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Abstract

Machine learning models have been found to learn
shortcuts—unintended decision rules that are unable to
generalize—undermining models’ reliability. Previous works
address this problem under the tenuous assumption that only
a single shortcut exists in the training data. Real-world im-
ages are rife with multiple visual cues from background to
texture. Key to advancing the reliability of vision systems
is understanding whether existing methods can overcome
multiple shortcuts or struggle in a Whac-A-Mole game, i.e.,
where mitigating one shortcut amplifies reliance on others.
To address this shortcoming, we propose two benchmarks:
1) UrbanCars, a dataset with precisely controlled spuri-
ous cues, and 2) ImageNet-W, an evaluation set based on
ImageNet for watermark, a shortcut we discovered affects
nearly every modern vision model. Along with texture and
background, ImageNet-W allows us to study multiple short-
cuts emerging from training on natural images. We find
computer vision models, including large foundation models—
regardless of training set, architecture, and supervision—
struggle when multiple shortcuts are present. Even methods
explicitly designed to combat shortcuts struggle in a Whac-
A-Mole dilemma. To tackle this challenge, we propose Last
Layer Ensemble, a simple-yet-effective method to mitigate
multiple shortcuts without Whac-A-Mole behavior. Our re-
sults surface multi-shortcut mitigation as an overlooked chal-
lenge critical to advancing the reliability of vision systems.
The datasets and code are released: https://github.
com/facebookresearch/Whac-A-Mole.git.

1. Introduction
Machine learning often achieves good average perfor-

mance by exploiting unintended cues in the data [25]. For
instance, when backgrounds are spuriously correlated with
objects, image classifiers learn background as a rule for ob-
ject recognition [91]. This phenomenon—called “shortcut
learning”—at best suggests average metrics overstate model
performance and at worst renders predictions unreliable as
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models are prone to costly mistakes on out-of-distribution
(OOD) data where the shortcut is absent. For example,
COVID diagnosis models degraded significantly when spuri-
ous visual cues (e.g., hospital tags) were removed [16].

Most existing works design and evaluate methods under
the tenuous assumption that a single shortcut is present in
the data [32,60,72]. For instance, Waterbirds [72], the most
widely-used dataset, only benchmarks the mitigation of the
background shortcut [7,15,58]. While this is a useful simpli-
fied setting, real-world images contain multiple visual cues;
models learn multiple shortcuts. From ImageNet [17,80]
to facial attribute classification [50] and COVID-19 chest
radiographs [16], multiple shortcuts are pervasive. Whether
existing methods can overcome multiple shortcuts or strug-
gle in a Whac-A-Mole game—where mitigating one shortcut
amplifies others—remains a critical open question.

We directly address this limitation by proposing two
datasets to study multi-shortcut learning: UrbanCars and
ImageNet-W. In UrbanCars (Fig. 1a), we precisely inject
two spurious cues—background and co-occurring object. Ur-
banCars allows us to conduct controlled experiments probing
multi-shortcut learning in standard training as well as short-
cut mitigation methods, including those requiring shortcut
labels. In ImageNet-W (IN-W) (Fig. 1b), we surface a new
watermark shortcut in the popular ImageNet dataset (IN-
1k). By adding a transparent watermark to IN-1k validation
set images, ImageNet-W, as a new test set, reveals vision
models ranging from ResNet-50 [30] to large foundation
models [10] universally rely on watermark as a spurious cue
for the “carton” class (cf . cardboard box in Fig. 1b). When
a watermark is added, ImageNet top-1 accuracy drops by
10.7% on average across models. Some, such as ResNet-50,
suffer a catastrophic 26.7% drop (from 76.1% on IN-1k to
49.4% on IN-W) (Sec. 2.2)). Along with texture [26,33]
and background [91] benchmarks, ImageNet-W allows us to
study multiple shortcuts emerging in natural images.

We find that across a range of supervised/self-supervised
methods, network architectures, foundation models, and
shortcut mitigation methods, vision models struggle when
multiple shortcuts are present. Benchmarks on UrbanCars
and multiple shortcuts in ImageNet (including ImageNet-W)
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(a) We construct UrbanCars, a new dataset with multiple shortcuts, facili-
tating the study of multi-shortcut learning under the controlled setting.
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(b) We discover the new watermark shortcut emerged from a natural image
dataset—ImageNet, and create ImageNet-W test set for ImageNet.

Figure 1. Our benchmark results on both datasets reveal the overlooked Whac-A-Mole dilemma in shortcut mitigation, i.e., mitigating one
shortcut amplifies the reliance on other shortcuts .

reveal an overlooked challenge in the shortcut learning prob-
lem: multi-shortcut mitigation resembles a Whac-A-Mole
game, i.e., mitigating one shortcut amplifies reliance on oth-
ers. Even methods specifically designed to combat shortcuts
decrease reliance on one shortcut at the expense of amplify-
ing others (Sec. 5). To tackle this new challenge, we propose
Last Layer Ensemble (LLE) to mitigate multiple shortcuts
jointly without Whac-A-Mole behavior. LLE uses data aug-
mentation based on only the knowledge of the shortcut type
without using shortcut labels—making it widely adaptable.

To summarize, our contributions are (1) We create Ur-
banCars, a dataset with precisely injected spurious cues, to
better benchmark multi-shortcut mitigation. (2) We curate
ImageNet-W—a new out-of-distribution (OOD) variant of
ImageNet benchmarking a pervasive watermark shortcut we
discovered— to form a more comprehensive multi-shortcut
evaluation suite for ImageNet. (3) Through extensive bench-
marks on UrbanCars and ImageNet shortcuts (including
ImageNet-W), we uncover that mitigating multiple short-
cuts is an overlooked and universal challenge, resembling a
Whac-A-Mole game, i.e., mitigating one shortcut amplifies
reliance on others. (4) Finally, we propose Last Layer Ensem-
ble for multi-shortcut mitigation without the Whac-A-Mole
behavior. We hope our contributions advance research into
the overlooked challenge of mitigating multiple shortcuts.

2. New Datasets for Multi-Shortcut Mitigation

While most previous datasets [4,59,60,72] are based on
the oversimplified single-shortcut setting, we introduce the
UrbanCars dataset (Sec. 2.1) and the ImageNet-Watermark
dataset (Sec. 2.2) to benchmark multi-shortcut mitigation.

2.1. UrbanCars Dataset

Overview We construct the UrbanCars dataset with mul-
tiple shortcuts: background (BG) and co-occurring object
(CoObj). As shown in Fig. 2, each image in UrbanCars has
a car at the center on a natural scene background with a
co-occurring object on the right. The task is to classify the
car’s body type (i.e., target) by overcoming two shortcuts in
the training set, which correlate with the target label.

Formally, we denote the dataset as a set of N tuples,
{(xi, yi, bi, ci)}Ni=1, where each image xi is annotated with
three labels: target label yi for the car body type, background
label bi, and co-occurring object label ci. We use a shared
label space for all three labels with two classes: urban and
country, i.e., yi, bi, ci ∈ {urban,country}. Based on
the combination of three labels, the dataset is partitioned
into 23 = 8 groups, i.e., {urban,country} car on the
{urban,country} BG with the {urban,country}
CoObj. We introduce the data distribution and construction
below and include details in Appendix A.1.
Data Distribution The training set of UrbanCars has two
spurious correlations of BG and CoObj shortcuts, whose
strengths are quantified by P (b = y | y) and P (c = y | y),
respectively. That is, the ratio of common BG (or CoObj)
given a target class. We set both to 0.95 by following the
correlation strength in [72]. We assume that two shortcuts
are independently correlated with the target, i.e., P (b, c |
y) = P (b | y)P (c | y). As shown in Fig. 2, most urban car
images have the urban background (e.g., alley) and urban co-
occurring object (e.g., fire plug), and vice versa for country
car images. The frequency of each group in the training set
is in Fig. 2. The validation and testing sets are balanced
without spurious correlations, i.e., ratios are 0.5.
Data Construction The UrbanCars dataset is created
from several source datasets. The car objects and labels are
from Stanford Cars [49], where the urban cars are formed
by classes such as sedan and hatchback. The country cars
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Figure 2. Unbalanced groups in UrbanCars’s training set based on
two shortcuts: background (BG) and co-occurring object (CoObj).
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Figure 3. Many carton class images in the ImageNet training set
contain the watermark. Saliency maps [76] of ResNet-50 [30] show
that the watermark serves as the shortcut for the carton class.

are from classes such as truck and van. The backgrounds are
from Places [97]. We use classes such as alley and crosswalk
to form the urban background. The country background
images are from classes such as forest road and field road.
Regarding co-occurring objects, we use LVIS [28] to obtain
the urban ones (e.g., fireplug and stop sign), and country ones
(e.g., cow and horse). After obtaining the source images, we
paste the car and co-occurring object onto the background.
UrbanCars Metrics We first report the In Distribu-
tion Accuracy (I.D. Acc) on UrbanCars. It computes the
weighted average over accuracy per group, where weights
are proportional to the training set’s correlation strength
(i.e., frequency in Fig. 2) by following the “average accu-
racy” [72] to measure the model’s performance when no
group shift happens.

To measure robustness against the group shift, previous
single-shortcut benchmarks [15,58,72] use worst-group ac-
curacy [72], i.e., the lowest accuracy among all groups. How-
ever, this metric does not capture multi-shortcut mitigation
well since it only focuses on groups where both shortcut
categories are uncommon (cf . the last column in Fig. 2).

To address this shortcoming, we introduce three new met-
rics: BG Gap, CoObj Gap, and BG+CoObj Gap. BG Gap
is the accuracy drop from I.D. Acc to accuracy in groups
where BG is uncommon but CoObj is common (cf . 1st yel-
low column in Fig. 2). Similarly, CoObj Gap computes the
accuracy drop from I.D. Acc to groups where only CoObj is
uncommon (cf . 2nd yellow column in Fig. 2). BG+CoObj
Gap computes accuracy drop from I.D. Acc to groups where
both BG and CoObj are uncommon (cf . red column in Fig. 2).
The first two metrics measure the robustness against the
group shift for each shortcut, and the last metric evaluates
the model’s robustness when both shortcuts are absent.

2.2. ImageNet-Watermark (ImageNet-W)

In addition to the precisely controlled spurious corre-
lations in UrbanCars, we study naturally occurring short-
cuts in the most popular computer vision benchmark: Im-
ageNet [17]. While ImageNet lacks shortcut labels, we
can evaluate models’ reliance on texture [26] and back-
ground [91] shortcuts. We additionally discovered a perva-
sive watermark shortcut and contribute ImageNet-Watermark
(ImageNet-W or IN-W), an evaluation set to expose models’
watermark shortcut reliance. Along with texture and back-
ground, this forms a comprehensive suite to evaluate reliance
on the multiple naturally occurring shortcuts in ImageNet.
Watermark Shortcut in ImageNet In the training set of

Figure 4. Carton images from LAION [73,74], a large-scale dataset
with 400 million to 2 billion images used in CLIP [66] pretraining,
also contain watermarks, enabling CLIP’s reliance on the water-
mark shortcut in zero-shot transfer to ImageNet and ImageNet-W.

the carton class, many images contain a watermark at the
center written in Chinese characters and ImageNet-trained
ResNet-50 [30] focuses on the watermark region to predict
the carton class (Fig. 3). Since the watermark reads carton
factory names or contact person’s names of a carton factory,
we conjecture that this watermark shortcut originates from
the real-world spurious correlation of web images. In the
validation set, none of the carton class images contain the
watermark, so ResNet-50 underperforms on the carton class
(48%) relative to overall accuracy (76%) across 1k classes.
Data Construction To test the robustness against
the watermark shortcut, we create ImageNet-Watermark
(ImageNet-W or IN-W) dataset, a new out-of-distribution
evaluation set of ImageNet. As shown in Tab. 1, we overlay
a transparent watermark written in “捷径捷径捷径” at the
center of all images from ImageNet validation set to mimic
the watermark pattern in IN-1k, where “捷径” means “short-
cut” in Chinese. We do this because we find that models
use the watermark even when the content is not identical
to the watermark in the training set of carton images, sug-
gesting that it is watermark’s presence rather than its content
that serves as the shortcut. We evaluate watermark in other
contents and languages in Appendix A.2.
ImageNet-W Metrics We mainly use two metrics to mea-
sure watermark shortcut reliance: (1) IN-W Gap is the ac-
curacy on IN-W minus the accuracy on IN-1k validation
set. A smaller accuracy drop indicates less reliance on the
watermark shortcut across all 1000 classes. (2) Carton Gap
is the carton class accuracy increase from IN-1k to IN-W. A
smaller Carton Gap indicates less reliance on the watermark
shortcut for predicting the carton class.

