
Deep Versus Wide Convolutional Neural Networks

for Object Recognition on Neuromorphic System

Md Zahangir Alom, Theodore Josue, Md Nayim Rahman, Will Mitchell, Chris Yakopcic, and Tarek M. Taha

Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA.

Email: {alomm1, tjosue1, rahmanm12, mitchellw2, cyakopcic1, ttaha1}@udayton.edu

Abstract— In the last decade, special purpose computing systems,

such as Neuromorphic computing, have become very popular in

the field of computer vision and machine learning for classification

tasks. In 2015, IBM’s released the TrueNorth Neuromorphic

system, kick-starting a new era of Neuromorphic computing.

Alternatively, Deep Learning approaches such as Deep

Convolutional Neural Networks (DCNN) show almost human-

level accuracies for detection and classification tasks. IBM’s 2016

release of a deep learning framework for DCNNs, called Energy

Efficient Deep Neuromorphic Networks (Eedn). Eedn shows

promise for delivering high accuracies across a number of

different benchmarks, while consuming very low power, using

IBM’s TrueNorth chip. However, there are many things that

remained undiscovered using the Eedn framework for

classification tasks on a Neuromorphic system. In this paper, we

have empirically evaluated the performance of different DCNN

architectures implemented within the Eedn framework. The goal

of this work was discover the most efficient way to implement

DCNN models for object classification tasks using the TrueNorth

system. We performed our experiments using benchmark data

sets such as MNIST, COIL-20, and COIL-100. The experimental

results show very promising classification accuracies with very low

power consumption on IBM’s NS1e Neurosynaptic system. The

results show that for datasets with large numbers of classes, wider

networks perform better when compared to deep networks

comprised of nearly the same core complexity on IBM’s

TrueNorth system.

Keywords— Object recognition; Neuromorphic system; Eedn;

Deep CNN; TrueNorth.

I. INTRODUCTION

 We are living in a world consumed by instrumentation that

continuously draws data from many kinds of sensors.

Nowadays big data is a challenging issue, and we need high

performance information processing systems to solve this big

data problem. However, a typical high-performance computing

(HPC) environment (such as a supercomputing center, or data

processing cluster) requires huge amounts of power.

Traditional CPUs with multiple processing cores, and larger

implementation of Deep Learning (DL) model on Graphic

Processing Units (GPU) based computing systems provide

state-of-the-art performance, but it consumes a significant

amount of power for performing computations. Therefore,

different energy efficient and faster computing systems have

been developed in the last few years such as field

programmable gate arrays (FPGA) [1, 2] and the IBM’s

Neurosynaptic TrueNorth chip [15-18]. These specialized

computing systems have some constrains as well. The

constraints are on the number of inputs, memory capacity, and

programmability. Mapping big data processing algorithms to

these specialized computing systems is one of the most

challenging tasks. Among the many available architectures,

IBM’s TrueNorth (TN) system is one of the first Neuromorphic

Chips, which is very efficient in term of power consumption,

and with very high throughput [3, 4]. In addition, the MATLAB

based corelet programming language was developed, providing

a highly scalable objected oriented programming structure [5,

6]. Currently, there are many different applications

implemented on IBM’s TrueNorth system which have shown

promising performance, including object recognition [7], cyber

security [8], optimization approaches on the TrueNorth system

[9], convolutional sparse coding [10], and many more [11].

Data processing algorithms are always undergoing

improvements, and deep learning algorithms have become one

of the most prevalent techniques for extracting complex high-

level features for object classification and recognition. Deep

Learning algorithms, Convolutional Neural Networks (CNN) in

particular, use a layered, or hierarchical data representation and

learning approach [12, 13]. Furthermore, researchers using

modified CNNs have reported improved results for object

recognition on different benchmarks including MNIST, CIFAR

10 or 100, Caltech 101 or 256, ImageNet, and many more [13,

14]; as well as improved object detection [15] tasks.

