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Abstract— In the last decade, special purpose computing systems, 

such as Neuromorphic computing, have become very popular in 

the field of computer vision and machine learning for classification 

tasks. In 2015, IBM’s released the TrueNorth Neuromorphic 

system, kick-starting a new era of Neuromorphic computing. 

Alternatively, Deep Learning approaches such as Deep 

Convolutional Neural Networks (DCNN) show almost human-

level accuracies for detection and classification tasks. IBM’s 2016 

release of a deep learning framework for DCNNs, called Energy 

Efficient Deep Neuromorphic Networks (Eedn). Eedn shows 

promise for delivering high accuracies across a number of 

different benchmarks, while consuming very low power, using 

IBM’s TrueNorth chip. However, there are many things that 

remained undiscovered using the Eedn framework for 

classification tasks on a Neuromorphic system. In this paper, we 

have empirically evaluated the performance of different DCNN 

architectures implemented within the Eedn framework. The goal 

of this work was discover the most efficient way to implement 

DCNN models for object classification tasks using the TrueNorth 

system. We performed our experiments using benchmark data 

sets such as MNIST, COIL-20, and COIL-100. The experimental 

results show very promising classification accuracies with very low 

power consumption on IBM’s NS1e Neurosynaptic system. The 

results show that for datasets with large numbers of classes, wider 

networks perform better when compared to deep networks 

comprised of nearly the same core complexity on IBM’s 

TrueNorth system.   

 

Keywords— Object recognition; Neuromorphic system; Eedn; 

Deep CNN; TrueNorth. 

 

I. INTRODUCTION 

     We are living in a world consumed by instrumentation that 

continuously draws data from many kinds of sensors. 

Nowadays big data is a challenging issue, and we need high 

performance information processing systems to solve this big 

data problem. However, a typical high-performance computing 

(HPC) environment (such as a supercomputing center, or data 

processing cluster) requires huge amounts of power. 

Traditional CPUs with multiple processing cores, and larger 

implementation of Deep Learning (DL) model on Graphic 

Processing Units (GPU) based computing systems provide 

state-of-the-art performance, but it consumes a significant 

amount of power for performing computations. Therefore, 

different energy efficient and faster computing systems have 

been developed in the last few years such as field 

programmable gate arrays (FPGA) [1, 2] and the IBM’s 

Neurosynaptic TrueNorth chip [15-18]. These specialized 

computing systems have some constrains as well. The 

constraints are on the number of inputs, memory capacity, and 

programmability. Mapping big data processing algorithms to 

these specialized computing systems is one of the most 

challenging tasks. Among the many available architectures, 

IBM’s TrueNorth (TN) system is one of the first Neuromorphic 

Chips, which is very efficient in term of power consumption, 

and with very high throughput [3, 4]. In addition, the MATLAB 

based corelet programming language was developed, providing 

a highly scalable objected oriented programming structure [5, 

6].  Currently, there are many different applications 

implemented on IBM’s TrueNorth system which have shown 

promising performance, including object recognition [7], cyber 

security [8], optimization approaches on the TrueNorth system 

[9], convolutional sparse coding [10], and many more [11].   

 

Data processing algorithms are always undergoing 

improvements, and deep learning algorithms have become one 

of the most prevalent techniques for extracting complex high-

level features for object classification and recognition. Deep 

Learning algorithms, Convolutional Neural Networks (CNN) in 

particular, use a layered, or hierarchical data representation and 

learning approach [12, 13]. Furthermore, researchers using 

modified CNNs have reported improved results for object 

recognition on different benchmarks including MNIST, CIFAR 

10 or 100, Caltech 101 or 256, ImageNet, and many more [ 13, 

14]; as well as improved object detection [15] tasks. 

Accordingly, DCNN approaches have become very popular and 

widely used in machine learning and computer vision tasks; the 

main drawback, however, is the increased computational 

complexity of convolutional network models. In most of the 

implementations, GPUs are used for training the big networks, 

which, in most of the cases are utilizing wider and deeper 

networks for training with higher precision (more than or equal 

32 bits) on different benchmarks [16]. As the network size 

increases, the computational parameters also increase 

dramatically. It follows that the increased computational costs 

resulting in significantly greater power consumption due to the 

use of power hungry GPUs [17]. 
 