To demonstrate that the watermark shortcut is used for
predicting carton, we also use the following in Tab. 1: (1)
P (ŷ = carton), the likelihood of predicting carton on all IN-
1k validation set images, (2) ∆P (ŷ = carton), the likelihood
increase from IN-1k to IN-W on all 1k classes images, and
(3) ∆P (ŷ = carton | y = carton), the likelihood increase
from IN-1k to IN-W on carton class images.
Ubiquitous reliance on the watermark shortcut To
study reliance on the watermark shortcut, we use ImageNet-
W to benchmark a broad range of State-of-The-Art (SoTA)
vision models, including standard supervised training, using
different architectures [21,30,67], augmentations and regu-
larizations [26,35,92,93]. We also benchmark foundation
models [10] pretrained on larger datasets [27,66,73,74,79]
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Prediction: goldfish w/ Watermark: carton w/ Watermark: pencil sharpener→ carton

method architecture (pre)training data IN-1k Acc ↑ P (ŷ = carton) (%) IN-W Gap ↑ ∆P (ŷ = carton) (%) ↓ Carton Gap ↓ ∆P (ŷ = carton | y = carton) (%) ↓
Supervised ResNet-50 [30] IN-1k [17] 76.1 0.07 -26.7 +7.56 +40 +42.46
MoCov3 [13] (LP) ResNet-50 IN-1k 74.6 0.08 -20.7 +2.94 +44 +44.37
Style Transfer [26] ResNet-50 SIN [26] 60.1 0.10 -17.3 +4.91 +52 +50.06
Mixup [93] ResNet-50 IN-1k 76.1 0.07 -18.6 +3.43 +38 +39.78
CutMix [92] ResNet-50 IN-1k 78.5 0.09 -14.8 +1.92 +22 +29.61
Cutout [19,96] ResNet-50 IN-1k 77.0 0.08 -18.0 +2.93 +32 +38.06
AugMix [35] ResNet-50 IN-1k 77.5 0.09 -16.8 +2.61 +36 +34.44

Supervised RG-32gf IN-1k 80.8 0.09 -14.1 +3.74 +32 +33.43
SEER [27] (FT) RG-32gf [67] IG-1B [27] 83.3 0.09 -6.5 +0.56 +18 +24.26

Supervised ViT-B/32 [21] IN-1k 75.9 0.09 -8.7 +1.20 +34 +34.31
Uniform Soup [89] (FT) ViT-B/32 WIT [66] 79.9 0.09 -7.9 +0.32 +24 +23.87
Greedy Soup [89] (FT) ViT-B/32 WIT 81.0 0.09 -6.5 +0.35 +16 +23.87

Supervised ViT-L/16 IN-1k 79.6 0.08 -6.2 +0.82 +34 +32.57
CLIP [66] (zero-shot) ViT-L/14 WIT 76.5 0.06 -4.4 +0.01 +12 +1.75
CLIP (zero-shot) ViT-L/14 LAION-400M [74] 72.7 0.05 -4.9 +0.03 +12 +13.76

MAE [29] (FT) ViT-H/14 IN-1k 86.9 0.08 -3.5 +0.43 +30 +29.59
SWAG [79] (LP) ViT-H/14 IG-3.6B [79] 85.7 0.09 -4.9 +0.19 +8 +12.80
SWAG (FT) ViT-H/14 IG-3.6B 88.5 0.09 -3.1 +0.35 +18 +20.25
CLIP (zero-shot) ViT-H/14 LAION-2B [73] 77.9 0.06 -3.6 +0.03 +16 +12.01

average 78.6 0.08 -10.7 +1.74 +26.7 +27.96

Table 1. Models rely on the watermark as a shortcut for the carton class. LP and FT denote linear probing and fine-tuning on ImageNet-
1k, respectively. Because models exhibit drops (i.e., IN-W Gap) and an increase in accuracy and likelihood on the carton class from IN-1k to
IN-W, we conclude that various vision models suffer from the watermark shortcut (more results in Appendices D.1 and D.2).

with different pretraining supervision and transfer learning
techniques [13,27,29,66,79,89]. In Tab. 1, we find a consid-
erable IN-W Gap of up to -26.7 and -10.7 on average and
a Carton Gap of up to +52 and +26.7 on average. While
all models exhibit uniform (1/1000 = 0.1%) likelihood for
carton class (P (ŷ = carton)) on IN-1k, we observe a consid-
erable increase in the likelihood of predicting carton on IN-W
(∆P (ŷ = carton)) and a significant likelihood increase in
carton class images (∆P (ŷ = carton | y = carton)). Al-
though compared to supervised ResNet-50, some models
with larger architectures or extra training data can decrease
reliance on the watermark shortcut, none of them fully close
the performance gaps. Interestingly, CLIP with zero-shot
transfer still suffers from the watermark shortcut with +12 to
+16 Carton Gap, which could be explained by many carton
images in the pretraining data (e.g., LAION) also contain-
ing watermarks (cf . Fig. 4). This suggests that even large-
scale pretraining datasets (e.g., used for CLIP) can contain
shortcuts, confirming findings that it is data’s quality, not
quantity [24,61], that matters most to CLIP’s robustness.

Multi-Shortcut Mitigation Metrics on ImageNet To
measure the mitigation of multiple shortcuts, we evaluate
models on multiple OOD variants of ImageNet. In this work,
we study three shortcuts on ImageNet—background, texture,
and watermark. The background shortcut is evaluated on
ImageNet-9 (IN-9) [91], and we use IN-9 Gap (i.e., BG-Gap
in [91]) as the evaluation metric, which is the accuracy drop
from Mixed-Same to Mixed-Rand in IN-9, where a lower ac-
curacy drop implies less background shortcut reliance. The
texture shortcut is evaluated on Stylized ImageNet (SIN) [26]

and ImageNet-R (IN-R) [33], where we use SIN Gap, top-1
accuracy drop from IN-1k to SIN, and IN-R Gap, the top-1
accuracy drop from IN-200 (i.e., a subset of IN-1k with 200
classes used in IN-R) to IN-R.

3. Benchmark Methods and Settings
On all datasets, we first evaluate standard training

that minimizes the empirical risk on the training set (i.e.,
ERM [83]) using ResNet-50 [30] as the network architec-
ture, which serves as the baseline. On ImageNet, we addi-
tionally show ERM’s results with other architectures, pre-
training datasets, and supervision.

In addition to ERM, we comprehensively evaluate short-
cut mitigation methods across four categories based on the
level of shortcut information required (Tab. 2).
Category 1: Standard Augmentation and Regulariza-
tion Methods in this category use general data augmenta-
tion or regularization without prior knowledge of the short-
cut, which are commonly used to improve accuracy on IN-1k,

Category Summary Shortcut Information Methods

1 Standard Aug-
mentation and
Regularization

None Mixup [93], Cutout [19,96],
CutMix [92], AugMix [35],
SD [63]

2 Targeted Augmen-
tation for Mitigat-
ing Shortcuts

Types of shortcuts (w/o
shortcut labels)

CF+F Aug [11], Style Trans-
fer (TXT Aug) [26], BG
Aug [71,91], WMK Aug

3 Using Shortcut
Labels

Image-level ground-
truth shortcut label

gDRO [72], DI [87],
SUBG [38], DFR [45]

4 Inferring Pseudo
Shortcut Labels

Image-level pseudo
shortcut label

LfF [60], JTT [58],
EIIL [15], DebiAN [53]

Table 2. Existing methods for multi-shortcut mitigation benchmark.
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e.g., new training recipes [84,88]. Some works [11,64] show
that they can also improve OOD robustness.
Category 2: Targeted Augmentation for Mitigating
Shortcuts Other works use data augmentation that modi-
fies shortcut cues. We benchmark CF+F Aug [11] on Urban-
Cars. On ImageNet, we benchmark texture augmentation
(TXT Aug) via Style Transfer [26] and background aug-
mentation (BG Aug) [71,91]. To counter the watermark
shortcut, we design watermark augmentation (WTM Aug)
that randomly overlays the watermark onto images (cf . Ap-
pendix B.1).
Category 3: Using Shortcut Labels In this category,
methods use shortcut labels for mitigation, which are gen-
erally used to reweight [72] or resample training data [38,
45,72]. We only benchmark methods in this category on
UrbanCars since ImageNet does not have shortcut labels.
Category 4: Inferring Pseudo Shortcut Labels Follow-
ing the ideas of methods using shortcut labels, one line of
works [15,53,58,60] estimates the pseudo shortcut labels
when ground-truth labels are unavailable.
Benchmark Settings We introduce the experiment set-
tings here (details in Appendix B.3). On UrbanCars, we use
worst-group accuracy [72] on the validation set to select the
early stopping epoch and report test set results. All methods
except DFR [45] use end-to-end training on UrbanCars. On
ImageNet, following the last layer re-training [45] setting,
we only train the last classification layer upon a frozen fea-
ture extractor. On both datasets, we use ResNet-50 as the
network architecture. On ImageNet, we also benchmark
self-supervised and foundation models.

4. Our Approach
Motivation Our multi-shortcut benchmark results (Sec. 5)
show that many existing methods suffer from the Whac-A-
Mole problem, motivating us to design a better method to
mitigate multiple shortcuts simultaneously.

We focus on mitigating multiple known shortcuts, i.e., the
number and types of shortcuts are given, but shortcut labels
are not. Although mitigating unknown numbers and types
of shortcuts (i.e., category 1, 4) sounds more desirable, not
only do our empirical results show their under-performance
but also a concurrent work [57] proves the theoretical impos-
sibility of mitigation without any inductive biases.

We follow methods that use data augmentation to mod-
ify the shortcut cues (i.e., category 2). Formally, given a
set of K shortcuts {si}Ki=1 for mitigation, we create a set
of augmentations Saug = {Ai}Ki=1 ∪ {I}, where the aug-
mentation Ai (e.g., style transfer [26]) modifies the visual
cue of the shortcut si (e.g., texture). I denotes the identity
transformation, i.e., no augmentation applied.

Based on the augmentation set Saug, a straightforward way
is to minimize the empirical risk [83] over all augmented
and original images. However, different augmentations can
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Figure 5. An overview of Last Layer Ensemble (LLE). LLE trains
an ensemble of the last classification layers upon a feature extractor,
where each last layer is trained with images in one augmentation
type. The distributional shift classifier, supervised by the aug-
mentation type, is trained to predict the distributional shift and
dynamically aggregates the predictions per shift during testing.

be incompatible, leading to suboptimal results. That is, aug-
mentation Ai could be detrimental to mitigating a different
shortcut sj , where i 6= j. For example, mitigating the texture
shortcut via style transfer [26] augmentation unexpectedly
amplifies the saliency of the watermark (Fig. 1b), leading to
worse watermark mitigation results (Tab. 1).
Last Layer Ensemble To address this issue, we propose
Last Layer Ensemble (LLE), a new method for mitigating
multiple shortcuts simultaneously (Fig. 5). Since it is hard
to use a single model to learn the invariance among incom-
patible augmentations, we instead train an ensemble [20]
of classification layers (i.e., last layers) on top of a shared
feature extractor so that each classification layer only trains
on data from a single type of augmentation that simulates
one type of distributional shift d. In this way, each last layer
predicts the likelihood of the target P (ŷ | d, x).

