parametrized by
using partial correlation coefficients.

Causal model A causal model of observed and unobserved variables that is assumed to gener-
ate the data.

Directed acyclic graph A directed network in which one node does not eventually point to itself.
Within-subjects network A network model explaining within-subject (co)variation from the stationary

mean.
Between-subjects network A network model explaining (co)variation between stationary means of different

persons.
Cross-sectional network A network model estimated on cross-sectional data. Can be shown to be a

blend of the within-subjects and between-subjects networks. Can be interpreted
as representative of within-subjects or between-subjects network based on the
way in which data is gathered.

Vector auto-regression (VAR) Multivariate regression of a set of variables on previous realizations of that set
of variables.

Temporal network A within-subject network model of effects between different measurement oc-
casions, showing temporal prediction or potential causal pathways.

Contemporaneous network A within-subject undirected network model of effects between variables in the
same measurement occasion, after taking temporal effects into account.
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Supplementary 1: Notation

Throughout the paper we employ the following notation.
Roman letters indicate observed variables, and Greek letters
indicate parameters or latent variables. Nonboldface letters
indicate a single value. An uppercase nonboldface letter
indicates a random variable, and a lowercase nonboldface
letter indicates a realization. We use t to denote measure-
ment occasion and T to denote a random measurement occa-
sion,19 i (i ∈ {1, 2, . . . ,m}) to denote item administered, and
p (p ∈ {1, 2, . . . , n}) to denote a subject and P to denote a
random subject. We will use lowercase boldface letters to
denote column vectors and uppercase boldface vectors to de-
note matrices. Subscripts will denote if these are random or
fixed. For example, BBBp will denote a fixed matrix for subject
p, and BBBP will denote the matrix of random subject P (which
has a distribution).

Because we are interested in finding dynamics between
items, we use vector yyy to denote the set of all items.20 For the
observed variables, we will use consistent subscripts (mea-
surement, subject) to denote which items are contained in
the vector. For example, yyy[t,p] denotes all responses of sub-
ject p at time point t, and yyy[T,p] denotes all responses of
subject p at a random time point T . A set in this sub-
script indicates multiple responses. For example, we will use
yyy>[{t−1,t},p] =

[
yyy>[t−1,p] yyy>[t,p]

]
to denote a set of lagged and cur-

rent responses from subject p around time point t. If only one
observation or subject is measured, we will drop the square
brackets (e.g., yyyP = yyy[1,P] indicates the cross-sectional re-
sponse pattern of a random subject). When it is unclear if
the set of items corresponds to a random person or a ran-
dom measurement occasion, we refer to C as a random case,
with c as a particular case, and subset the data either as yyyC

to describe a random response pattern or yyyc to describe a
realization—in cross-sectional data yyyC = yyyP and in N = 1
time-series data yyyC = yyyT . C could also indicate a set of mul-
tiple responses. Other subscripts denote subsets of a vector
or matrix, with notation −(. . .) indicating the subset of every-
thing except {. . .}.

Supplementary 2: Two-step multi-level VAR

In this appendix, we will outline two-step multi-level
VAR, which we propose as a methodology to estimate the
GVAR model using multi-level estimation. This method
builds on the work of Bringmann et al. (2013), and extends
their proposed algorithm by including between-subject ef-
fects (Hamaker & Grasman, 2014) and estimating the con-
temporaneous network by performing a second multi-level
estimation on the residuals of the temporal model (the second
“step”). To reiterate the paper, the model to estimate is:

yyy[T,p] | yyy[T−1,p] = yyy[t−1,p] ∼ N
(
µµµp + BBBp

(
yyy[t−1,p] − µµµp

)
,ΘΘΘp

)
.

In particular, we are interested in estimating between-
subjects network KKK(ΩΩΩ) = ΩΩΩ−1 = Var(µµµP)−1 and the (distri-
butions of) temporal networks BBBp and contemporaneous net-
works KKK(ΘΘΘ)

p = ΘΘΘ−1
p .