Accordingly, DCNN approaches have become very popular and

widely used in machine learning and computer vision tasks; the

main drawback, however, is the increased computational

complexity of convolutional network models. In most of the

implementations, GPUs are used for training the big networks,

which, in most of the cases are utilizing wider and deeper

networks for training with higher precision (more than or equal

32 bits) on different benchmarks [16]. As the network size

increases, the computational parameters also increase

dramatically. It follows that the increased computational costs

resulting in significantly greater power consumption due to the

use of power hungry GPUs [17].

As the amount of data and data sources are increasing
dramatically, deep learning has been playing a key role by
providing the solutions for Big Data analytics, data
representations, and restoration. In 2015, IBM released the
TrueNorth chip, a very low power Neuromorphic processor
made up of a massively parallel architecture. TrueNorth is
ideally suited to address the big data problem with a significantly
lower power profile than conventional systems. Following the
trend of deep learning development, IBM released the Energy

Efficient Deep Neuromorphic Network (Eedn) framework for
implementing CNN approaches on the TrueNorth system [6].
Accordingly, it becomes very important to implement and
evaluate different Deep Learning models for different
applications on the very power efficient IBM TrueNorth system.
In this implementation, we have implemented different DCNN
architectures utilizing the Eedn framework. The contributions
of this paper are summarized as follows:

▪ Implemented different energy efficient DCNN models

with Eedn framework.

▪ Experimented on three popular benchmarks to evaluate

different architectures of DCNN including MNIST, COIL-

20, and COIL-100.

▪ Experimented with different deeper and wider deep

convolutional networks and discovered the impact of

deepness and wideness of networks on the TrueNorth

system.

The rest of the paper has been organized in the following way:

Section II explains the related works, Section III presents the

architecture of the TrueNorth system, Section IV discusses the

Eedn framework and implementation details of DCNN on

TrueNorth systems. Results and discussions are given in

Section V. Conclusions with future directions are made in

Section VII.

II. RELATED WORKS

 In the deep learning research community, most of the

researcher uses the basic structure of Convolutional Neural

Networks (CNNs) with alternative convolution and max-

pooling layer followed by a small number of fully connected

layers [18]. The piecewise-linear or non-linear activation

functions are used within each of these layers. The dropout

technique has been used for regularizing the overall network

[19]. In addition, drop connection is also used for regularizing

the network. However, in general to evaluate those DCNN

architectures, the general-purpose computing system such as

CPU, GPGPU, and multicore system are used [17]. The

optimization of DCNN models are proposed with respect to

structural and computational optimization. As structural

optimization is of concern, several research studies have been

conducted in the community to improve overall accuracy of the

DCNN model with lesser numbers of computational

parameters, which significantly decreases computational time

and power consumption. Some papers have been published on

structural optimization of DCNN techniques, which is called

SqueezeNet [20]. In most of the cases, these power efficient and

faster models are proposed based on low precision

implementations of a DCNN [21]. In 2015, Y. Bengio et al.,

show that a deep network can achieve very high precision

training networks using only binary weight values [0 1] [22].

Recently, the ternary weight-based CNN is proposed [23]. The

IBM Eedn framework is implemented based on the concept of

ternary connected networks [7]. Another controversy is wide

versus deep convolutional networks. There are many papers

that have been published with full precision implementation on

this topic and there is still some research on going.

A recently published paper entitled “Do deep learning need to

be deep”, clearly stated the impact of network structure on

overall recognition accuracy. It concluded that the deeper

network (which incorporates more layers for better feature

embedding) provides better accuracy compared to the wider

Fig. 1. IBM’s Neurosynaptic Cognitive TrueNorth Chips: (a) TrueNorth multi-chip system, (b) a single chip, and (c) a zoomed-in internal

structure of a core.

network (increase number of neurons with larger number of

feature maps in a layer) [24]. In addition, some research was

conducted to evaluate the impact of network structure (deeper

and wider network) on accuracy with the same number of

parameters. This implementation also summarizes that the

deeper network performs better compared to wider networks

[24]. Another study shows that shallow networks are unable to

reach the same levels of accuracy against deep networks with

the same number of network parameters. Eventually, they

demonstrate that deeper networks provide better performance

compared to shallow networks [25].