At the same time, we train a distributional shift classifier,
another classification layer on top of the feature extractor, to
predict the type of augmentation that simulates the distribu-
tional shift, i.e., P (d̂ | x). During testing, LLE dynamically
aggregates the logits from the ensemble of the last layers
based on the predicted distributional shift. E.g., when the
testing image contains the texture shift, the distributional
shift classifier gives higher weights for the logits from the
classifier trained with texture augmentation, alleviating the
impact from other classification layers trained with incom-
patible augmentations. In addition, when the weights of
the feature extractor are not frozen, we stop the gradient
from the distributional shift classifier to the feature extractor,
preventing the feature extractor from learning the shortcut in-
formation. Compared to standard ensemble approaches [20]
that train multiple full networks and add significant infer-
ence overhead, our method uses minimal additional training
parameters and has better computational efficiency.
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shortcut reliance

I.D. Acc BG Gap ↑ CoObj Gap ↑ BG+CoObj Gap ↑
ERM 97.6 -15.3 -11.2 -69.2

Mixup 98.3 -12.6 -9.3 -61.8
CutMix 96.6 -45.0 (×2.94 ) -4.8 -86.5
Cutout 97.8 -15.8 (×1.03 ) -10.4 -71.4
AugMix 98.2 -10.3 -12.1 (×1.08 ) -70.2
SD 97.3 -15.0 -3.6 -36.1

CF+F Aug 96.8 -16.0 (×1.04 ) +0.4 -19.4

LfF 97.2 -11.6 -18.4 (×1.64 ) -63.2
JTT (E=1) 95.9 -8.1 -13.3 (×1.18 ) -40.1
EIIL (E=1) 95.5 -4.2 -24.7 (×2.21 ) -44.9
JTT (E=2) 94.6 -23.3 (×1.52 ) -5.3 -52.1
EIIL (E=2) 95.5 -21.5 (×1.40 ) -6.8 -49.6
DebiAN 98.0 -14.9 -10.5 -69.0

LLE (ours) 96.7 -2.1 -2.7 -5.9

Table 3. Many methods not using shortcut labels (category
1,2,4) amplify shortcut on UrbanCars. : increased reliance
on a shortcut relative to ERM.×2.94: 2.94 times larger than ERM.

5. Experiments

Based on UrbanCars and ImageNet-W datasets, we show
results on multi-shortcut mitigation. We first study if stan-
dard supervised training (i.e., ERM) relies on multiple short-
cuts (Sec. 5.1). Next, we show the multi-shortcut setting is
significantly challenging: mitigating one shortcut increases
reliance on other shortcuts compared to ERM. We name
this phenomenon Whac-A-Mole, which is observed in many
SoTA methods, including mitigation methods (Sec. 5.2) and
self-supervised/foundation models (Sec. 5.3). Finally, we
show that our Last Layer Ensemble method can reduce re-
liance across multiple shortcuts more effectively (Sec. 5.4).

5.1. Standard training relies on multiple shortcuts

On both datasets, we find that standard training (i.e.,
ERM [83]) relies on multiple shortcuts. On UrbanCars,
Tab. 3 shows that ERM achieves near zero in-distributional
error (97.6% I.D. Acc.). However, ERM’s performance
drops when group shift happens. When the background
shortcut is absent, ERM’s performance drops by 15.3% in
BG Gap. Similarly, the accuracy drops by 11.2% in CoObj
Gap when the CoObj shortcut is absent. When neither short-
cut is present, models suffer catastrophic drops of 69.2%
in BG+CoObj Gap. On ImageNet, Tab. 4 shows that ERM
achieves good top-1 accuracy of 76.39% on IN-1k. However,
it suffers considerable drops in accuracy when watermark,
texture, or background cues are altered, e.g., 30% Carton
Gap for watermark, 56-69% for texture, and 5.19% for back-
ground, suggesting that standard training on natural images
from ImageNet leads to reliance on multiple shortcuts.

5.2. Results: Mitigation Methods

Results: Standard Augmentation and Regularization
(Category 1) We first show the results of methods us-

shortcut reliance

Watermark (WTM) Texture (TXT) Background (BG)
IN-1k IN-W Gap ↑ Carton Gap ↓ SIN Gap ↑ IN-R Gap ↑ IN-9 Gap ↑

ERM 76.39 -25.40 +30 -69.43 -56.22 -5.19

Mixup 76.17 -24.87 +34 (×1.13 ) -68.18 -55.79 -5.60 (×1.08 )
CutMix 75.90 -25.78 (×1.01 ) +32 (×1.06 ) -69.31 -56.36 -5.65 (×1.09 )
Cutout 76.40 -25.11 +32 (×1.06 ) -69.39 -55.93 -5.35 (×1.03 )
AugMix 76.23 -23.41 +38 (×1.26 ) -68.51 -54.91 -5.85 (×1.13 )
SD 76.39 -26.03 (×1.02 ) +30 -69.42 -56.36 -5.33 (×1.03 )

WTM Aug 76.32 -5.78 +14 -69.31 -56.22 -5.34 (×1.03 )
TXT Aug 75.94 -25.93 (×1.02 ) +36 (×1.20 ) -63.99 -53.24 -5.66 (×1.09 )
BG Aug 76.03 -25.01 +36 (×1.20 ) -68.41 -54.51 -4.67

LfF 76.35 -26.19 (×1.03 ) +36 (×1.20 ) -69.34 -56.02 -5.61 (×1.08 )
JTT 76.33 -26.40 (×1.04 ) +32 (×1.06 ) -69.48 -56.30 -5.55 (×1.07 )
EIIL 71.55 -33.48 (×1.31 ) +24 -66.04 -61.35 (×1.09 ) -6.42 (×1.24 )
DebiAN 76.33 -26.40 (×1.04 ) +36 (×1.20 ) -69.37 -56.29 -5.53 (×1.07 )

LLE (ours) 76.25 -6.18 +10 -61.00 -54.89 -3.82

Table 4. Existing methods fail to combat multiple shortcuts by
amplifying at least one shortcut relative to ERM on ImageNet.
All models use ResNet-50 with last layer re-training [45].

ing augmentation and regularization without using inductive
biases of shortcuts. On UrbanCars (Tab. 3), we observed
that CutMix and Cutout amplify the background shortcut
with a larger BG Gap relative to ERM. AugMix increases
the reliance on the CoObj shortcut with a larger CoObj Gap
(i.e., -12.2%) compared to ERM. Although Mixup and SD do
not produce Whac-A-Mole results, they only yield marginal
improvement or can only mitigate one shortcut well. On Ima-
geNet, the results in Tab. 4 show that all approaches amplify
at least one shortcut. For instance, AugMix achieves a worse
Carton Gap to amplify the watermark shortcut compared to
ERM. For CutMix, we again observe that it amplifies the BG
shortcut on ImageNet. We show more results of CutMix’s
background reliance in Appendix F.

Takeaway: Standard augmentation and regularization
methods can mitigate some shortcuts (e.g., texture)
but amplify others .

Results: Targeted Augmentation for Mitigating Short-
cuts (Category 2) Further, we benchmark methods using
data augmentation to mitigate a specific shortcut. Compared
to methods in category 1, augmentations here use stronger
inductive biases about the shortcut by modifying the short-
cut visual cue. On UrbanCars, although CF+F Aug achieves
good results for the CoObj shortcut, it amplifies the BG
shortcut. On ImageNet, texture and background augmenta-
tion improve the reliance on the watermark shortcut, which
can be explained by the remained or even increased saliency
of the watermark in Fig. 1b and Appendix D.3.

Takeaway: Augmentations tackling a specific type of
shortcut (e.g., style transfer for texture shortcut) can
amplify other shortcuts (e.g., watermark).

Results: Using Shortcut Labels (Category 3) Then, we
show the results of methods using shortcut labels on Urban-
Cars in Tab. 5. Methods can mitigate multiple shortcuts
when labels of both shortcuts are used (cf . first section in
Tab. 5). However, when using labels of either shortcut, which
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shortcut label shortcut reliance

Train Val I.D. Acc BG Gap ↑ CoObj Gap ↑ BG+CoObj Gap ↑
ERM 7 BG+CoObj 97.6 -15.3 -11.2 -69.2
gDRO BG+CoObj BG+CoObj 91.6 -10.9 -3.6 -16.4
DI BG+CoObj BG+CoObj 89.0 -2.2 -1.0 +0.4
SUBG BG+CoObj BG+CoObj 71.1 -4.7 -0.3 -6.3
DFR BG+CoObj BG+CoObj 89.7 -10.7 -6.9 -45.2

ERM 7 BG 97.8 -14.6 -11.3 -68.5
gDRO BG BG 96.0 -4.2 -26.9 (×2.39 ) -56.5
DI BG BG 94.7 +2.2 -27.0 (×2.40 ) -25.2
SUBG BG BG 92.6 +1.3 -36.4 (×3.24 ) -35.8
DFR BG BG 97.4 -9.8 -13.6 (×1.21 ) -58.9

ERM 7 CoObj 97.6 -15.4 -11.0 -68.8
gDRO CoObj CoObj 95.7 -31.4 (×2.03 ) -0.5 -54.9
DI CoObj CoObj 94.2 -36.1 (×2.34 ) +2.8 -35.8
SUBG CoObj CoObj 93.1 -60.2 (×3.90 ) +2.5 -62.4
DFR CoObj CoObj 97.4 -19.1 (×1.24 ) -8.6 -64.9

Table 5. Methods using shortcut labels (category 3) amplify
the unlabeled shortcut when mitigating the labeled shortcut
on UrbanCars. : mitigate a shortcut, e.g., using shortcut labels.

is the typical situation for in-the-wild datasets where shortcut
labels are incomplete, they exhibit a higher performance gap
in the other shortcut relative to ERM. E.g., when only using
the CoObj labels, models achieve poorer BG Gap results.

Takeaway: Methods using shortcut labels mitigate the
labeled shortcut but amplifies the unlabeled one .

Results: Inferring Pseudo Shortcut Labels (Category 4)
The Whac-A-Mole problem of methods using shortcut la-
bels motivates us to study whether the problem can be solved
by inferring pseudo labels of multiple shortcuts. Here we
analyze the results of LfF, JTT, EIIL, and DebiAN. Their
key idea is based on ERM’s training dynamics of learning
different visual cues. LfF infers soft shortcut labels by as-
suming that the shortcut is learned earlier. Similarly, JTT
and EIIL use an under-trained ERM trained with E epochs
as the reference model to infer pseudo shortcut labels. We
use E=1 and E=2 for JTT and EIIL. Instead of using a fixed
reference model, DebiAN jointly trains the reference and
mitigation models. The results in Tab. 3 show that LfF, JTT
(E=1), and EIIL (E=1) still exhibit Whac-A-Mole results
by achieving a larger CoObj Gap than ERM. On the other
hand, JTT (E=2) and EIIL (E=2) also show the Whac-A-
Mole results by achieving larger BG Gap than ERM. On
ImageNet, we observe Whac-A-Mole results produced by
LfF, JTT, EIIL, and DebiAN in Tab. 4.

To investigate the reason for their Whac-A-Mole results,
we analyze the training dynamics of ERM. In Fig. 6, we
plot the accuracy of three visual cues—object (i.e., car
body type), background, and co-occurring object on the
validation set. The accuracy is computed based on ERM’s
{urban,country} predictions against labels of object,
BG, and CoObj. We observe a Whac-A-Mole game in
ERM’s training. At epoch 1, ERM mainly predicts the back-
ground (82.6%), suggesting that the background shortcut is
learned first. Thus, LfF, JTT (E=1), and EIIL (E=1) can infer
the BG shortcut labels well to amplify the CoObj shortcut.
As the training continues to epoch 2, the reliance on the BG

82.6

60.6

55.2

63.4

71.0

71.2

CoObj

BG

Figure 6. On UrbanCars, ERM learns BG and CoObj shortcuts
at different training epochs, making it difficult to infer pseudo
labels (category 4) of multiple shortcuts from ERM.

shortcut decreases (82.6% to 71.2%), but the reliance on the
CoObj shortcut is increased (60.6% to 71.8%). It renders
JTT (E=2) and EIIL (E=2) better infer CoObj shortcut labels,
which, in turn, amplifies the BG shortcut.

Takeaway: Methods inferring pseudo shortcut labels
still amplify shortcuts because ERM learns different
shortcuts asynchronously during training, making it
hard to infer labels of all shortcuts for mitigation.