Multi-level modeling

The fixed effects and random effect variances and covari-
ances can be estimated by estimating a VAR model for every
subject, pooling the parameter estimates, and computing the
mean (fixed effects) and variance–covariance matrix (random
effects distribution). This estimation, however, is separate
for every subject. To combine all observations in a single
model, we can assign distributions over the parameters; in
which case, we make use of multilevel modeling. Assigning
distributions has two main benefits. First, instead of having
a single parameter per subject, we now only need to estimate
the parameters of the distribution. For example, when we
model observations from 100 subjects, instead of estimating
each parameter 100 times, we now only need to estimate its
mean and variance. Second, the multilevel structure acts as
a prior distribution in Bayesian estimation procedures—in
case we wish to obtain person-specific parameter estimates
post hoc. In particular, multilevel modeling leads to shrink-
age; parameter values that are very different from the fixed
effects are likely to be estimated closer to the fixed effect in
multilevel modeling than when using a separate model for
every subject. For example, if we estimate a certain temporal
regression in five people and find the values 1.1, 0.9, 0.7,
1.3, and 10, it is likely that the fifth statistic, 10, is an outlier.
Ideally, we would estimate this value to be closer to the other
values.

Bringmann et al. (2013) proposed a sequential univariate
method for estimating temporal VAR models. Because the
joint conditional distribution of yyy[T,p] | yyy[T−1,p] = yyy[t−1,p] is
normal, it follows that the marginal distribution of every vari-
able is univariate normal and can be obtained by dropping all
other parameters from the distribution:

y[T,p,i] | yyy[T−1,p] = yyy[t−1,p] ∼ N
(
µ[p,i] + βββ[p,i]

(
yyy[t−1,p] − µµµp

)
, θ[p,i]

)
,

in which y[T,p,i] denotes the ith element of yyy[T,p], βββ[p,i] indi-
cates the row vector of the ith row of BBBp, and θ[p,i] denotes
the ith diagonal element of ΘΘΘp. When drawn as a temporal
network, the edges point to node i. Many software pack-
ages do not allow the estimation of µµµp as described above.
In this case, the sample means of every subject, ȳyyp, can be

19Mostly we assume measurements are nested in subjects, and
two subjects might have a different number of measurement occa-
sions. As such, t = 1 for subject p = 1 might not correspond to
t = 1 for subject p = 2.

20If researchers are interested in dyadic interactions (Ferrer,
2016), for example, then a dyadic pair can be seen as a “subject,”
and items can be the item responses from both subjects.
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taken as a substitute for µµµp (Hamaker & Grasman, 2014).
The model then becomes a univariate multilevel regression
model with within-subject centered predictors, estimable by
functions such as the lmer in lme4 (Bates, Mächler, Bolker,
& Walker, 2015). The Level 1 model becomes

y[t,p,i] = µ[p,i] + βββ[p,i]

(
yyy[t−1,p] − ȳyyp

)
+ ε[t,p,i]

ε[T,p,i] ∼ N(0, θ[p,i]), (8)

and the Level 2 model becomes[
µ[P,i]
βββ[P,i]

]
∼ N

([
0
βββ∗i

]
,

[
ωµi ωωω(βββiµi)>

ωωω(βββiµi) ΩΩΩ(βββi)

])
.

Estimation of such univariate models requires integrating
over a simpler integral than estimation of multivariate mod-
els. As a result, sequential estimation using univariate mod-
els have been used in estimating multilevel VAR models
(Bringmann et al., 2013). A downside, however, is that not
all parameters are included in the model. In particular, cor-
relations between means (between-subject effects) and be-
tween contemporaneous covariances are not retained, as well
as the correlations between temporal edges pointing to differ-
ent nodes. A second downside is that estimating correlated
random effects does not work well for models with many
predictors. In particular, lmer becomes very slow with ap-
proximately more than eight predictors. As such, networks
with more than eight nodes are hard to estimate. To estimate
larger networks (e.g., 20 nodes), we can choose to estimate
uncorrelated random effects, which we term orthogonal esti-
mation.

Extending multi-level VAR: two-step multi-level VAR

The methodology of Bringmann et al. (2013) does not
estimate contemporaneous or between-subjects networks.
Therefore, we propose extensions to the algorithm to esti-
mate these networks. We propose a two-step method. Step
1 follows the procedure of (Bringmann et al., 2013) with the
addition that between-subject effects are included (Hamaker
& Grasman, 2014). This leads to estimates of the temporal
and between-subjects networks. The second step involves
taking the residuals of step 1 in order to obtain contempora-
neous networks.