The question now becomes, is this true in case of the DCNN

with the ternary connect method on TrueNorth system? This

answer has not yet been determined for IBM’s TrueNorth

system using a deep learning training methodology with binary

weights (0,1), which is well suited to map deep learning onto

the TrueNorth system. In 2016, IBM released the Eedn deep

learning framework for implementing deep learning on the

TrueNorth system, which opened a new opportunity to

implement energy efficient deep learning approaches on

Neuromorphic hardware [7]. This deep learning framework is

very power efficient and provides promising accuracies for

image classification tasks. Unlike the implementation of deep

learning on CPU, GPGPU, and multicore systems, it is

necessary to evaluate the impact of network structures on

recognition accuracy for IBM’s Neuromorphic TrueNorth

system. We have empirically evaluated the performance of

different DCNN architectures, tested on different data sets

which will help determine efficient design of DCCN models for

use on the TrueNorth system; this can lead to the development

of additional energy efficient models with better recognition

performance.

III. NEURO-SYNAPTIC COGNITIVE SYSTEM

The traditional von Neumann computing system with a GPU

and a multicore processor consumes an abundance of power

and area. As systems continue to become larger, the power

requirement of these systems have been increasing drastically.

To combat this trend, IBM developed and released the

TrueNorth Neurosynaptic cognitive architecture as shown in

Fig. 2 in 2015. This is an alternative computing system for

implementing machine learning, deep learning, and computer

vision algorithms with very low power and high energy

efficiency [3, 4]. The basic characteristics of IBM’s cognitive

chip are: first, it is based on a non-von Neumann architecture.

Second, it has 4096 cores per chip, each core consists 256

output neurons, each having 256 axons. A 256×256 crossbar of

configurable synapses is in each core. Third, each chip contains

1 million programmable neurons and 256 million synapses.

Fig. 1 shows the single chip and multi-chip systems with

internal architectural details. The overall TrueNorth

architecture is parallel and easily scalable. The internal

operation and communication between axons, neurons and

other units is performed in spiking form. It is a high throughput

Neurosynaptic chip that is capable to run between 1200 and

2600 frames per second using only 25 and 275 𝑚𝑊

respectively (effectively greater than 6,000 frames per second

per watt) [26]. Each individual axon is assigned 1 of 4 axon

types that provides a nine signed bits integer synaptic strength

to the corresponding synapse. All event routing inside the chip

is completed asynchronously. Each neuron is represented with

over 20 individual programmable features, such as synaptic

weight, crossbar weight, threshold, leak, and reset. The

structure of TrueNorth is very efficient because of the following

reasons: first, formation of neurons clusters which is created

from inputs of similar pools of axons. Second, spiking events

only, which are sparse with respect to time and the

communications among the cores performed through a long-

distant communication network. Third, the active power of this

architecture is proportional to the firing activity.

A. Data encoding on TrueNorth chip

The human brain works in the spiking form and represents non-

binary information as binary spikes [3] There are four type of

neural coding schemes defined to represent different types of

information in the TrueNorth system. The neural coding

schemes are binary code (B), rate code (R), population code (P),

and time-to-spike (T) code. In general, for data encoding rate

coding scheme is used.

B. Neurons

Different types of neuron models can be modeled in the

TrueNorth system. For purposes of this study, the Leaky

Integrate-and-Fire (LIF) neuron model will be examined. The

following five basic operations describe the LIF neuron model:

synaptic integration, leak integration, threshold, spike firing,

and reset. In general cases, the LIF neuron model can be

described by the following equations:

Synaptic integration:

 𝑉𝑗(𝑡) = 𝑉𝑗(𝑡 − 1) + ∑ 𝑥𝑖(𝑡) 𝑠𝑖
𝑁−1
𝑖=0 (3)

Leak integration:

 𝑉𝑗(𝑡) = 𝑉𝑗(𝑡) − 𝜆𝑗 (4)