5.3. Results: Self-Supervised & Foundation Models

On ImageNet, we further benchmark self-supervised pre-
training methods, i.e., MoCov3 [13], MAE [29], SEER [27].
We also benchmark foundation models that use extra training
data, i.e., Uniform Soup [89], Greedy Soup [89], CLIP [66],
SEER [27], and SWAG [79]. The results in Tab. 6 show that
many of them fail to mitigate multiple shortcuts jointly. Re-
garding self-supervised methods, MoCov3 achieves worse
results on all three shortcuts, and MAE achieves a worse
SIN Gap for the texture shortcut relative to ERM. Regarding
foundation models, although SWAG with linear probing (LP)
achieves a much better IN-R Gap (-19.79%), it also has a
stronger reliance on the background in BG Gap compared
to ERM. Similarly, SEER, Uniform Soup, and Greedy Soup
mitigate the watermark shortcut but amplify the background
shortcut. When using ViT-L, although CLIP with zero-shot
transfer does not produce Whac-A-Mole results, they do not
fully close the performance gap. Besides, they also show
much lower IN-1k accuracy than other foundation models.
We show results using other architectures in Appendix E.2.

Takeaway: Self-supervised and foundation models can
mitigate some shortcuts but amplify others .

5.4. Results: Last Layer Ensemble (LLE)

We show that our Last Layer Ensemble (LLE) can better
tackle multi-shortcut mitigation. LLE mitigates shortcuts via
a set of data augmentations. Specifically, we augment back-
ground (BG) and co-occurring object (CoObj) by swapping
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shortcut reliance

Watermark Texture Background
IN-1k IN-W Gap ↑ Carton Gap ↓ SIN Gap ↑ IN-R Gap ↑ IN-9 Gap ↑

arch: RG-32gf
ERM 80.88 -14.15 +32 -69.27 -52.43 -6.40
SEER (FT,IG-1B) 83.35 -6.50 +18 -73.04 (×1.05 ) -50.42 -7.14 (×1.11 )

arch: ViT-B/32
ERM 75.92 -8.71 +34 -57.16 -49.45 -6.86
Uniform Soup (FT,WIT) 79.96 -7.90 +24 -59.67 (×1.04 ) -27.51 -7.78 (×1.13 )

Greedy Soup (FT,WIT) 81.01 -6.47 +16 -59.61 (×1.04 ) -30.01 -7.21 (×1.05 )

arch: ViT-B/16
ERM 81.07 -6.69 +26 -62.60 -50.36 -5.36
SWAG (LP,IG-3.6B) 81.89 -7.76 (×1.16 ) +18 -67.33 (×1.08 ) -19.79 -10.39 (×1.94 )

SWAG (FT,IG-3.6B) 85.29 -5.43 +24 -66.99 (×1.07 ) -29.55 -4.44
MoCov3 (LP) 76.65 -16.0 (×2.39 ) +22 -63.36 (×1.01 ) -56.86 (×1.12 ) -7.80 (×1.45 )

MAE (FT) 83.72 -4.60 +24 -65.20 (×1.04 ) -47.10 -4.45
MAE+LLE (ours) 83.68 -2.48 +6 -58.78 -44.96 -3.70

arch: ViT-L/16 or 14
ERM 79.65 -6.14 +34 -61.43 -53.17 -6.50
SWAG (LP,IG-3.6B) 85.13 -5.73 +6 -60.26 -10.17 -7.26 (×1.12 )

SWAG (FT,IG-3.6B) 88.07 -3.16 +20 -63.45 (×1.03 ) -12.29 -2.92
CLIP (zero-shot,WIT) 76.57 -4.47 +12 -61.27 -6.26 -3.68
CLIP (zero-shot,LAION) 72.77 -4.94 +12 -56.85 -8.43 -4.54
MAE (FT) 85.95 -4.36 +22 -62.48 (×1.02 ) -36.46 -3.53
MAE+LLE (ours) 85.84 -1.74 +12 -56.32 -34.64 -2.77

Table 6. On ImageNet, many self-supervised and foundation
models amplify shortcuts, whereas LLE mitigates multiple
shortcuts jointly. (·): transfer learning (and extra data).

BG and CoObj across target classes on UrbanCars (details
in Appendix B.5). On ImageNet, we use watermark aug-
mentation (WMK Aug), style transfer [26] (TXT Aug), and
background augmentation [71,91] (BG Aug) for watermark,
texture, and background shortcuts, respectively. Besides, we
show the results of LLE on other OOD variants of ImageNet
in Appendices E.3 and E.5.

The results on UrbanCars in Tab. 3 show that LLE beats
all other methods in BG Gap and BG+CoObj Gap metrics
and achieves second best CoObj Gap to CF+F Aug, a method
amplifies the background shortcut. The results of ImageNet
with ResNet-50 are in Tab. 4. LLE achieves the best multi-
shortcut mitigation results in Carton Gap, SIN Gap, and IN-9
Gap. Regarding IN-W Gap and IN-R Gap, LLE achieves
better results than ERM. I.e., no Whac-A-Mole problems.
On ImageNet, we further use MAE as the feature extractor,
and the results on ImageNet are in Tab. 6. LLE achieves the
best results in IN-W Gap, SIN Gap, and IN-9 Gap. LLE also
achieves the best results in the remaining metrics comparing
to methods not using extra pretraining data.
Ablation Study In Tab. 7, we show the ablation study
of LLE: (1) w/o ensemble: training a single last layer. (2)
AugMix+w/o ensemble: based on (1) and use JS divergence
in AugMix to improve the invariance across augmentations.
(3) w/o dist cls.: remove domain shift classifier and directly
take the mean over the output of ensemble classifiers. Except
for IN-R Gap, the full model achieves better results in all
other metrics. Although the w/o ensemble achieves a better
IN-R Gap, it suffers from reliance on other shortcuts.

6. Related Work

Group Shift Datasets Most previous works use single-
shortcut datasets [4,32,43,47,55,59,60,72] to benchmark
group shift robustness [72]. Although [8,77,95] use labels
of multiple attributes [59] for evaluation, there lacks a sanity

Shortcut Reliance

Watermark Texture Background
IN-1k IN-W Gap ↑ Carton Gap ↓ SIN Gap ↑ IN-R Gap ↑ IN-9 Gap ↑

w/o ensemble 76.03 -6.71 +18 -66.81 -52.55 -5.08
AugMix+w/o ensemble 75.17 -7.27 +22 -66.33 -56.38 -5.38
w/o dist. cls. 75.82 -17.77 +36 -66.45 -53.58 -4.81
LLE (full model) 76.25 -6.18 +10 -61.20 -54.89 -3.82

Table 7. Ablation study of Last Layer Ensemble on ImageNet.

check on whether the selected attributes are learned as spu-
rious shortcuts. [53,78] create MNIST-based [52] synthetic
datasets with multiple shortcuts, where the shortcuts are
unrealistic. In contrast, our UrbanCars dataset is more photo-
realistic and contains commonly seen shortcuts. Besides, our
ImageNet-W dataset better evaluates shortcut mitigation on
the large-scale and real-world ImageNet dataset.
OOD Datasets of ImageNet While many models achieve
great performance on ImageNet [17], they suffer under vari-
ous distributional shifts, e.g., corruption [34], sketches [85],
rendition [33], texture [26], background [91], or unknown
distributional shifts [36,68]. In this work, we construct
ImageNet-W, where SoTA vision models rely on our newly
discovered watermark shortcut.
Shortcut Mitigation and Improving OOD Robustness
To address the shortcut learning problem [25], [38,72,87]
use shortcut labels for mitigation. With only knowledge
of the shortcut type, [5,86] use architectural inductive bi-
ases. [26,71,91] use augmentation and [41,45] re-trains the
last layer for mitigation. Without knowledge of shortcut
types, [3,15,53,58,60,77,82,94] infer pseudo shortcut labels,
which is theoretically impossible [57], and we show that they
struggle to mitigate multiple shortcuts. Other works suggest
that self-supervised pretraining [29,44] and foundation mod-
els [10,27,27,40,66,89,90] improve OOD robustness. We
show that many of them suffer from the Whac-A-Mole prob-
lem or struggle to close performance gaps.

7. Conclusion
In this work, we propose novel benchmarks to evaluate

multi-shortcut mitigation. The results show that state-of-the-
art models fail to mitigate multiple shortcuts in a Whac-A-
Mole game. We show that this challenge pervades modern
vision models, ranging from shortcut mitigation methods to
foundation models. To tackle this challenge, we propose Last
Layer Ensemble (LLE) to mitigate multiple shortcuts simul-
taneously with knowledge of the shortcut types. We leave to
future work the setting with no knowledge of shortcut types
(see Appendix G). We hope our work inspires future research
into the overlooked challenge of multi-shortcut mitigation.
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Appendix

A. More Details of Datasets
A.1. UrbanCars Details

Here we present more details of the UrbanCars dataset.

Number of Images Regarding the number of images, each target class contains 4000 images in the training set, i.e., 8000
images in total. That is, our training set is balanced regarding the target label and only imbalanced with shortcut labels.
Therefore, UrbanCars does not have a target class imbalance issue [38] in Waterbirds dataset [72], where 76.8% of images are
waterbird, and 23.3% of images are landbird. In validation and testing sets of UrbanCars, each split contains 500 images.

Data Annotation As mentioned in Sec. 2.1, each image is annotated with three image-level labels—car body type, back-
ground, and co-occurring object. Besides, following Waterbirds [72] dataset, the dataset also contains the mask annotation
of the car object and the co-occurring object, which enables shortcut mitigation via targeted augmentation (category 2), i.e.,
CF+F Aug [11] (cf . Appendix B.4) and our proposed LLE approach (cf . Appendix B.5).

Details of Data Construction Here, we present the details of collecting the data from source datasets based on three visual
cues—main object (i.e., car), background shortcut, and co-occurring object shortcut.

First, to obtain car images, we use MaskFormer [14] pretrained on MS-COCO [56] dataset’s panoptic segmentation [46]
task to segment cars from Stanford Cars [49] dataset. In each image from Stanford Cars, we choose the predicted car instance
mask that has the largest IoU with the bounding box annotation provided in Stanford Cars. After segmentation, we run
MaskFormer on foreground-only images to detect humans. Images with humans detected are filtered out.

When pasting the car object to the background, we first compute its square bounding box, which is the bounding box whose
side length is the longer side of the actual bounding box of the car object based on the predicted segmentation mask. Then, we
resize the square bounding box such that the side length is 50% of the final image size, which is smaller than the size of the car
object.

We merge the original 196 classes in Stanford Cars into urban cars (e.g., sedan, hatchback, etc.) and country cars (e.g.,
pickup truck, van, etc.). The mapping from the original 196 classes in Stanford Cars to urban cars and country cars is as
follows:

• urban cars: Acura RL Sedan 2012, Acura TL Sedan 2012, Acura TL Type-S 2008, Acura TSX Sedan 2012, Acura Integra
Type R 2001, Acura ZDX Hatchback 2012, Aston Martin V8 Vantage Coupe 2012, Aston Martin Virage Convertible
2012, Aston Martin Virage Coupe 2012, Audi RS 4 Convertible 2008, Audi A5 Coupe 2012, Audi TTS Coupe 2012,
Audi R8 Coupe 2012, Audi V8 Sedan 1994, Audi 100 Sedan 1994, Audi 100 Wagon 1994, Audi TT Hatchback 2011,
Audi S6 Sedan 2011, Audi S5 Convertible 2012, Audi S5 Coupe 2012, Audi S4 Sedan 2012, Audi S4 Sedan 2007, Audi
TT RS Coupe 2012, BMW ActiveHybrid 5 Sedan 2012, BMW 1 Series Convertible 2012, BMW 1 Series Coupe 2012,
BMW 3 Series Sedan 2012, BMW 3 Series Wagon 2012, BMW 6 Series Convertible 2007, BMW M3 Coupe 2012,
BMW M5 Sedan 2010, BMW M6 Convertible 2010, BMW Z4 Convertible 2012, Bentley Continental Supersports Conv.
Convertible 2012, Bentley Arnage Sedan 2009, Bentley Mulsanne Sedan 2011, Bentley Continental GT Coupe 2012,
Bentley Continental GT Coupe 2007, Bentley Continental Flying Spur Sedan 2007, Bugatti Veyron 16.4 Convertible
2009, Bugatti Veyron 16.4 Coupe 2009, Buick Regal GS 2012, Buick Verano Sedan 2012, Cadillac CTS-V Sedan
2012, Chevrolet Corvette Convertible 2012, Chevrolet Corvette ZR1 2012, Chevrolet Corvette Ron Fellows Edition
Z06 2007, Chevrolet Camaro Convertible 2012, Chevrolet Impala Sedan 2007, Chevrolet Sonic Sedan 2012, Chevrolet
Cobalt SS 2010, Chevrolet Malibu Hybrid Sedan 2010, Chevrolet Monte Carlo Coupe 2007, Chevrolet Malibu Sedan
2007, Chrysler Sebring Convertible 2010, Chrysler 300 SRT-8 2010, Chrysler Crossfire Convertible 2008, Chrysler
PT Cruiser Convertible 2008, Daewoo Nubira Wagon 2002, Dodge Caliber Wagon 2012, Dodge Caliber Wagon 2007,
Dodge Magnum Wagon 2008, Dodge Challenger SRT8 2011, Dodge Charger Sedan 2012, Dodge Charger SRT-8 2009,
Eagle Talon Hatchback 1998, FIAT 500 Abarth 2012, FIAT 500 Convertible 2012, Ferrari FF Coupe 2012, Ferrari
California Convertible 2012, Ferrari 458 Italia Convertible 2012, Ferrari 458 Italia Coupe 2012, Fisker Karma Sedan
2012, Ford Mustang Convertible 2007, Ford GT Coupe 2006, Ford Focus Sedan 2007, Ford Fiesta Sedan 2012, Geo Metro
Convertible 1993, Honda Accord Coupe 2012, Honda Accord Sedan 2012, Hyundai Veloster Hatchback 2012, Hyundai
Sonata Hybrid Sedan 2012, Hyundai Elantra Sedan 2007, Hyundai Accent Sedan 2012, Hyundai Genesis Sedan 2012,
Hyundai Sonata Sedan 2012, Hyundai Elantra Touring Hatchback 2012, Hyundai Azera Sedan 2012, Infiniti G Coupe IPL
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2012, Jaguar XK XKR 2012, Lamborghini Reventon Coupe 2008, Lamborghini Aventador Coupe 2012, Lamborghini
Gallardo LP 570-4 Superleggera 2012, Lamborghini Diablo Coupe 2001, Lincoln Town Car Sedan 2011, MINI Cooper
Roadster Convertible 2012, Maybach Landaulet Convertible 2012, McLaren MP4-12C Coupe 2012, Mercedes-Benz
300-Class Convertible 1993, Mercedes-Benz C-Class Sedan 2012, Mercedes-Benz SL-Class Coupe 2009, Mercedes-Benz
E-Class Sedan 2012, Mercedes-Benz S-Class Sedan 2012, Mitsubishi Lancer Sedan 2012, Nissan Leaf Hatchback 2012,
Nissan Juke Hatchback 2012, Nissan 240SX Coupe 1998, Plymouth Neon Coupe 1999, Porsche Panamera Sedan 2012,
Rolls-Royce Phantom Drophead Coupe Convertible 2012, Rolls-Royce Ghost Sedan 2012, Rolls-Royce Phantom Sedan
2012, Scion xD Hatchback 2012, Spyker C8 Convertible 2009, Spyker C8 Coupe 2009, Suzuki Aerio Sedan 2007,
Suzuki Kizashi Sedan 2012, Suzuki SX4 Hatchback 2012, Suzuki SX4 Sedan 2012, Tesla Model S Sedan 2012, Toyota
Camry Sedan 2012, Toyota Corolla Sedan 2012, Volkswagen Golf Hatchback 2012, Volkswagen Golf Hatchback 1991,
Volkswagen Beetle Hatchback 2012, Volvo C30 Hatchback 2012, Volvo 240 Sedan 1993, smart fortwo Convertible 2012.

• country cars: AM General Hummer SUV 2000, Aston Martin V8 Vantage Convertible 2012, BMW X5 SUV 2007, BMW
X6 SUV 2012, BMW X3 SUV 2012, Buick Rainier SUV 2007, Buick Enclave SUV 2012, Cadillac SRX SUV 2012,
Cadillac Escalade EXT Crew Cab 2007, Chevrolet Silverado 1500 Hybrid Crew Cab 2012, Chevrolet Traverse SUV
2012, Chevrolet HHR SS 2010, Chevrolet Tahoe Hybrid SUV 2012, Chevrolet Express Cargo Van 2007, Chevrolet
Avalanche Crew Cab 2012, Chevrolet TrailBlazer SS 2009, Chevrolet Silverado 2500HD Regular Cab 2012, Chevrolet
Silverado 1500 Classic Extended Cab 2007, Chevrolet Express Van 2007, Chevrolet Silverado 1500 Extended Cab 2012,
Chevrolet Silverado 1500 Regular Cab 2012, Chrysler Aspen SUV 2009, Chrysler Town and Country Minivan 2012,
Dodge Caravan Minivan 1997, Dodge Ram Pickup 3500 Crew Cab 2010, Dodge Ram Pickup 3500 Quad Cab 2009,
Dodge Sprinter Cargo Van 2009, Dodge Journey SUV 2012, Dodge Dakota Crew Cab 2010, Dodge Dakota Club Cab
2007, Dodge Durango SUV 2012, Dodge Durango SUV 2007, Ford F-450 Super Duty Crew Cab 2012, Ford Freestar
Minivan 2007, Ford Expedition EL SUV 2009, Ford Edge SUV 2012, Ford Ranger SuperCab 2011, Ford F-150 Regular
Cab 2012, Ford F-150 Regular Cab 2007, Ford E-Series Wagon Van 2012, GMC Terrain SUV 2012, GMC Savana Van
2012, GMC Yukon Hybrid SUV 2012, GMC Acadia SUV 2012, GMC Canyon Extended Cab 2012, HUMMER H3T
Crew Cab 2010, HUMMER H2 SUT Crew Cab 2009, Honda Odyssey Minivan 2012, Honda Odyssey Minivan 2007,
Hyundai Santa Fe SUV 2012, Hyundai Tucson SUV 2012, Hyundai Veracruz SUV 2012, Infiniti QX56 SUV 2011, Isuzu
Ascender SUV 2008, Jeep Patriot SUV 2012, Jeep Wrangler SUV 2012, Jeep Liberty SUV 2012, Jeep Grand Cherokee
SUV 2012, Jeep Compass SUV 2012, Land Rover Range Rover SUV 2012, Land Rover LR2 SUV 2012, Mazda Tribute
SUV 2011, Mercedes-Benz Sprinter Van 2012, Nissan NV Passenger Van 2012, Ram C/V Cargo Van Minivan 2012,
Toyota Sequoia SUV 2012, Toyota 4Runner SUV 2012, Volvo XC90 SUV 2007.

Second, regarding the background images for the background shortcut, we use images from the Places [97] dataset, where
the urban background images are from alley, crosswalk, downtown, gas station, garage (outdoor), driveway classes, and the
country background images are forest road, field road, desert road. We use MaskFormer mentioned above to detect humans,
cars, and co-occurring objects (e.g., fireplug) on Places images. Images with the aforementioned object categories detected
will be filtered out. When used as the background image in UrbanCars, we resize each image to 256× 256.

Lastly, the co-occurring objects are from LVIS [28] based on its ground-truth instance segmentation mask, where urban
co-occurring object images are from fireplug, stop sign, street sign, parking meter, traffic light and country co-occurring object
images are from farm animals—cow, horse, sheep. We filter out instance masks with more than one connected component (e.g.,
instances with more than one connected component are usually occluded by other objects). When pasting to the background,
the square bounding box (see above) of the co-occurring object is resized such that the side length is 25% of the final image
size.

Dataset Release Since Places dataset (the source dataset for the background) does not own the copyright of images, we
cannot directly release the final images in UrbanCars. Instead, we release the code that creates the UrbanCars from source
datasets.

A.2. ImageNet-Watermark (ImageNet-W) Details

Here we show more details about creating the ImageNet-Watermark dataset. Regarding the position, we paste the watermark
at the center of the image. More specifically, the XY-position of the top-left corner of the watermark is (0.01W, 0.4H), where
W and H are the width and height of the input image for the models. Regarding the font size, we use 36 for the 224× 224
sized images, which is the most common input size for most vision models. For large foundation models using larger input
sizes, we use 62, 82, 84 for 384×384, 512×512, 518×518 sized images, respectively, where the font sizes are approximately
0.16 times smaller to the image size. The font color for the watermark is (255, 255, 255, 128) in RGBA, which is a transparent
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white color. We use the open-sourced “SourceHanSerifSC-ExtraLight”† as the font family.

Content of Watermark As mentioned in Sec. 2.2, we use “捷径捷径捷径” as the content of the watermark. We show the
results of using other contents or languages in Tab. 8. When using other content in Simplified Chinese (e.g., “一二三四五六”)
or other languages (i.e., Japanese, Korean, English, and Arabic), we observe smaller IN-W Gap and Carton Gap. We conjecture
this is due to the simpler shape of other contents compared to “捷径捷径捷径” used in the ImageNet-W. Nevertheless, the
accuracy drops across different contents suggest that it is the presence of the watermark rather than its content that causes the
watermark shortcut reliance. Besides, the watermark shortcut reliance is stronger when the watermark’s content looks more
visually similar to the pattern of the watermark in carton class images in ImageNet-1k training set, e.g., Simplified Chinese
characters with complex shapes (cf . Fig. 7).

watermark content language English translation Example Image IN-W Gap Carton Gap

捷径捷径捷径 Simplified Chinese shortcut shortcut shortcut -26.64 +40

一二三四五六 Simplified Chinese one two three four five six -6.12 +22

ショートカット Japanese shortcut -2.66 +18

지름길지름길 Korean shortcut shortcut -12.30 +34

shortcut English N/A -6.39 +8

abcdefghijkl English N/A -5.54 +4

PA�
�
J

	
kB@ Arabic shortcut -7.79 +4

Table 8. Ablation study on ResNet-50’s reliance on the watermark shortcut in different content and languages. Watermarks of various
contents can cause shortcut reliance. We choose the content shown in the first row for creating ImageNet-W as it causes a larger IN-W Gap
and Carton Gap and is more visually similar to the watermark that appears in the IN-1k training set.

†https://source.typekit.com/source-han-serif/
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Dataset Release We release the code of adding watermarks instead of directly releasing the final images. We follow
AugLy [62] to implement the code of adding watermarks, which is encapsulated as a function similar to PyTorch’s transforms
API. It is easy to use and can evaluate vision models on the fly by simply adding the watermark transform function with
ImageNet-1k validation set downloaded, i.e., no need to save images with watermarks to the disk in advance.

B. Implementation Details
Here we present more details of the benchmark methods and our Last Layer Ensemble approach.

B.1. Watermark Augmentation (WMK Aug)

To mitigate the watermark shortcut on ImageNet, we propose simple-yet-effective watermark augmentation (WMK Aug).
Concretely, we overlay a random watermark onto the training images in ImageNet-1k. The watermark is random in terms of
(1) position, (2) font size, and (3) content, where we use random CJK (Chinese, Japanese, and Korean) characters in a random
number of characters. The randomness of watermark augmentation in training avoids being identical to the watermark used for
evaluation on ImageNet-W.

B.2. Background Augmentation (BG Aug)

To mitigate the background shortcut on ImageNet, we follow [71,91] and use background augmentation (BG Aug).
Concretely, we use unsupervised saliency segmentation developed by Ryali et al. [71] to separate the foreground object from
the backgrounds in each image. Then “tiled” background images are created by repeating the procedure of pasting the largest
rectangular of the background onto the foreground region to cover the foreground object (more details in [91]). Finally, to
augment the background, we paste the segmented foreground object from class A onto a tiled background from class B (A6=B).