As the amount of data and data sources are increasing 
dramatically, deep learning has been playing a key role by 
providing the solutions for Big Data analytics, data 
representations, and restoration.  In 2015, IBM released the 
TrueNorth chip, a very low power Neuromorphic processor 
made up of a massively parallel architecture. TrueNorth is 
ideally suited to address the big data problem with a significantly 
lower power profile than conventional systems. Following the 
trend of deep learning development, IBM released the Energy 



Efficient Deep Neuromorphic Network (Eedn) framework for 
implementing CNN approaches on the TrueNorth system [6]. 
Accordingly, it becomes very important to implement and 
evaluate different Deep Learning models for different 
applications on the very power efficient IBM TrueNorth system. 
In this implementation, we have implemented different DCNN 
architectures utilizing the Eedn framework.  The contributions 
of this paper are summarized as follows: 

▪ Implemented different energy efficient DCNN models 

with Eedn framework. 

▪ Experimented on three popular benchmarks to evaluate 

different architectures of DCNN including MNIST, COIL-

20, and COIL-100. 

▪ Experimented with different deeper and wider deep 

convolutional networks and discovered the impact of 

deepness and wideness of networks on the TrueNorth 

system. 

 

The rest of the paper has been organized in the following way: 

Section II explains the related works, Section III presents the 

architecture of the TrueNorth system, Section IV discusses the 

Eedn framework and implementation details of DCNN on 

TrueNorth systems. Results and discussions are given in 

Section V.  Conclusions with future directions are made in 

Section VII.  

      

II.  RELATED WORKS  

     In the deep learning research community, most of the 

researcher uses the basic structure of Convolutional Neural 

Networks (CNNs) with alternative convolution and max-

pooling layer followed by a small number of fully connected 

layers [18]. The piecewise-linear or non-linear activation 

functions are used within each of these layers.  The dropout 

technique has been used for regularizing the overall network 

[19]. In addition, drop connection is also used for regularizing 

the network. However, in general to evaluate those DCNN 

architectures, the general-purpose computing system such as 

CPU, GPGPU, and multicore system are used [17]. The 

optimization of DCNN models are proposed with respect to 

structural and computational optimization. As structural 

optimization is of concern, several research studies have been 

conducted in the community to improve overall accuracy of the 

DCNN model with lesser numbers of computational 

parameters, which significantly decreases computational time 

and power consumption. Some papers have been published on 

structural optimization of DCNN techniques, which is called 

SqueezeNet [20]. In most of the cases, these power efficient and 

faster models are proposed based on low precision 

implementations of a DCNN [21]. In 2015, Y. Bengio et al., 

show that a deep network can achieve very high precision 

training networks using only binary weight values [0 1] [22]. 

Recently, the ternary weight-based CNN is proposed [23].  The 

IBM Eedn framework is implemented based on the concept of 

ternary connected networks [7]. Another controversy is wide 

versus deep convolutional networks. There are many papers 

that have been published with full precision implementation on 

this topic and there is still some research on going. 

  

A recently published paper entitled “Do deep learning need to 

be deep”, clearly stated the impact of network structure on 

overall recognition accuracy. It concluded that the deeper 

network (which incorporates more layers for better feature 

embedding) provides better accuracy compared to the wider 

 
Fig. 1. IBM’s Neurosynaptic Cognitive TrueNorth Chips: (a) TrueNorth multi-chip system, (b) a single chip, and (c) a zoomed-in internal 

structure of a core.  

 



network (increase number of neurons with larger number of 

feature maps in a layer) [24]. In addition, some research was 

conducted to evaluate the impact of network structure (deeper 

and wider network) on accuracy with the same number of 

parameters. This implementation also summarizes that the 

deeper network performs better compared to wider networks 

[24].  Another study shows that shallow networks are unable to 

reach the same levels of accuracy against deep networks with 

the same number of network parameters. Eventually, they 

demonstrate that deeper networks provide better performance 

compared to shallow networks [25]. 