Threshold, fire, and reset

 If 𝑉𝑗(𝑡) ≥ 𝛼𝑗 (5)

𝑉𝑗(𝑡) = 1

 Else

𝑉𝑗(𝑡) = 0

 End-if

The parameter 𝑉𝑗(𝑡) in the above equations stands for the sum

of membrane potential of the 𝑗𝑡ℎ neuron in the 𝑡𝑡ℎ timestep,

and 𝑉𝑗(𝑡 − 1) is the sum membrane potential of the previous

timestep. 𝑥𝑖(𝑡), and 𝑠𝑖 are the synaptic input as sum of spike

input in the current time step and the signed synaptic weights

respectively. 𝜆𝑗 is the leak value that is subtracted in every time-

step from membrane potential. Then the membrane potentials

are compared with the threshold voltage 𝛼𝑗. If the membrane

potential is greater than or equal to the threshold voltage, the

neuron fires a spike and resets the membrane potential.

C. Crossbar Weights and Synaptic weight

The crossbar weights 𝑤𝑖,𝑗 ∈ {0,1} of the neurosynaptic core are

0 or 1 (representing active or inactive states) and are

represented using a single bit per weight. Moreover, each active

synapse can have one of the four values as its synaptic weight

𝑠𝑗
𝐺𝑖 depending on the axon type. There are four types of axons

which are determined with the values of {0 1 2 3}. In this work,

the default value of 𝑆𝑗 {8 4 2 1} are used as synaptic weights

[3].

IV. IMPLEMENTATION WITH ENERY EFFICIENT DEEP NETWORKS

(EEDN)

A. Eedn

IBM’s Eedn is a complete deep learning framework for the

TrueNorth Neuromorphic system that is used for training,

mapping the network onto the Neuromorphic chip, and testing

of a DCNN model. This framework consists of different types

of layers to construct deep convolutional architectures. The

layers are: input layer, pre-processing layer, convolution layer,

network in network layer, pooling layer, and drop out layer.

During the training, the convolution layer performs basic

convolutional operation respect to filter with input features of

this layer. For example: if the input dimension is 28x28 and

filter size is 3x3 with 12 feature maps then the output size of

this layer will be 26x26x12. The pooling or sub-sampling

operation is performed using convolution with stride size 2. The

dropout operations are applied with fractional value and we

have used 0.5 in this implementation. In the training phase,

deep neural network is trained using some steps on the GPU

which is given in Algorithm I [7]:

Algorithm I. Training steps for DCNN on TrueNorth

Step 1. Training performs iteratively

Step 2. The network’s response is computed through

the forward pass of network

Step 3. The network errors are calculated with

network outputs and desired outputs

Step 4. The gradient errors are computed at each

synapse in the backward pass

Step 5. Update weight along with gradient respect to

the errors

After successfully completing the training process, the network

is mapped onto the IBM’s TrueNorth system. In this case, the

grouping approach is used in the convolution layers. Let’s

considered the following components such as mask size or

kernel size (K), number of features map (F), and the number of

group (G). However, during the implementation of the network

onto the TrueNorth system, the following conditions need to be

satisfied: first, the number of inputs must be less than or equal

to 128.

 𝐾 × 𝐾 ×
𝐹

𝐺
≤ 128 (6)

Second, the number of group of 𝑖𝑡ℎ layer must divisible with

the number of feature maps of 𝑖 − 1𝑡ℎ layer.

 𝐺𝑖
𝑛 % 𝐹𝑖−1

𝑛 = 0 (7)

In Eq. 7, 𝐺𝑖
𝑛 is the number of group of 𝑖𝑡ℎ layer and 𝐹𝑖−1

𝑛 is

number of feature maps of 𝑖 − 1𝑡ℎ layer. Third, the total

number of cores (TNC) of the architecture must be less or equal

to 4096 cores.

 𝑇𝑁𝐶 ≤ 4096 (8)

B. DCNN on TrueNorth:

In this paper, we have empirically evaluated the performances

of different architecture of DCNN on different benchmarks.