B.3. Detailed Experiment Settings

UrbanCars On UrbanCars, we follow the standard regularization setting in [72]. Concretely, we use stochastic gradient
descent (SGD) optimizer with 10−3 learning rate and 10−4 weight decay (i.e., `2 penalty). We use 128 for the batch size. All
models are trained with 300 epochs, and we use the early stopped epoch that achieves the best validation set worst-group
accuracy to report the final results on the testing set. Specifically, for methods that do not use ground-truth shortcut labels (i.e.,
category 1, 2, 4), the worst-group accuracy is computed based on labels of both shortcuts, i.e., lowest accuracy among all eight
groups. Methods using shortcut labels (i.e., category 3) may encounter the issue in which one or a subset of shortcuts remain
unlabeled or even unknown. To simulate the situation, besides standard setting using labels of both shortcuts, we additionally
create two settings—(1) only using BG label; (2) only using CoObj label (cf . bottom two sections in Tab. 5). In both cases, the
worst-group accuracy on the validation set also only considers the label of one shortcut, i.e., the lowest accuracy among four
groups based on the combination of the target label and the single shortcut label. Each experiment on UrbanCars is repeated
six times using different random seeds, and we report the average results over six runs.

ImageNet On ImageNet, we use last layer re-training [45] to only train the last classification layer upon a frozen feature
extractor to benchmark methods in Tab. 4 and our Last Layer Ensemble (LLE) method in Tab. 6. Note that we directly evaluate
self-supervised approaches and foundation models in Tab. 6 without using last layer re-training. When using ResNet-50
network architecture with last layer re-training (i.e., methods in Tab. 4), we use SGD optimizer with 10−4 weight decay. For
all models, we tune the learning rate over {10−2, 10−3, 10−4} and choose the one with the best top-1 accuracy on IN-1k. We
use 1024 for the batch size. Unlike the detailed implementation in [45], we do not train the last classification layer from
scratch but initialize it by the weights of ERM’s last layer because we find that the latter way converges faster. Note that
ERM’s last layer is also re-trained (e.g., ERM in Tab. 4). When applying our LLE approach with the MAE feature extractor,
we follow MAE [29] to use 0 weight decay.

B.4. Details of Benchmark Methods

We introduce more details (e.g., hyperparameters) of benchmark methods in each category.

Category 1: Standard Augmentation and Regularization Following PyTorch’s new training recipe [84], we use α = 0.2
for Mixup, p = 0.1 for Cutout, and α = 1.0 for CutMix on both UrbanCars and ImageNet experiments. For AugMix, we use
all default hyperparameters in the original implementation. For the co-efficient of `2 penalty of logits in SD, we use 0.1 on
UrbanCars and 10−4 on ImageNet (we find that SD using 0.1 on ImageNet achieves poor results).

16



Category 2: Targeted Augmentation for Mitigating Shortcuts For CF+F Aug [11], based on the ground-truth masks
(cf . Appendix A.1), we use CF(Grey) and F(Random) for generating counterfactual and factual augmentations because they
achieve the best results on Waterbirds when not using external generative models. Concretely, CF(Grey) infills the grey color
to the bounding box area of the object to generate the counterfactual image, and F(Random) uses random noises to replace the
background area—outside of the bounding box of the car object (more details in [11]).

For style transfer [26] (i.e., texture augmentation or TXT Aug), we use the official code to generate Stylized ImageNet
(SIN) for training. The details of BG Aug and WTM Aug are introduced in Appendix B.2 and Appendix B.1, respectively.
Note that WTM Aug, TXT Aug, and BG Aug shown in Tab. 4 jointly use augmented images and original IN-1k images for
training.

Category 3: Using Shortcut Labels We follow the original GroupDRO (gDRO)’s implementation to use 0.01 step size and
γ = 0.1. For Domain Independent (DI), its number of domains is decided based on the usage of shortcut labels, i.e., 2 when
using labels of only one shortcut and 4 for using labels of both shortcuts. We follow SUBG’s implementation to subsample the
training data to rebalance the data, where each group has (fewer but) the same number of images. For DFR, we use its DFRTr

Tr

variant where ERM’s last layer is re-trained on a balanced sub-sampled training set (i.e., SUBG).

Category 4: Inferring Pseudo Shortcut Labels For LfF, we follow the original implementation to set q = 0.7. As
discussed in Sec. 5.2, JTT and EIIL use an early-stopped ERM as the reference model to infer the pseudo shortcut labels,
where we use E to denote the number of training epochs of the reference ERM model. For JTT, we use E=1 and E=2 on
UrbanCars. Since JTT [58] use E=40,50,60 on Waterbirds, we also show their results on UrbanCars in Appendix C.1. We
use λup = 100 for JTT on UrbanCars. On ImageNet, we use E=1 and λup = 5 because we found λup = 100 (i.e., sampling
wrongly predicted examples 100 times) is not scalable on the larger ImageNet dataset. For EIIL, we use E=1 and E=2 on
UrbanCars and E=1 on ImageNet. We use gDRO as the invariant learner for EIIL (more details in [15]). While DebiAN uses a
full network as the shortcut “discoverer” (more details in [53]), we use a single fully-connected layer on top of the feature
extractor for its experiments on ImageNet under the last layer re-training setting.

B.5. Details of Last Layer Ensemble (LLE)

On UrbanCars, we augment background and co-occurring object visual cues to mitigate multiple shortcuts based on
ground-truth masks (cf . Appendix A.1). Concretely, we use ground-truth masks of the car object and co-occurring object to
(1) segment car object; (2) segment co-occurring object; (3) create the tiled background, a background-only image where
the regions of the object and co-occurring object are tiled (cf ., Appendix B.2). To augment the background, we sample
segmented car object and co-occurring object from class A and tiled background from class B (A6=B), which are used to form
the background-augmented images—pasting car object and co-occurring object on the tiled background. Similarly, to augment
the co-occurring object, we sample the segmented car object and tiled background from class A and sample the segmented
co-occurring object from class B (A6=B) to create the augmented images. Note that we only use the target label of the car body
type for augmentation. In other words, neither the BG shortcut labels nor the CoObj shortcut labels are used. After obtaining
two types of augmented images, LLE uses three last classification layers as an ensemble—two layers for two shortcuts and
one layer for the original images. The distributional shift classifier predicts three shift categories: (1) no shift (i.e., original
images), (2) background shift (i.e., background-augmented images), (3) co-occurring object shift (i.e., co-occurring object
augmented images).

On ImageNet, LLE uses style transfer [26] (i.e., TXT Aug) to mitigate the texture shortcut, BG Aug (details in Appendix B.2)
to mitigate the background shortcut, and WMK Aug (details in Appendix B.1) to mitigate the watermark shortcut. LLE jointly
trains four last classification layers as an ensemble—three layers for three shortcuts and one layer for original images in IN-1k.
The distributional shift classifier predicts four categories: (1) no shift (original images from IN-1k), (2) texture shift (i.e.,
texture augmented images), (3) background shift (i.e., background augmented images), (4) watermark shift (i.e., watermark
augmented images).

C. More Results on UrbanCars
C.1. More Results of JTT

In Sec. 5.2, we show the result of JTT when E=1 and E=2. Since JTT tunes E over {40, 50, 60} on Waterbirds [72] (more
epochs for training the reference ERM models to infer pseudo shortcut labels). Here, we also show the results of JTT when E

17



shortcut reliance

I.D. Acc BG Gap CoObj Gap BG+CoObj Gap

ERM 97.9 -16.3 -11.9 -69.5

JTT (E=1) 95.9 -8.1 -13.3 (×1.18 ) -37.6
JTT (E=2) 94.6 -23.3 (×1.52 ) -5.3 -52.1
JTT (E=40) 97.7 -15.8 (×1.03 ) -10.7 -69.3
JTT (E=50) 97.6 -14.8 -11.0 -67.9
JTT (E=60) 97.2 -15.1 -10.7 -70.5

Table 9. Results of JTT when using ERM trained with other epochs
(E ∈ {40, 50, 60}) as the reference model to infer pseudo shortcut
labels.

Shortcut Reliance

I.D. Acc BG Gap CoObj Gap BG+CoObj Gap

ERM 97.9 -16.3 -11.9 -69.5

w/o stop gradient 97.3 -3.3 -2.6 -7.7
w/ frozen feature extractor 97.3 -11.2 -9.0 -43.3
LLE 96.7 -2.1 -2.7 -5.9

Table 10. Results of ablation study of LLE on UrbanCars dataset.

∈ {40, 50, 60} in Tab. 9, where JTT either exhibits Whac-A-Mole results by amplifying the background shortcut or barely
mitigates either shortcut compared to ERM.

C.2. Ablation Study of LLE on UrbanCars

As mentioned in Sec. 4, when training the distributional shift classifier, we stop the gradient from the distributional shift
classifier to the feature extractor under the end-to-end training setting on UrbanCars. Here we show the ablation study in
Tab. 10, where the variant without stopping the gradient achieves suboptimal results. The results demonstrate the necessity of
stopping the gradient to prevent the feature extractor from learning the shortcut information used in the distributional shift
classifier’s supervision.

While we use the end-to-end training setting for experiments on UrbanCars, we also show the results of LLE with the last
layer re-training setting (cf . frozen feature extractor in Tab. 10), which shows that using a frozen feature extractor can also
improve the results over ERM, but the results are also suboptimal compared to end-to-end training.

D. More Results on ImageNet-W
D.1. Results of More Methods on ImageNet-W

The results of more methods in addition to methods in Tab. 1 are shown in Tab. 11. We observe a pervasive watermark
shortcut reliance across network architecture, pretraining datasets, supervision, mitigation methods, etc.

D.2. ImageNetV2-W: ImageNet-W with ImageNetV2

To further verify the pervasiveness of watermark shortcut reliance, we also overlay the watermark on ImageNetV2 [68]
dataset to construct the ImageNet-W test set. We denote this ImageNet-W variant as ImageNetV2-W. The results are shown
in Tab. 12, which is comparable to results on ImageNet-W shown in Tab. 1. Note that some models show +0 Carton Gap
results (e.g., CLIP pretrained on WIT and LAION-400M). We conjecture that it is due to the small number (i.e., ten) of
carton class images in ImageNetV2. Nevertheless, they still show a considerable likelihood increase of carton class images
(∆P (ŷ = carton | y = carton)). Therefore, the results on ImageNetV2-W strengthen our claim of the watermark shortcut for
predicting the carton class learned by various vision models.

D.3. More Qualitative Examples of Watermark Shortcut

Many Carton Class Images in ImageNet-1k Training Set Contain Watermark We show more watermark examples of
carton class images in ImageNet-1k training set. As shown in Fig. 7, these images contain the watermark written in Chinese
characters. We also show ResNet-50’s saliency maps [76] for predicting the carton class. While they highlight the watermark
region, it may still be hard to interpret because the watermark and the carton object share similar spatial locations. This could
be one of the reasons why previous works did not discover this shortcut.

Adding Watermark to Carton Class Images in IN-1k Validation Set (i.e., IN-W) Leads to Carton Class Predictions
Our ImageNet-W can better address the difficulty of interpreting the watermark shortcut by providing the counterfactual
explanations. In Fig. 8a, we first show carton class images in ImageNet-1k validation set that are predicted incorrectly by
ResNet-50 (e.g., cradle, paper towel, etc.). By adding the watermark to the images, we show that not only are the predictions
altered to carton but also the highlighted regions of the saliency maps are shifted to the watermark.
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method architecture (pre)training data IN-1k Acc ↑ P (ŷ = carton) (%) IN-W Gap ↑ ∆P (ŷ = carton) (%) ↓ Carton Gap ↓ ∆P (ŷ = carton | y = carton) (%) ↓
Supervised ResNet-50 [30] IN-1k [17] 76.1 0.07 -26.7 +7.56 +40 +42.46
MoCov3 [13] (LP) ResNet-50 IN-1k 74.6 0.08 -20.7 +2.94 +44 +44.37
Style Transfer [26] ResNet-50 SIN [26] 60.1 0.10 -17.3 +4.91 +52 +50.06
Mixup [93] ResNet-50 IN-1k 76.1 0.07 -18.6 +3.43 +38 +39.78
CutMix [92] ResNet-50 IN-1k 78.5 0.09 -14.8 +1.92 +22 +29.61
Cutout [19,96] ResNet-50 IN-1k 77.0 0.08 -18.0 +2.93 +32 +38.06
AugMix [35] ResNet-50 IN-1k 77.5 0.09 -16.8 +2.61 +36 +34.44
BiT-M [48] ResNet-50v2 [31] IN-21k 82.3 0.09 -8.6 +0.60 +28 +29.73