 

The question now becomes, is this true in case of the DCNN 

with the ternary connect method on TrueNorth system? This 

answer has not yet been determined for IBM’s TrueNorth 

system using a deep learning training methodology with binary 

weights (0,1), which is well suited to map deep learning onto 

the TrueNorth system. In 2016, IBM released the Eedn deep 

learning framework for implementing deep learning on the 

TrueNorth system, which opened a new opportunity to 

implement energy efficient deep learning approaches on 

Neuromorphic hardware [7].  This deep learning framework is 

very power efficient and provides promising accuracies for 

image classification tasks. Unlike the implementation of deep 

learning on CPU, GPGPU, and multicore systems, it is 

necessary to evaluate the impact of network structures on 

recognition accuracy for IBM’s Neuromorphic TrueNorth 

system. We have empirically evaluated the performance of 

different DCNN architectures, tested on different data sets 

which will help determine efficient design of DCCN models for 

use on the TrueNorth system; this can lead to the development 

of additional energy efficient models with better recognition 

performance.  

III. NEURO-SYNAPTIC COGNITIVE SYSTEM 

The traditional von Neumann computing system with a GPU 

and a multicore processor consumes an abundance of power 

and area. As systems continue to become larger, the power 

requirement of these systems have been increasing drastically. 

To combat this trend, IBM developed and released the 

TrueNorth Neurosynaptic cognitive architecture as shown in 

Fig. 2 in 2015. This is an alternative computing system for 

implementing machine learning, deep learning, and computer 

vision algorithms with very low power and high energy 

efficiency [3, 4]. The basic characteristics of IBM’s cognitive 

chip are: first, it is based on a non-von Neumann architecture. 

Second, it has 4096 cores per chip, each core consists 256 

output neurons, each having 256 axons. A 256×256 crossbar of 

configurable synapses is in each core. Third, each chip contains 

1 million programmable neurons and 256 million synapses. 

 

Fig. 1 shows the single chip and multi-chip systems with 

internal architectural details. The overall TrueNorth 

architecture is parallel and easily scalable. The internal 

operation and communication between axons, neurons and 

other units is performed in spiking form. It is a high throughput 

Neurosynaptic chip that is capable to run between 1200 and 

2600 frames per second using only 25 and 275 𝑚𝑊 

respectively (effectively greater than 6,000 frames per second 

per watt) [26].  Each individual axon is assigned 1 of 4 axon 

types that provides a nine signed bits integer synaptic strength 

to the corresponding synapse. All event routing inside the chip 

is completed asynchronously. Each neuron is represented with 

over 20 individual programmable features, such as synaptic 

weight, crossbar weight, threshold, leak, and reset. The 

structure of TrueNorth is very efficient because of the following 

reasons: first, formation of neurons clusters which is created 

from inputs of similar pools of axons. Second, spiking events 

only, which are sparse with respect to time and the 

communications among the cores performed through a long-

distant communication network. Third, the active power of this 

architecture is proportional to the firing activity.  

A. Data encoding on TrueNorth chip  

The human brain works in the spiking form and represents non-

binary information as binary spikes [3] There are four type of 

neural coding schemes defined to represent different types of 

information in the TrueNorth system. The neural coding 

schemes are binary code (B), rate code (R), population code (P), 

and time-to-spike (T) code. In general, for data encoding rate 

coding scheme is used.  