The DCNN architecture consist of different components

including: preprocessing layer (P), Convolution layer (C), sub-

sampling layer (S), and Network in Network (NiN) layers. We

have tested different networks; however, the deeper and wide

network structure are shown in Fig. 2 and Fig. 3 respectively.

Here one example network architecture is provided for deep

and wide network which contains 4064 and 4096 cores

respectively. Due to the different hyper parameter of Eedn

including number of feature maps and number of groups, it is

hard to implement a network model with same number of cores.

For example, if case of first implementation of deep model the

number of splitter is 384 which is used in the second

convolution layer in C2. On the other hand, the total number of

splitter is 384+1024 = 1408 which is used in C2 and C4

respectively.

Fig. 2. Deeper network architecture with 15 layers.

Fig. 3. Wider network model with 9 layers.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The entire experiments have been conducted on a desktop

computer with an Intel ® Core ™ 2 Duo CPU E86 @ 3.33 GHz

processor and 12GB of RAM to evaluate the processing time in

MATLAB (R2015a). The datasets details are given in the

following database section. The model is implemented in

MATLAB, using the integrated programming environment

called corelet programming for IBM’s Neurosynaptic system.

There are two platforms to evaluate, first simulation platform

called Neurosynaptic Simulator for Corelet System (NSCS) and

another is in actual hardware. We have tested this experiment

on both platforms. The running environment (platform) can be

selected by changing the mode parameters of “TN” and

“NSCS”. Exact same program can be run on actual TrueNorth

chip or simulator depending upon flag “TN” or “NSCS”

respectively. It is noted that the outputs of both environment are

almost identical. However, in this implementation, we have

evaluated the performance on a single chip TrueNorth system.

A. Database:

Three popular benchmarks for digit and object recognition such

as MNIST, COIL-20, and COIL-100 datasets are used in this

implementation.

Fig. 4. Example samples from MNIST database

1) MNIST:

MNIST is a one of the benchmark image classification database

[27]. This dataset consists with 60000 training samples and

10000 test samples 28x28 gray-scale image representing digits

ranging from 0 to 9. We did not apply any data-augmentation

except resizing input sample of dataset during this experiment.

The samples images are given in below Fig. 4.

Fig. 5. Example images for COIL-20

2) COIL-20 dataset:

There are two version of database available for Columbia

Object Image Library (COIL)-20, the first version of this

dataset with background and another version is without

background. In this implementation we have used the training

and testing samples with background. This database contains

1440 observations (20 objects with 72 poses each) in total,

where 1100 samples are used for training the network and

remaining 300 samples are used for testing [28]. The example

images are shown in the following Fig. 5.

1) COIL-100

COIL-100 dataset is extended dataset of COIL-20. This dataset

contains color images for 100 classes of object. This dataset

contains 7000 Color images where 5000 samples are used for

training and remaining 2000 samples are used for testing in this

implementation. The turntable was rotated through 360

degrees to vary object pose with respect to a fixed color

camera. Images of the objects were taken at pose intervals of

5 degrees. This corresponds to 72 poses per object [29]. Due

to the input size contained of TrueNorth system, we have

resized the input sample to 32x32 pixels. The examples images

of dataset are shown in Fig. 6.

Fig. 6. Example image of COIL-100 dataset.

B. Results

We have evaluated the performance of different architectures

which consist of different numbers of layers and cores on

TrueNorth system. The performance of network varies with

respect to the number of cores. We have tested on MNIST,

COIL-20, and COIL-100 datasets. We have also investigated

the variation of recognition accuracy respect structure of

network with same number of cores on IBM’s TrueNorth.

Fig. 7. Testing accuracy versus number of cores on MNIST dataset.