Supervised RG-32gf IN-1k 80.8 0.09 -14.1 +3.74 +32 +33.43
SEER [27] (FT) RG-32gf [67] IG-1B [27] 83.3 0.09 -6.5 +0.56 +18 +24.26
SWAG [79] (LP) RG-32gf IG-3.6B [79] 84.6 0.08 -6.5 +0.36 +22 +20.56
SWAG (FT) RG-32gf IG-3.6B 86.8 0.08 -4.5 +0.49 +30 +26.03

Supervised ViT-B/32 [21] IN-1k 75.9 0.09 -8.7 +1.20 +34 +34.31
Uniform Soup [89] (FT) ViT-B/32 WIT [66] 79.9 0.09 -7.9 +0.32 +24 +23.87
Greedy Soup [89] (FT) ViT-B/32 WIT 81.0 0.09 -6.5 +0.35 +16 +23.87

Supervised ViT-B/16 IN-1k 81.0 0.08 -6.7 +0.73 +26 +31.28
RobustViT [12] ViT-B/16 IN-1k 80.3 0.08 -7.3 +0.44 +34 +37.06
MoCov3 (LP) ViT-B/16 IN-1k 76.6 0.09 -16.0 +1.97 +22 +38.34
MAE [29] (FT) ViT-B/16 IN-1k 83.7 0.09 -4.6 +0.67 +24 +22.46
SWAG (LP) ViT-B/16 IG-3.6B 81.8 0.08 -7.7 +0.46 +18 +19.74
SWAG (FT) ViT-B/16 IG-3.6B 85.2 0.09 -5.4 +0.45 +24 +25.95

Supervised ViT-L/16 IN-1k 79.6 0.08 -6.2 +0.82 +34 +32.57
MAE (FT) ViT-L/16 IN-1k 85.9 0.09 -4.4 +0.50 +22 +22.70
SWAG (LP) ViT-L/16 IG-3.6B 85.1 0.08 -5.7 +0.23 +6 +9.72
SWAG (FT) ViT-L/16 IG-3.6B 88.0 0.09 -3.2 +0.24 +20 +19.14
CLIP [66] (zero-shot) ViT-L/14 WIT [66] 76.5 0.06 -4.4 +0.01 +12 +1.75
CLIP (zero-shot) ViT-L/14 LAION-400M [74] 72.7 0.05 -4.9 +0.03 +12 +13.76

MAE (FT) ViT-H/14 IN-1k 86.9 0.08 -3.5 +0.43 +30 +29.59
SWAG (LP) ViT-H/14 IG-3.6B 85.7 0.09 -4.9 +0.19 +8 +12.80
SWAG (FT) ViT-H/14 IG-3.6B 88.5 0.09 -3.1 +0.35 +18 +20.25
CLIP (zero-shot) ViT-H/14 LAION-2B [73] 77.9 0.06 -3.6 +0.03 +16 +12.01

CLIP (zero-shot) ViT-G/14 LAION-2B 76.6 0.06 -3.8 +0.02 +12 +5.61

Table 11. Results of more methods (also include the methods in Tab. 1). LP and FT stand for linear probing and fine-tuning on ImageNet-1k,
respectively.

method architecture (pre)training data IN-1k Acc ↑ P (ŷ = carton) (%) IN-W Gap ↑ ∆P (ŷ = carton) (%) ↓ Carton Gap ↓ ∆P (ŷ = carton | y = carton) (%) ↓
Supervised ResNet-50 IN-1k 63.19 0.09 -26.07 +9.29 +70 +53.50
MoCov3 (LP) ResNet-50 IN-1k 61.98 0.09 -19.83 +3.33 +40 +44.43
Style Transfer ResNet-50 SIN 48.63 0.09 -15.88 +5.16 +40 +40.28

Supervised RG-32gf IN-1k 69.67 0.10 -16.59 +5.21 +40 +34.09
SEER (FT) RG-32gf IG-1B 72.48 0.08 -9.00 +0.76 +30 +31.03
SWAG (LP) RG-32gf IG-3.6B 75.51 0.10 -7.48 +0.45 +20 +17.57
SWAG (FT) RG-32gf IG-3.6B 78.18 0.09 -5.67 +0.74 +30 +27.15

Supervised ViT-B/32 IN-1k 62.99 0.07 -8.45 +1.39 +30 +20.97
Uniform Soup (FT) ViT-B/32 WIT 68.58 0.08 -8.57 +0.42 +60 +47.84
Greedy Soup (FT) ViT-B/32 WIT 69.54 0.08 -7.43 +0.44 +50 +40.78

Supervised ViT-B/16 IN-1k 69.55 0.09 -7.55 +0.92 +40 +22.66
MoCov3 (LP) ViT-B/16 IN-1k 65.25 0.09 -16.32 +2.40 +50 +41.75
MAE (FT) ViT-B/16 IN-1k 73.20 0.10 -6.12 +1.05 +50 +38.12
SWAG (LP) ViT-B/16 IG-3.6B 72.87 0.10 -8.66 +0.55 +10 +20.01
SWAG (FT) ViT-B/16 IG-3.6B 75.57 0.09 -6.51 +0.66 +40 +32.34

Supervised ViT-L/16 IN-1k 67.49 0.07 -7.37 +0.99 +30 +37.09
MAE (FT) ViT-L/16 IN-1k 76.65 0.10 -6.57 +0.87 +40 +33.43
SWAG (LP) ViT-L/16 IG-3.6B 76.64 0.09 -6.71 +0.30 +30 +12.46
SWAG (FT) ViT-L/16 IG-3.6B 80.39 0.10 -4.14 +0.36 +20 +30.21
CLIP (zero-shot) ViT-L/14 WIT 70.87 0.09 -5.29 +0.02 +0 +4.20
CLIP (zero-shot) ViT-L/14 LAION-400M 65.43 0.06 -5.90 +0.02 +0 +9.44

MAE (FT) ViT-H/14 IN-1k 78.46 0.10 -5.26 +0.71 +30 +31.43
SWAG (LP) ViT-H/14 IG-3.6B 77.38 0.10 -6.46 +0.23 +0 +10.74
SWAG (FT) ViT-H/14 IG-3.6B 81.06 0.09 -4.39 +0.46 +10 +21.45
CLIP (zero-shot) ViT-H/14 LAION-2B 70.92 0.08 -4.44 +0.02 +30 +19.09

CLIP (zero-shot) ViT-G/14 LAION-2B 69.65 0.09 -5.16 +0.02 +20 +9.96

Table 12. Results of watermark shortcut with ImageNet-V2.

Adding Watermark to Non-Carton Class Images in IN-1k Validation Set (i.e., IN-W) Leads to Carton Class Predic-
tions Similarly, we also the qualitative results for non-carton class images in Fig. 8b. While ResNet-50 makes correct
predictions for non-carton class images (e.g., indigo bunting, brambling, hen, etc.) on IN-1k, the predictions are switched to
carton class after adding watermarks to the images. Besides, the saliency maps show that the ResNet-50 shifts its attention
from the object to the watermark shortcut.
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Figure 7. More examples of carton class images with watermark in ImageNet-1k training set. The saliency maps show that ResNet-50 relies
on the watermark shortcut to predict carton.

20



add watermark

ImageNet-1k ImageNet-W

prediction: cradle

add watermark

prediction: carton

prediction: paper towel prediction: carton

prediction: printer prediction: carton

add watermark

prediction: wooden spoon prediction: carton

add watermark

prediction: modem prediction: carton

add watermark

(a) More examples of carton class images. ResNet-50 mispredicts many
of them on ImageNet-1k validation set (left column). On ImageNet-W,
after adding watermarks to carton class images from ImageNet-1k, ResNet-
50 uses watermark as the shortcut to achieve correct predictions (right
column).

add watermark

ImageNet-1k ImageNet-W

prediction: indigo bunting

add watermark

prediction: carton

prediction: brambling prediction: carton

prediction: tiger shark prediction: carton

add watermark

prediction: hen prediction: carton

add watermark

prediction: ostrich prediction: carton

add watermark

(b) More examples of images that are not from the carton class. ResNet-
50 predicts many of them correctly on ImageNet-1k’s validation set (left
column). On ImageNet-W, after adding watermarks to carton class images
from ImageNet-1k, ResNet-50 uses the watermark as the shortcut to make
incorrect predictions as the carton class (right column).

Figure 8. Adding watermarks alters the prediction and focused region of ResNet-50.

ImageNet-1k

Style Transfer
(TXT Aug)

ImageNet-1k

Background 
Augmentation

(BG Aug)

Figure 9. Examples of Style Transfer augmentation [26] (TXT Aug) on carton class images from ImageNet-1k training set. Although the
augmentation is designed to mitigate the texture shortcut by increasing the “shape bias,” it unexpectedly preserves or amplifies the shape of
the watermark.
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Figure 10. Examples of background augmentation (BG Aug) [71,91] on carton class images from ImageNet-1k training set. BG Aug is
designed to mitigate the background shortcut. However, it preserves the watermarks, leading models to pivot to the watermark shortcut.

Style Transfer (TXT Aug) Preserves or Amplifies the Shape of Watermark In addition to Fig. 1b, we show more
examples of style transfer [26] augmentation for carton class images with watermark in Fig. 9. While the technique was
originally targeted at mitigating the texture shortcut by randomizing the texture information to increase the shape bias towards
the object, the shape of the watermark shortcut, as shown in Fig. 9, is preserved or even amplified. Watermarks in large font
sizes (cf . first three images in Fig. 9) are still legible after style transfer. The pattern of watermarks in small font size is still
retained or even more salient, e.g., the pattern of the transparent watermarks becomes more salient after style transfer when the
background is white. This can explain why style transfer (i.e., TXT Aug) amplifies the watermark shortcut results in Tabs. 4
and 13.

Background Augmentation (BG Aug) Preserves the Watermark Shortcut Besides Fig. 1b, we show more examples of
background augmentation (BG Aug) [71,91] preserving the watermark shortcut in Fig. 10. Since the watermark is located
over the main object, watermarks are still visible when replacing the background with a random one, which explains why
BG Aug amplifies the watermark shortcut in Tab. 4. More recently, RobustViT [12] uses the object mask to regularize the
model to focus on the object region in the objective function, aiming to mitigate the background shortcut. Although it does not
use masks to modify the input image as BG Aug does, we show that it also amplifies the watermark shortcut in Tab. 13 (cf .
Appendix E.1), which can be explained by the shared spatial locations between watermark and carton object.

E. More Results of Multi-Shortcut Mitigation on ImageNet
E.1. Benchmark More Existing Approaches

End-to-End Training In Sec. 5.2 and Tab. 4, we benchmark existing methods using last layer re-training [45]. Here we
show the results of those methods (i.e., Mixup, Cutout, CutMix, AugMix, SD, Style Transfer, LfF, JTT, EIIL, DebiAN) using
end-to-end training in Tab. 13. We show that most of them still exhibit the Whac-A-Mole problem by achieving worse shortcut
mitigation results. Although Mixup does not amplify shortcuts, its improvement over ERM is still small.

Big Transfer (BiT) We also show the results of Big Transfer (BiT-M) [48], a foundation model pretrained on ImageNet-21k
(i.e., excluding 1k classes of ImageNet-1k from the full ImageNet with 22k classes) using ResNet-50v2 [31] architecture.
Tab. 13 shows that BiT-M achieves a larger SIN Gap than ERM and barely mitigates the background shortcut.

RobustViT Mitigates Background Shortcut but Amplifies Other Shortcuts RobustViT [12] is a recent work designed
to mitigate the background shortcut by optimizing the relevance map against the object mask. The results in Tab. 13 show that
it mitigates the background shortcut but amplifies the watermark shortcut. Besides, it also achieves a worse SIN Gap result for
the texture shortcut.