B. Neurons 

Different types of neuron models can be modeled in the 

TrueNorth system. For purposes of this study, the Leaky 

Integrate-and-Fire (LIF) neuron model will be examined. The 

following five basic operations describe the LIF neuron model: 

synaptic integration, leak integration, threshold, spike firing, 

and reset. In general cases, the LIF neuron model can be 

described by the following equations:  

Synaptic integration: 

                 𝑉𝑗(𝑡) =  𝑉𝑗(𝑡 − 1) + ∑ 𝑥𝑖(𝑡) 𝑠𝑖  
𝑁−1
𝑖=0                         (3) 

Leak integration: 

               𝑉𝑗(𝑡) =  𝑉𝑗(𝑡) − 𝜆𝑗                                                 (4) 

Threshold, fire, and reset 

                                   If          𝑉𝑗(𝑡) ≥ 𝛼𝑗                              (5) 

𝑉𝑗(𝑡) = 1 

                                    Else  

𝑉𝑗(𝑡) = 0 

                                   End-if  

The parameter 𝑉𝑗(𝑡) in the above equations stands for the sum 

of membrane potential of the 𝑗𝑡ℎ neuron in the  𝑡𝑡ℎ  timestep, 

and 𝑉𝑗(𝑡 − 1) is the sum membrane potential of the previous 

timestep. 𝑥𝑖(𝑡), and 𝑠𝑖 are the synaptic input as sum of spike 

input in the current time step and the signed synaptic weights 

respectively. 𝜆𝑗 is the leak value that is subtracted in every time-

step from membrane potential. Then the membrane potentials 

are compared with the threshold voltage 𝛼𝑗. If the membrane 

potential is greater than or equal to the threshold voltage, the 

neuron fires a spike and resets the membrane potential. 

C. Crossbar Weights and Synaptic weight  

The crossbar weights 𝑤𝑖,𝑗 ∈ {0,1} of the neurosynaptic core are 

0 or 1 (representing active or inactive states) and are 



represented using a single bit per weight. Moreover, each active 

synapse can have one of the four values as its synaptic weight 

𝑠𝑗
𝐺𝑖   depending on the axon type. There are four types of axons 

which are determined with the values of {0 1 2 3}. In this work, 

the default value of 𝑆𝑗 {8 4 2 1}  are used as synaptic weights 

[3]. 

IV. IMPLEMENTATION WITH ENERY EFFICIENT DEEP NETWORKS 

(EEDN) 

A. Eedn 

IBM’s Eedn is a complete deep learning framework for the 

TrueNorth Neuromorphic system that is used for training, 

mapping the network onto the Neuromorphic chip, and testing 

of a DCNN model. This framework consists of different types 

of layers to construct deep convolutional architectures. The 

layers are: input layer, pre-processing layer, convolution layer, 

network in network layer, pooling layer, and drop out layer. 

During the training, the convolution layer performs basic 

convolutional operation respect to filter with input features of 

this layer. For example: if the input dimension is 28x28 and 

filter size is 3x3 with 12 feature maps then the output size of 

this layer will be 26x26x12. The pooling or sub-sampling 

operation is performed using convolution with stride size 2. The 

dropout operations are applied with fractional value and we 

have used 0.5 in this implementation. In the training phase, 

deep neural network is trained using some steps on the GPU 

which is given in Algorithm I [7]: 

 

Algorithm I. Training steps for DCNN on TrueNorth 

 

Step 1. Training performs iteratively 

Step 2. The network’s response is computed through 

the forward pass of network 

Step 3. The network errors are calculated with 

network outputs and desired outputs 

Step 4. The gradient errors are computed at each 

synapse in the backward pass 

Step 5. Update weight along with gradient respect to 

the errors 

 

 

After successfully completing the training process, the network 

is mapped onto the IBM’s TrueNorth system. In this case, the 

grouping approach is used in the convolution layers. Let’s 

considered the following components such as mask size or 

kernel size (K), number of features map (F), and the number of 

group (G). However, during the implementation of the network 

onto the TrueNorth system, the following conditions need to be 

satisfied: first, the number of inputs must be less than or equal 

to 128. 

                               𝐾 × 𝐾 ×
𝐹

𝐺
≤ 128                                   (6) 

Second, the number of group of 𝑖𝑡ℎ layer must divisible with 

the number of feature maps of  𝑖 − 1𝑡ℎ  layer. 

 

                  𝐺𝑖
𝑛  %  𝐹𝑖−1

𝑛 = 0                                     (7) 

 

In Eq. 7, 𝐺𝑖
𝑛 is the number of group of 𝑖𝑡ℎ layer and   𝐹𝑖−1

𝑛  is 

number of feature maps of 𝑖 − 1𝑡ℎ  layer.  Third, the total 

number of cores (TNC) of the architecture must be less or equal 

to 4096 cores. 