Step 1: Temporal and between-subjects networks. To
obtain estimates of between-subject effects, the sample
means of every subject, ȳyyp in Equation (8), can be included
as predictors at the subject level (except for the mean of the
dependent variable; Hamaker & Grasman, 2014; Hoffman &
Stawski, 2009; Curran & Bauer, 2011). With this extension,
the Level 2 model for the person-specific mean of the ith
variable now becomes

µ[p,i] = βββ
(µ)
i ȳyy[p,−(i)] + ε

(µ)
[p,i], (9)

in which we use βββ
(µ)
i to denote the ith row (without the

diagonal element i) of an m × m matrix BBB(µ), and ȳyy[p,−(i)]
denotes the vector ȳyyp without the i-th element. Because
ȳ[p,i] is itself an estimate of µ[p,i], Equation (9) takes the
form of a multiple regression model. As such, these esti-
mates can be used to estimate a GGM between the means
(Lauritzen, 1996; Meinshausen & Bühlmann, 2006)—the
between-subjects network:

KKK(µµµ) ≈ DDD(µµµ)
(
III − BBB(µ)

)
,

with d(µ)
ii = 1/Var(ε(µ)

[P,i]). Due to the estimation in a multi-
level framework, the resulting matrix will not be perfectly
symmetric and must be made symmetric by averaging lower
and upper triangular elements. Thus, each edge (i.e., partial
correlation) in the between-subjects network is estimated by
standardizing and averaging two regression parameters: the
parameter denoting how well mean A predicts mean B and
the regression parameter denoting how well mean B predicts
mean A. Obtaining the between-subjects effects using regres-
sion coefficients rather than correlating the estimated means
leads to standard errors that can be used to select significant
edges.

Step 2: Contemporaneous networks. An estimate for
contemporaneous networks can be obtained in a second step
by investigating the residuals of the multilevel model that
estimate the temporal and between-subject effects. These
residuals can be used to run multilevel models that predict the
residuals of one variable from the residuals of other variables
at the same time point. Let ε̂[t,p,i] denote the estimated resid-
ual of variable i at time point t of person p, and let ε̂εε[t,p,−(i)]
denote the vector of residuals of all other variables at this
time point. The Level 1 model then becomes

ε̂[t,p,i] = βββ(ΘΘΘ)
[p,i]ε̂εε[t,p,−(i)] + ε(ΘΘΘ)

[t,p,i], (10)

in which βββ(ΘΘΘ)
[p,i] represents the i-th row (without the diagonal

element i) of an m × m matrix, BBB(ΘΘΘ)
p , and ε(ΘΘΘ)

[t,p,i] represents a
residual. In the Level 2 model, we again assign a multivariate
normal distribution to parameters in βββ(ΘΘΘ)

i . It can be seen that
Equation (10) also takes the form of a multiple regression
model. Thus, this model can again be seen as the node-wise
GGM estimation procedure:

KKK(ΘΘΘ)
p ≈ DDD(ΘΘΘ)

p

(
III − BBB(ΘΘΘ)

p

)
,

with d(ΘΘΘ)
[p,i] = 1/Var(ε(ΘΘΘ)

[T,p,i]). Again the matrices need to be
made symmetric by averaging upper and lower triangle el-
ements. By using univariate multi-level regressions, rather
than simply correlating the residuals, we can impose multi-
level structure on the partial correlations in order to estimate
fixed and random effects.21 Fixed effects can be obtained

21Estimating correlated random effects for regression coefficients
is straightforward while estimating correlated random effects on



26 SACHA EPSKAMP,1 LOURENS J. WALDORP,1 RENÉ MÕTTUS,2 DENNY BORSBOOM1

by using the fixed effects matrices instead in the expression
above. As with the temporal network, orthogonal estimation
can be used when the number of variables is large (i.e., larger
than approximately eight).

Thresholding. After estimating network structures, re-
searchers may be interested in removing edges that may be
spurious and due to sampling error. By setting edge weights
to zero, effectively removing edges from a network, a sparse
network is obtained that is more easily interpretable. One
method of doing so is by removing all edges that are not sig-
nificantly different from zero. For fixed effects, multilevel
software returns standard errors and p-values, allowing for
this thresholding. For the temporal networks, each edge is
represented by one parameter and thus by one p-value. The
contemporaneous and between-subjects networks, however,
are a function of two parameters that are standardized and
averaged: a regression parameter for the multiple regression
model of the first node and a regression parameter for the
multiple regression model of the second node. As such, for
every edge, two p-values are obtained. We can choose to re-
tain edges of which at least one of the two p-values is signif-
icant, termed the “or” rule, or we can choose to retain edges
in which both p-values are significant, termed the “and” rule
(Barber, Drton, & Others, 2015).