84

86

88

90

92

94

96

98

100

0 1000 2000 3000 4000

A
cc

u
ra

cy

Number of cores

Accuracy vs number of cores on MNIST

1) MNIST:

To evaluate the performance on MNIST dataset, we have taken

the default implementation network for MNIST dataset in Eedn

framework and we have varied number of features maps and

groups and testing with different architectures. Fig. 9 shows the

accuracy with respect to the number of cores with different

architecture. The figure clearly shows that the performance

increase with respect to the number of cores used with bigger

networks. Fig. 7 shows that testing accuracy for MNIST dataset

with a network consisted with more cores with bigger structure

and we have achieved around 99.07 percent accuracy with

deeper network. In addition, we have also tested with wide

version the same network with almost same number of cores.

However, from Fig. 8, it can be clearly concluded that the

deeper network provides better testing accuracy compare

against wider network.

Fig. 8. Comparison of testing accuracy of deep versus wide network on

MNIST dataset.

2) COIL-20

The following figures show the training loss and accuracy of

this implementation for 3000 iterations. From the Fig. 9, it is

clearly shown that DCNN model on TrueNorth system provides

promising recognition accuracy with only 3000 iterations on

COIL-20 dataset. After round 1000 iteration, we have achieved

almost 100% training accuracy on this dataset.

Fig. 9. Training loss for COIL-20 only for 3000 iterations

We have also investigated different models on TrueNorth

system with different models with different number of cores

from 480 to 4094 cores shown in Fig. 10. According to the Fig.

10, we have observed the highest accuracy with only around

1400 cores. The very close accuracy is observed with 4064

cores on TrueNorth for COIL-20 dataset. It is noted that for all

different networks, we have conducted experiment with only

3000 iterations. In both experiment of COIL-20 and COIL-100,

we have used batch size 50 and learning rate 0.1 and 0.01.

Fig. 10. Network accuracy respect to the number of cores on COIL-20

dataset.

However, we have implemented two version of the network

with 4064 and 4096 cores respectively; one is deeper (increase

number of layers within network) and another one is wider

(increase number of neurons in the network). Fig. 11 shows the

recognition accuracy for COIL-20, where deep networks uses

4064 cores and wide version of network utilizes 4096 cores on

single chip implementation which are shown in Fig. 2 and Fig.

3 respectively. Fig.11 shows the testing recognition accuracy

for COIL-20, the wider version networks provide around

99.36% recognition accuracy whereas the deeper of the

network shows 99.23% accuracy. According to the Fig. 11, it is

clearly concluded that the wider network provides the better

recognition accuracy compare to the deeper network with

almost same number of cores.

Fig. 11. Testing with respect to deep versus wide network on COIL-20

3) COIL-100

The training loss and training accuracy are shown in Fig. 12.

Fig. 12(a) shows the loss for training. According to the figure,

it can be said that the convergence of the network during

training is fast. Fig. 12(a) shows the training loss for 30,000

99.07

97.66

Deep Net Wide Net

A
cc

u
ra

cy

Network type

Deep vs Wide Net on MNIST

80

85

90

95

100

0 1000 2000 3000 4000 5000

A
cc

u
ra

cy

Number of cores

Accuracy vs number of cores on COIL-20

99.23

99.36

Deep Net Wide Net

A
cc

u
ra

cy

Network type

Deep vs Wide Net on COIL-20

iteration and Fig. 12(b) shows the training and testing accuracy

with red and green color respectively.

 (a) (b)

 Fig. 12. Training loss and accuracy for COIL-100 dataset: (a) Training loss

and (b) Training and testing accuracy.

The weights updating status during training are shown in Fig.

13.

Fig. 13. Weight update status during training.

We have also conducted the experiment with different wide and

deep networks on COIL-100 for 30000 iterations. As with

COIL-20, we have investigated different network with 520,

840, 2200, 4064, and 4094 cores. The experiment results are

shown in Fig. 14, and it is clearly shown that the bigger network

with more cores perform better compared to the smaller

network. We have achieved the best accuracy with the biggest

network 4096 cores.

Fig. 14. Testing accuracy versus number of cores on COIL-100 dataset.

The experimental results for deeper versus wider networks is

shown in Fig. 15. The deeper network contained 15 layers and

4064 cores and wider version of network contained 8 layers

with 4096 cores. The architectures of the deeper and wider

networks are shown in Fig. 2 and Fig. 3 respectively. The wider

network shows better results compare to deeper network in this

case. The result shows around 96.8% testing accuracy on both

simulator and TrueNorth chip.