 

                       𝑇𝑁𝐶 ≤ 4096                                           (8) 

B. DCNN on TrueNorth: 

In this paper, we have empirically evaluated the performances 

of different architecture of DCNN on different benchmarks.  

The DCNN architecture consist of different components 

including: preprocessing layer (P), Convolution layer (C), sub-

sampling layer (S), and Network in Network (NiN) layers. We 

have tested different networks; however, the deeper and wide 

network structure are shown in Fig. 2 and Fig. 3 respectively. 

Here one example network architecture is provided for deep 

and wide network which contains 4064 and 4096 cores 

respectively. Due to the different hyper parameter of Eedn 

including number of feature maps and number of groups, it is 

hard to implement a network model with same number of cores. 

For example, if case of first implementation of deep model the 

number of splitter is 384 which is used in the second 

convolution layer in C2. On the other hand, the total number of 

splitter is 384+1024 = 1408 which is used in C2 and C4 

respectively. 

 

 
Fig. 2. Deeper network architecture with 15 layers. 

 

 
Fig. 3. Wider network model with 9 layers. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The entire experiments have been conducted on a desktop 

computer with an Intel ® Core ™ 2 Duo CPU E86 @ 3.33 GHz 

processor and 12GB of RAM to evaluate the processing time in 

MATLAB (R2015a). The datasets details are given in the 

following database section. The model is implemented in 



MATLAB, using the integrated programming environment 

called corelet programming for IBM’s Neurosynaptic system. 

There are two platforms to evaluate, first simulation platform 

called Neurosynaptic Simulator for Corelet System (NSCS) and 

another is in actual hardware. We have tested this experiment 

on both platforms. The running environment (platform) can be 

selected by changing the mode parameters of “TN” and 

“NSCS”. Exact same program can be run on actual TrueNorth 

chip or simulator depending upon flag “TN” or “NSCS” 

respectively. It is noted that the outputs of both environment are 

almost identical. However, in this implementation, we have 

evaluated the performance on a single chip TrueNorth system. 

A. Database: 

Three popular benchmarks for digit and object recognition such 

as MNIST, COIL-20, and COIL-100 datasets are used in this 

implementation.  

 

 
Fig. 4.  Example samples from MNIST database 

 

1) MNIST:  

MNIST is a one of the benchmark image classification database 

[27]. This dataset consists with 60000 training samples and 

10000 test samples 28x28 gray-scale image representing digits 

ranging from 0 to 9. We did not apply any data-augmentation 

except resizing input sample of dataset during this experiment. 

The samples images are given in below Fig. 4.  

 

 
Fig. 5. Example images for COIL-20 

 
2) COIL-20 dataset: 

There are two version of database available for Columbia 

Object Image Library (COIL)-20, the first version of this 

dataset with background and another version is without 

background. In this implementation we have used the training 

and testing samples with background. This database contains 

1440 observations (20 objects with 72 poses each) in total, 

where 1100 samples are used for training the network and 

remaining 300 samples are used for testing [28]. The example 

images are shown in the following Fig. 5. 

 

1) COIL-100 

COIL-100 dataset is extended dataset of COIL-20. This dataset 

contains color images for 100 classes of object. This dataset 

contains 7000 Color images where 5000 samples are used for 

training and remaining 2000 samples are used for testing in this 

implementation. The turntable was rotated through 360 

degrees to vary object pose with respect to a fixed color 

camera. Images of the objects were taken at pose intervals of 

5 degrees. This corresponds to 72 poses per object [29]. Due 

to the input size contained of TrueNorth system, we have 

resized the input sample to 32x32 pixels. The examples images 

of dataset are shown in Fig. 6. 

 

 
Fig. 6. Example image of COIL-100 dataset. 