Summary. In sum, the above described two-step esti-
mation method proposes to estimate a multilevel model per
variable, using within-person centered lagged variables as
within-subject predictors and the sample means as between-
subject predictors. These models can be used to obtain es-
timates for the temporal network and between-subjects net-
work. In a second step, the contemporaneous networks can
be estimated by estimating a second multilevel on the resid-
uals of the first multilevel model. The mlVAR R package im-
plements these methods (Epskamp, Deserno, & Bringmann,
2017). In this package, temporal coefficients can be esti-
mated as being “unique” per subject (unique VAR models
per subject), “correlated” (estimating correlations between
temporal effects), “orthogonal” (assuming temporal effects
are not correlated), or “fixed” (no multilevel structure on
temporal effects). The contemporaneous effects can also be
estimated as being “fixed” (all residuals are used to obtain
one GGM), “correlated” (second step multilevel model with
correlated random effects), “orthogonal” (second step mul-
tilevel model with uncorrelated random effects), or “unique”
(residuals are used to obtain a GGM per subject). The mlVAR
package can also be used to plot the estimated networks, in
which significance thresholding is used by default with a sig-
nificance level of α = 0.05.

Supplementary 3: Simulation Studies

In this section, we present simulations to assess the perfor-
mance of mlVAR and graphicalVAR in performing the above-
described methods for estimating network structures on ESM

data of multiple subjects. Simulation studies on the described
methods for cross-sectional and n = 1 studies are available
elsewhere (Abegaz & Wit, 2013; Epskamp, 2016; Foygel &
Drton, 2010). We varied the following conditions:

• Number of nodes. The number of nodes was set to be
either 8 or 16, to be representative of plausible variable
numbers in psychological ESM studies.

• Sample size. The sample size was varied between 50,
100 and 200. These values were chosen to represent
plausible values in a psychological study.

• Number of observations. The number of observa-
tions per person was varied between 50, 100 and 200.
These values were chosen to represent plausible values
in a psychological study.

• Fixed structure. The contemporaneous network
structure was simulated to be a chain graph (e.g., 1
– 2 – 3) and the between-subjects network was simu-
lated to be a random network with the same number
of edges. The temporal network was simulated to be
either a chain graph (condition 1) or a chain graph in
which every node is connected to the second to next
node (e.g., 1→ 3→ 5; condition 2). These conditions
were chosen such that in condition 1 there is a temporal
edge whenever there is a contemporaneous edge, and
in condition 2 there is not a temporal edge whenever
there is a contemporaneous edge.

• Individual structure. Edges in the individual net-
works (temporal and contemporaneous) were either
rewired with 50% probability per person or kept stable.
The rewiring condition ensured that people may have
vastly different network structures, thus reducing the
strength of borrowing information from other subjects
to estimate individual networks.

After generating network structures, and before rewiring,
50% of all edges were made negative. Next, individual edge
parameters (for all networks) were drawn from normal dis-
tributions with mean of 0.35 and standard deviation of 0.1.
Thus, when edges were not rewired, for different subjects
in temporal and contemporaneous networks were equal in
structure (which edge was present and the sign of the edge)
but not in weight. In the condition in which edges were
rewired, individual networks differed in both weight and
structure. Each condition was replicated 100 times, leading
to 72,000 total simulated datasets.

covariances or correlations is not due to a requirement that these
must add to a positive definite variance–covariance matrix; fixed
effects covariances plus multivariate normally distributed random
effects may lead to intra-individual variance–covariances that are
not positive-definite.
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We used both mlVAR (two-step multi-level VAR) and
graphicalVAR (pooled and individual LASSO estimation) to
estimate fixed and subject-specific network structures. In ml-
VAR, correlated random effects were estimated in the 8-node
condition and orthogonal random effects were estimated in
the 16-node condition. In addition, an “and”-rule was used to
threshold significant edges. In graphicalVAR, we varied 10
(temporal) by 10 (contemporaneous) LASSO tuning param-
eters in selecting the optimal GVAR model and 100 LASSO
tuning parameters in selecting the optimal between-subjects
GGM. The optimal tuning parameters were selected by mini-
mizing the EBIC with γ = 0.25. To save computing time, we
only estimated one individual subject network per replication
in the graphicalVAR condition (fixed effects were based on
all subjects), and thus base the results of individual network
estimation performance in both methods on one network per
replication. The true fixed effects were set to the mean of all
individual networks created.