Fig. 15. Deeper versus wider network on COIL-100

C. Evaluation

When desiring to utilize more cores in IBM’s TrueNorth

Neuromorphic system, it is difficult to implement a network

that utilizes the maximum number of core resources. We were

limited to using a single chip TrueNorth system that contains

4096 cores. However, the architectures we have explored and

evaluated in this experiment are limited to 4096 cores. The

DCNN architecture on TrueNorth, the layers at the beginning

of the network requires more cores whereas the posterior layer

needs less cores for mapping onto the chip. For mapping the

network onto TrueNorth system, the splitter cores are used. It

is observed from the network architecture that the wider

network requires more splitter cores (1408) compare to the

number of splitter cores (384) of deeper network. From the

experimental results, it is clearly observed that the recognition

accuracy varies with respect to the network architecture and

number of cores on TrueNorth system. As the number of classes

increase, the wider network performs better compare against

deeper network with almost same number of cores which are

evaluated with a set of experiment.

In addition, we have implement DCNNS model with Keras and

TensorFlow on the back end on a single GPU machine. This

model consisted with seven layers including Softmax layer and

contains around 0.5 million network parameters and training

with ADAM optimizer with learning rate 0.001. We have

achieved 100% accuracy for both COIL-20 and COIL-100

dataset. On the other hand, we have achieved 99.36% testing

accuracy for COIL-20 and around 97% testing accuracy for

COIL-100 on IBM’s TrueNoth system. Although we have

received 0.64% and around 3% less testing accuracy, the

DCNN models on TrueNorth has significant advantage in term

of power.

D. Power consumpiton

The power consumption of TrueNorth system is compared with

traditional computing system in this section. Traditional

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

A
cc

u
ra

cy

Number of cores

Accuracy vs number of cores on COIL-100

94.14

96.8

Deep Net Wide Net

A
cc

u
ra

cy

Network type

Deep vs Wide Net on COIL-100

computing systems, such as CPUs and GPUs easily consume

100W or more power, whereas an entire TrueNorth system

consumes only up to 100mW to operate the 4096 cores on it.

Here, we have used almost all cores for object recognition task

with different network architectures. In addition, it is noted that

about 50% of the power is passive power in TrueNorth system.

The overall power requirement for 4096 cores is 100 𝑚𝑊.

However, for 4064 cores of the deeper network, 0.5 ∗
100𝑚𝑊 + (4064/4096) ∗ 50 𝑚𝑊 = 99.64 𝑚𝑊 is

required. We have achieved almost the same level of

recognition accuracy which are achieved by CPU and GPU

system for all datasets. However, implementation on the

TrueNorth system requires significantly lower power with

respect to traditional computing system.

VI. CONCLUSION

This work represents a very important step towards evaluation

of impact of the architecture of DCNN and number of cores on

recognition accuracy in TrueNorth neuromorphic computing

system. We have empirically evaluated the recognition

accuracy of different DCNN models on three popular

benchmarks including MNIST, COIL-20, and COIL 100 on

IBM’s TrueNorth system. We have achieved about 99.07%,

99.36% and 96.8% as the highest testing accuracy on MNIST,

COIL-20 and COIL-100 respectively. The experimental result

shows the wider version of the network outperforms the deeper

version of the network with the same number of cores on the

TrueNorth system. We have achieved the highest accuracy with

the wider network for COIL-20 and COIL-100 datasets with

almost the same number of cores compared to the deeper

network. In the future, we would like to conduct this experiment

with more complex datasets on a multi-chip TrueNorth system.

ACKNOWLEDGMENT

This work is supported by the US National Science Foundation

(NSF).

REFERENCES

[1] Zhang, Chen, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. "Optimizing fpga-based accelerator design for deep
convolutional neural networks." In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 161-
170, 2015.