B. Results 

We have evaluated the performance of different architectures 

which consist of different numbers of layers and cores on 

TrueNorth system. The performance of network varies with 

respect to the number of cores. We have tested on MNIST, 

COIL-20, and COIL-100 datasets. We have also investigated 

the variation of recognition accuracy respect structure of 

network with same number of cores on IBM’s TrueNorth.  

 
 

Fig. 7. Testing accuracy versus number of cores on MNIST dataset. 
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1) MNIST: 

 

To evaluate the performance on MNIST dataset, we have taken 

the default implementation network for MNIST dataset in Eedn 

framework and we have varied number of features maps and 

groups and testing with different architectures. Fig. 9 shows the 

accuracy with respect to the number of cores with different 

architecture. The figure clearly shows that the performance 

increase with respect to the number of cores used with bigger 

networks.  Fig. 7 shows that testing accuracy for MNIST dataset 

with a network consisted with more cores with bigger structure 

and we have achieved around 99.07 percent accuracy with 

deeper network. In addition, we have also tested with wide 

version the same network with almost same number of cores. 

However, from Fig. 8, it can be clearly concluded that the 

deeper network provides better testing accuracy compare 

against wider network.   

 

 
Fig. 8. Comparison of testing accuracy of deep versus wide network on 

MNIST dataset. 

 

2) COIL-20 

The following figures show the training loss and accuracy of 

this implementation for 3000 iterations.  From the Fig. 9, it is 

clearly shown that DCNN model on TrueNorth system provides 

promising recognition accuracy with only 3000 iterations on 

COIL-20 dataset. After round 1000 iteration, we have achieved 

almost 100% training accuracy on this dataset. 

 

            
Fig. 9. Training loss for COIL-20 only for 3000 iterations 

 

We have also investigated different models on TrueNorth 

system with different models with different number of cores 

from 480 to 4094 cores shown in Fig. 10. According to the Fig. 

10, we have observed the highest accuracy with only around 

1400 cores.  The very close accuracy is observed with 4064 

cores on TrueNorth for COIL-20 dataset. It is noted that for all 

different networks, we have conducted experiment with only 

3000 iterations.  In both experiment of COIL-20 and COIL-100, 

we have used batch size 50 and learning rate 0.1 and 0.01. 

 

 
Fig. 10.  Network accuracy respect to the number of cores on COIL-20 

dataset. 

 

However, we have implemented two version of the network 

with 4064 and 4096 cores respectively; one is deeper (increase 

number of layers within network) and another one is wider 

(increase number of neurons in the network). Fig. 11 shows the 

recognition accuracy for COIL-20, where deep networks uses 

4064 cores and wide version of network utilizes 4096 cores on 

single chip implementation which are shown in Fig. 2 and Fig. 

3 respectively. Fig.11 shows the testing recognition accuracy 

for COIL-20, the wider version networks provide around 

99.36% recognition accuracy whereas the deeper of the 

network shows 99.23% accuracy. According to the Fig. 11, it is 

clearly concluded that the wider network provides the better 

recognition accuracy compare to the deeper network with 

almost same number of cores.  

 

 
 

Fig. 11. Testing with respect to deep versus wide network on COIL-20 

 

3) COIL-100 

The training loss and training accuracy are shown in Fig. 12. 

Fig. 12(a) shows the loss for training. According to the figure, 

it can be said that the convergence of the network during 

training is fast. Fig. 12(a) shows the training loss for 30,000 
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iteration and Fig. 12(b) shows the training and testing accuracy 

with red and green color respectively. 

 

  
                    (a)                                                (b) 

 

   Fig. 12. Training loss and accuracy for COIL-100 dataset: (a) Training loss 

and (b) Training and testing accuracy. 

 

The weights updating status during training are shown in Fig. 

13.  

        
Fig. 13. Weight update status during training.  

 

We have also conducted the experiment with different wide and 

deep networks on COIL-100 for 30000 iterations.  As with 

COIL-20, we have investigated different network with 520, 

840, 2200, 4064, and 4094 cores. The experiment results are 

shown in Fig. 14, and it is clearly shown that the bigger network 

with more cores perform better compared to the smaller 

network. We have achieved the best accuracy with the biggest 

network 4096 cores. 