In order to assess how well the estimated networks re-
semble the true networks, we computed for each dataset the
correlations between true and estimated fixed temporal, con-
temporaneous, and between-subjects networks and the cor-
relations between true and estimated subject-specific tempo-
ral and contemporaneous networks—because the between-
subjects network does not have random effects. In line with
other studies on assessing how well a method retrieves the
structure of a network (e.g., Epskamp, Rhemtulla, & Bors-
boom, 2017; van Borkulo et al., 2014), we computed the
sensitivity (true positive rate) and the specificity (true neg-
ative rate). In addition, we computed the mean squared error
and the average bias (mean absolute deviation of true to esti-
mated parameters) per dataset.

Appendix A shows the results of the simulation study in
the condition where edges were not rewired. It can be seen
that performance was generally good in both methods. Fixed
effects of the temporal and contemporaneous networks were
well estimated (high correlations), most edges in the true net-
work were detected (high sensitivity), and few edges were
detected to be nonzero that were, in truth, zero (high speci-
ficity). In addition, the bias and mean squared error were
generally low. The between-subjects network was better es-
timated with more people. Using graphicalVAR for esti-
mating individual networks showed that at low sample-sizes,
the method lacked power to detect true edges (low sensitiv-
ity) but did not estimate false edges (high specificity). No
model selection is performed in mlVAR on subject-specific
networks, leading to the specificity of 0 (all edges were al-
ways included in the network). The between-subjects esti-
mation using graphicalVAR featured a moderate specificity,
indicating some false edges were detected. It should be noted
that the simulations used EBIC tuning parameter γ = 0.25,
which errs more on the side of discovery than the often used
γ = 0.5 value (Foygel & Drton, 2010). Of note is that the

Temporal Contemporaneous Between−subjects

(a) Temporal condition 1 with no re-wiring of within-subject net-
work structures.

Temporal Contemporaneous Between−subjects

(b) Temporal condition 1 with 50% re-wiring of within-subject net-
work structures.

Temporal Contemporaneous Between−subjects

(c) Temporal condition 2 with no re-wiring of within-subject net-
work structures.

Temporal Contemporaneous Between−subjects

(d) Temporal condition 2 with 50% re-wiring of within-subject net-
work structures.
Figure S1. Examples of generated networks for one sub-
ject (temporal and contemporaneous) and overall between-
subjects effects. Contemporaneous networks were always
simulated to be a chain graph, and temporal networks were
simulated to be a chain graph (condition 1) or a chain con-
nected to each second node (e.g., 1 → 3 → 5; condition
2). Edges in the within subject network were either rewired
(ensuring every person had a different network structure) or
kept the same.

two-step multi-level procedure performed comparable, if not
better, in estimating between-subject network structures than
LASSO estimation based on the aggregated scores per per-
son. Appendix B shows the results in the condition where
edges were rewired, and shows here too a good performance
for both methods. mlVAR estimation performed poorer than
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when the structure was the same over all subjects, and graph-
icalVAR performed identically. This was expected given that
the graphicalVAR method does not take information of other
subjects into account when estimating a network for one sub-
ject, while the graphicalVAR method does. A table with fur-
ther detailed results from the simulation studies can be found
in the other supplementary materials.

Supplementary 4: Stationary distribution

The GVAR model implies the following expression for the
variance-covariance matrix of yyyt (dropping matrix indexing
subscripts for notational clarity):

Var (yyyT ) = Var (BBByyyT−1 + εεεT )

ΣΣΣ = BBBΣΣΣBBB> + ΘΘΘ,

in which we make use of the assumption of stationarity and
the assumption that residuals εεεT are uncorrelated with yyyT−1.
Now, we can make use of the vectorization operator Vec and
the Kronecker product ⊗ to obtain (Kim et al., 1999):

(III − BBB ⊗ BBB)−1 Vec (ΘΘΘ) = Vec (ΣΣΣ) ,

which gives an expression for the elements of ΣΣΣ in terms of
BBB and ΘΘΘ.
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Supplementary Appendix A. Simulation results (no rewiring)
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8−node networks, no rewiring (all subjects have same network structure)

Pooled and individual LASSO estimation (graphicalVAR)
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Two−step multi−level estimation (mlVAR)
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16−node networks, no rewiring (all subjects have same network structure)

Pooled and individual LASSO estimation (graphicalVAR)
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Supplementary Appendix B. Simulation results (50% rewiring
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