[2] Ren, Ao, et al. "Designing Reconfigurable Large-Scale Deep Learning
Systems Using Stochastic Computing." 2016 IEEE International
Conference on Rebooting Computing. IEEE. 2016.

[3] Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with
a scalable communication network and interface." Science345.6197
(2014): 668-673.

[4] Akopyan, Filipp, et al. "Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip." IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 34.10
(2015): 1537-1557.

[5] Amir, Arnon, et al. "Cognitive computing programming paradigm: a
corelet language for composing networks of neurosynaptic cores." Neural
Networks (IJCNN), The 2013 International Joint Conference on. IEEE,
2013.

[6] Esser, Steve K., et al. "Cognitive computing systems: Algorithms and
applications for networks of neurosynaptic cores." Neural Networks
(IJCNN), The 2013 International Joint Conference on. IEEE, 2013.

[7] Esser, Steven K., et al. "Convolutional networks for fast, energy-efficient
neuromorphic computing." Proceedings of the National Academy of
Sciences (2016): 201604850.

[8] Alom, Md Zahangir, and Tarek M. Taha. "Network intrusion detection
for cyber security on neuromorphic computing system." Neural Networks
(IJCNN), 2017 International Joint Conference on. IEEE, 2017.

[9] Alom, Md Zahangir, et al. "Quadratic Unconstrained Binary Optimization
(QUBO) on neuromorphic computing system." Neural Networks
(IJCNN), 2017 International Joint Conference on. IEEE, 2017.

[10] Alom, Md Zahangir, et al. "Convolutional sparse coding on neurosynaptic
cognitive system." Neural Networks (IJCNN), 2017 International Joint
Conference on. IEEE, 2017.

[11] Sawada, Jun, et al. "Truenorth ecosystem for brain-inspired computing:
scalable systems, software, and applications." High Performance
Computing, Networking, Storage and Analysis, SC16: International
Conference for. IEEE, 2016.

[12] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep
learning." Nature521.7553: 436-444 in 2015.

[13] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." In Advances in
neural information processing systems, pp. 1097-1105 in 2012.

[14] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep
residual learning for image recognition." arXiv preprint
arXiv:1512.03385 (2015).

[15] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection
with region proposal networks." Advances in neural information
processing systems. 2015.

[16] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015.

[17] Coates, Adam, et al. "Deep learning with COTS HPC
systems." International Conference on Machine Learning. 2013.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition.Proceedings of the IEEE, november
1998.

[19] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural
networks from overfitting." Journal of machine learning research15.1
(2014): 1929-1958.

[20] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MB model size." arXiv preprint
arXiv:1602.07360 (2016).

[21] Gupta, Suyog, et al. "Deep learning with limited numerical
precision." Proceedings of the 32nd International Conference on
Machine Learning (ICML-15). 2015.

[22] Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David.
"Binaryconnect: Training deep neural networks with binary weights
during propagations." Advances in Neural Information Processing
Systems. 2015.

[23] Zhu, Chenzhuo, et al. "Trained ternary quantization." arXiv preprint
arXiv:1612.01064 (2016).

[24] Ba, Jimmy, and Rich Caruana. "Do deep nets really need to be
deep?." Advances in neural information processing systems. 2014.

[25] Urban, Gregor, et al. "Do Deep Convolutional Nets Really Need to be
Deep and Convolutional?." arXiv preprint arXiv:1603.05691 (2016).

[26] Cassidy, Andrew S., et al. "Cognitive computing building block: A
versatile and efficient digital neuron model for neurosynaptic
cores." Neural Networks (IJCNN), the 2013 International Joint
Conference on. IEEE, 2013.

[27] LeCun, Yann, et al. "Gradient-based learning applied to document
recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

[28] S. A. Nene, S. K. Nayar and H. Murase, ”Columbia Object Image Library
(COIL-20)," Technical Report CUCS-005-96, February 1996.

[29] S. A. Nene, S. K. Nayar and H. Murase, "Columbia Object Image Library
(COIL-100),"Technical Report CUCS-006-96, February