 

 
 

Fig. 14. Testing accuracy versus number of cores on COIL-100 dataset. 

 

The experimental results for deeper versus wider networks is 

shown in Fig. 15. The deeper network contained 15 layers and 

4064 cores and wider version of network contained 8 layers 

with 4096 cores. The architectures of the deeper and wider 

networks are shown in Fig. 2 and Fig. 3 respectively. The wider 

network shows better results compare to deeper network in this 

case. The result shows around 96.8% testing accuracy on both 

simulator and TrueNorth chip.  

 

 
 

Fig. 15. Deeper versus wider network on COIL-100 

 

C. Evaluation 

When desiring to utilize more cores in IBM’s TrueNorth 

Neuromorphic system, it is difficult to implement a network 

that utilizes the maximum number of core resources. We were 

limited to using a single chip TrueNorth system that contains 

4096 cores. However, the architectures we have explored and 

evaluated in this experiment are limited to 4096 cores.  The 

DCNN architecture on TrueNorth, the layers at the beginning 

of the network requires more cores whereas the posterior layer 

needs less cores for mapping onto the chip.  For mapping the 

network onto TrueNorth system, the splitter cores are used. It 

is observed from the network architecture that the wider 

network requires more splitter cores (1408) compare to the 

number of splitter cores (384) of deeper network.  From the 

experimental results, it is clearly observed that the recognition 

accuracy varies with respect to the network architecture and 

number of cores on TrueNorth system. As the number of classes 

increase, the wider network performs better compare against 

deeper network with almost same number of cores which are 

evaluated with a set of experiment.  

 

In addition, we have implement DCNNS model with Keras and 

TensorFlow on the back end on a single GPU machine. This 

model consisted with seven layers including Softmax layer and 

contains around 0.5 million network parameters and training 

with ADAM optimizer with learning rate 0.001. We have 

achieved 100% accuracy for both COIL-20 and COIL-100 

dataset. On the other hand, we have achieved 99.36% testing 

accuracy for COIL-20 and around 97% testing accuracy for 

COIL-100 on IBM’s TrueNoth system. Although we have 

received 0.64% and around 3% less testing accuracy, the 

DCNN models on TrueNorth has significant advantage in term 

of power. 

D. Power consumpiton  

The power consumption of TrueNorth system is compared with 

traditional computing system in this section. Traditional 
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computing systems, such as CPUs and GPUs easily consume 

100W or more power, whereas an entire TrueNorth system 

consumes only up to 100mW to operate the 4096 cores on it. 

Here, we have used almost all cores for object recognition task 

with different network architectures.  In addition, it is noted that 

about 50% of the power is passive power in TrueNorth system. 

The overall power requirement for 4096 cores is 100 𝑚𝑊. 

However, for 4064 cores of the deeper network, 0.5 ∗
100𝑚𝑊 + (4064/4096) ∗ 50 𝑚𝑊 =  99.64 𝑚𝑊 is 

required. We have achieved almost the same level of 

recognition accuracy which are achieved by CPU and GPU 

system for all datasets. However, implementation on the 

TrueNorth system requires significantly lower power with 

respect to traditional computing system.   

VI. CONCLUSION 

This work represents a very important step towards evaluation 

of impact of the architecture of DCNN and number of cores on 

recognition accuracy in TrueNorth neuromorphic computing 

system. We have empirically evaluated the recognition 

accuracy of different DCNN models on three popular 

benchmarks including MNIST, COIL-20, and COIL 100 on 

IBM’s TrueNorth system. We have achieved about 99.07%, 

99.36% and 96.8% as the highest testing accuracy on MNIST, 

COIL-20 and COIL-100 respectively. The experimental result 

shows the wider version of the network outperforms the deeper 

version of the network with the same number of cores on the 

TrueNorth system. We have achieved the highest accuracy with 

the wider network for COIL-20 and COIL-100 datasets with 

almost the same number of cores compared to the deeper 

network. In the future, we would like to conduct this experiment 

with more complex datasets on a multi-chip TrueNorth system.  
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