E.2. Results: LLE Using Other Feature Extractors

We further show the results of models using the large ViT-H architecture in Tab. 14. We observed that there is no clear
winner among these methods for achieving the best mitigation results on all shortcuts. Our method (LLE) can improve shortcut
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shortcut reliance

Watermark Texture Background
IN-1k IN-W Gap ↑ Carton Gap ↓ SIN Gap ↑ IN-R Gap ↑ IN-9 Gap ↑

ERM ResNet-50 76.13 -26.64 +40 -69.03 -55.96 -5.53
Mixup ResNet-50 76.11 -12.30 +38 -66.81 -53.03 -5.06
CutMix ResNet-50 78.58 -19.50 +22 -72.86 (×1.06 ) -58.51 (×1.05 ) -6.25 (×1.13 )
Cutout ResNet-50 77.06 -16.29 +32 -69.95 (×1.01 ) -57.32 (×1.02 ) -5.90 (×1.07 )
AugMix ResNet-50 77.53 -16.76 +36 -66.38 -51.83 -6.42 (×1.16 )
SD ResNet-50 70.19 -16.12 +30 -63.63 -59.32 (×1.06 ) -10.89 (×1.97 )
Style Transfer (Texture ) ResNet-50 60.18 -17.31 +52 (×1.30 ) -4.32 -40.76 -7.81 (×1.41 )
LfF ResNet-50 70.26 -17.57 +40 -64.34 -56.54 (×1.01 ) -8.10 (×1.46 )
JTT ResNet-50 75.64 -15.74 +32 -69.04 -55.70 -6.75 (×1.22 )
EIIL ResNet-50 65.42 -19.71 +42 (×1.05 ) -61.27 -57.43 (×1.03 ) -8.66 (×1.57 )
DebiAN ResNet-50 74.05 -20.00 +30 -67.54 -56.70 (×1.01 ) -7.29 (×1.32 )

BiT-M (IN-21k) ResNet-50v2 82.32 -8.63 +28 -73.69 (×1.07 ) -51.19 -5.25

ERM ViT-B/16 81.07 -6.69 +26 -62.67 -50.36 -5.36
RobustViT (Background ) ViT-B/16 80.33 -7.35 (×1.10 ) +30 (×1.15 ) -64.06 (×1.02 ) -45.64 -5.01

Table 13. More multi-shortcut mitigation results on ImageNet. Note that methods from ERM to DebiAN use end-to-end training, which is
different from the last layer re-training setting in Tab. 4. BiT-M is a foundation model pretrained on ImageNet-21k (IN-21k). RobustViT
fine-tunes an ERM to mitigate the background shortcut.

shortcut reliance

Watermark Texture Background
train data IN-1k IN-W Gap Carton Gap SIN Gap IN-R Gap IN-9 Gap

SWAG (LP) IG-3.6B 85.74 -4.89 +8 -59.99 -8.80 -7.86
SWAG (FT) IG-3.6B 88.54 -3.09 +18 -62.22 -9.37 -3.19
CLIP (zero-shot) LAION-2B 77.90 -3.61 +16 -59.47 -5.61 -3.71
MAE (FT) IN-1k 86.89 -3.48 +30 -62.29 -33.15 -3.24
MAE+LLE (ours) IN-1k 86.84 -1.11 +28 -55.69 -30.95 -2.35

Table 14. Multi-shortcut mitigation results on ImageNet with ViT-H network architecture. LP and FT stand for linear probing and fine-tuning
on ImageNet-1k, respectively. Note that there is no ERM (supervised training) available with ViT-H on ImageNet-1k.

mitigation results over MAE in all metrics. Our method can even beat methods using extra pretraining data (i.e., SWAG and
CLIP) in IN-W Gap, SIN Gap, and IN-9 Gap.

Besides, we also show the results of LLE using SWAG (FT) in ViT-B/16 architecture in Tab. 15. While SWAG (LP) and
SWAG (FT) suffer the Whac-A-Mole dilemma, LLE consistently mitigates multiple shortcuts jointly over ERM and SWAG
(FT). Besides, we also show SWAG (FT) + LLE with edge augmentation (Edge Aug) and the results on ImageNet-Sketch.
More details are introduced below (cf . Appendix E.3).

E.3. Results of LLE on ImageNet-Sketch

Results: ImageNet-Sketch We further show the results of LLE on ImageNet-Sketch [85] (IN-Sketch), another OOD variant
of ImageNet containing sketch images in 1000 ImageNet classes. We use IN-Sketch Gap, the accuracy drop from IN-1k to
IN-Sketch, to measure mitigation of color and texture shortcuts. The results in Tab. 15 show that our LLE method consistently
improves the results over ERM, MAE, and SWAG (FT).

Edge Augmentation While style transfer augmentation could be suboptimal for mitigating the color and texture shortcuts
measured by IN-Sketch, we propose edge augmentation (Edge Aug) to improve the results further. Concretely, we use [65]
to detect edges on images from ImageNet-1k training set. The examples are shown in Fig. 11, where we observe that color
and texture information is successfully removed via edge detection. Similar to style transfer and background augmentation
(cf . Fig. 1b), we still observe the amplified or preserved saliency of the watermark (cf . carton class image in Fig. 11). The
edge augmentation is used to train an additional last layer in the classifier ensemble. The results in Tab. 15 show that using
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shortcut reliance

Watermark Texture Background Color and Texture
train data IN-1k IN-W Gap Carton Gap SIN Gap IN-R Gap IN-9 Gap IN-Sketch Gap

arch: ResNet-50
ERM IN-1k 76.39 -25.40 +30 -69.43 -56.22 -5.19 -52.32
LLE (ours) IN-1k 76.25 -6.18 +10 -61.02 -54.89 -3.82 -51.56
LLE (ours) + Edge Aug IN-1k 76.24 -6.18 +10 -61.52 -53.69 -3.95 -48.25

arch: ViT-B/16
ERM IN-1k 81.07 -6.69 +26 -62.60 -50.36 -5.36 -51.67

SWAG (LP) IG-3.6B 81.89 -7.76 (×1.16 ) +18 -67.33 (×1.08 ) -19.79 -10.39 (×1.94 ) -32.22
SWAG (FT) IG-3.6B 85.29 -5.43 +24 -66.99 (×1.07 ) -29.55 -4.44 -42.58
SWAG (FT) + LLE (ours) IG-3.6B 85.37 -2.50 +8 -60.92 -28.37 -3.19 -41.52
SWAG (FT) + LLE (ours) + Edge Aug IG-3.6B 85.31 -2.48 +12 -61.24 -27.78 -3.28 -38.37

MAE (FT) IN-1k 83.72 -4.60 +24 -65.20 (×1.04 ) -47.10 -4.45 -47.77
MAE + LLE (ours) IN-1k 83.68 -2.48 +6 -58.78 -44.96 -3.70 -46.70
MAE + LLE (ours) + Edge Aug IN-1k 83.69 -2.54 +6 -59.04 -43.97 -3.70 -43.17

arch: ViT-L/16
ERM IN-1k 79.65 -6.14 +34 -61.43 -53.17 -6.50 -52.40
MAE (FT) IN-1k 85.95 -4.36 +22 -62.48 (×1.02 ) -36.46 -3.53 -40.29
MAE + LLE (ours) IN-1k 85.84 -1.74 +12 -56.32 -34.64 -2.77 -39.14
MAE + LLE (ours) + Edge Aug IN-1k 85.84 -1.76 +16 -56.52 -33.76 -2.94 -36.45

Table 15. Ablation study of adding edge augmentation (Edge Aug) to LLE. Edge Aug further improves the results on ImageNet-Sketch.

tench hammerhead hen cartonostrich bullfrog
Figure 11. Example images of edge augmentation for ImageNet-1k training set to mitigate color and texture shortcuts. The ground-truth
class name is shown below each image.

Edge Aug can further close the In-Sketch Gap and IN-R Gap—IN-R also contains sketch images. The results demonstrate the
effectiveness of designing targeted augmentation to tackle the known type of shortcut.

E.4. Top-1 Accuracy of LLE on OOD Variant of ImageNet

In this work, we mainly use the gap of accuracy between IN-1k to OOD variants of ImageNet as the metric. We also show
the results of LLE in top-1 accuracy on OOD variants of ImageNet in Tab. 16, which can help future research to compare with
LLE in top-1 accuracy.

Note that we do not include the top-1 accuracy on ImageNet-W. Although existing models suffer a performance drop
from IN-1k to IN-W, an increased IN-W accuracy over IN-1k, which future works may achieve, also indicates the watermark
shortcut reliance. Because of the counterfactual nature between IN-1k and IN-W, we encourage future works to use IN-W Gap
and Carton Gap to report the watermark shortcut mitigation results, where closer to zero gaps indicate better results.

E.5. Results of LLE on Other OOD Variants of ImageNet

We also show the results of LLE on other OOD variants of ImageNet, including ImageNet-A [36] (IN-A), ImageNetV2 [68]
(IN-V2), ObjectNet [9], and ImageNet-D [69,70] (IN-D). IN-D has rendition images similar to IN-R except for having
additional domain annotations, e.g., clipart, infograph, etc. Besides, IN-D also has real-domain images (i.e., IN-D real). We
report the top-1 accuracy on IN-A, IN-V2, ObjectNet, and IN-D clipart to IN-D sketch. Regarding the types of shortcut
reliance, ObjectNet measures the robustness against unusual background, viewpoint, and rotation. The results from IN-D
clipart to IN-D sketch measure the robustness against the texture shortcut. The remaining results, i.e., IN-A, IN-V2, IN-D
real, do not explicitly measure the robustness against specific shortcuts. Therefore, we denote their shortcut reliance type as
“unknown.”
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shortcut reliance

Texture Background Color and Texture
arch train data IN-1k SIN IN-R Mixed-Rand IN-Sketch

LLE ResNet-50 IN-1k 76.25 15.25 37.31 84.40 24.67
LLE + Edge Aug ResNet-50 IN-1k 76.24 14.72 38.43 84.30 27.99

SWAG (FT) + LLE ViT-B/16 IG-3.6B 85.37 24.45 68.14 90.12 43.85
SWAG (FT) + LLE + Edge Aug ViT-B/16 IG-3.6B 85.31 24.07 68.70 89.98 46.94

MAE + LLE ViT-B/16 IN-1k 83.68 24.90 50.84 89.41 36.98
MAE + LLE + Edge Aug ViT-B/16 IN-1k 83.69 24.65 51.85 89.36 40.52

MAE + LLE ViT-L/16 IN-1k 85.84 29.52 62.24 91.58 46.70
MAE + LLE + Edge Aug ViT-L/16 IN-1k 85.84 29.32 63.13 91.41 49.39

MAE + LLE ViT-H/14 IN-1k 86.84 31.15 66.21 93.01 50.60
MAE + LLE + Edge Aug ViT-H/14 IN-1k 86.84 30.94 66.89 92.86 53.39

Table 16. Top-1 accuracy results of Last Layer Ensemble (LLE) on OOD variants of ImageNet.

shortcut reliance

unknown background, viewpoint, rotation texture unknown
arch (pre)training data IN-A IN-V2 ObjectNet IN-D clipart IN-D infograph IN-D painting IN-D quickdraw IN-D sketch IN-D real IN-D (mDE) ↓

ERM ResNet-50 IN-1k 0.02 63.48 36.10 23.94 10.69 34.83 0.83 17.77 59.86 88.27
LLE ResNet-50 IN-1k 0.12 63.34 36.67 25.86 11.35 36.86 0.85 19.57 60.60 86.79
LLE + Edge Aug ResNet-50 IN-1k 0.09 63.05 36.67 26.31 11.29 36.82 0.92 20.72 60.57 86.50

ERM ViT-B/16 IN-1k 20.88 69.56 39.89 29.87 13.62 41.37 1.13 21.86 62.75 83.53

SWAG (FT) ViT-B/16 IG-3.6B 53.01 75.58 53.90 49.54 20.09 52.88 2.53 39.34 68.17 70.99
SWAG (FT) + LLE ViT-B/16 IG-3.6B 53.71 75.75 54.48 51.18 21.63 54.88 3.19 41.09 69.12 69.25
SWAG (FT) + LLE + Edge Aug ViT-B/16 IG-3.6B 53.75 75.68 54.55 51.69 21.43 54.93 3.59 41.95 69.20 68.93

MAE (FT) ViT-B/16 IN-1k 35.81 73.20 47.30 34.11 15.27 44.30 1.17 27.14 64.92 80.15
MAE (FT) + LLE ViT-B/16 IN-1k 36.88 73.06 47.63 35.25 16.37 45.90 1.25 28.66 65.47 78.93
MAE (FT) + LLE + Edge Aug ViT-B/16 IN-1k 37.00 72.94 47.79 35.73 16.10 45.97 1.34 29.65 65.52 78.66

ERM ViT-L/16 IN-1k 16.64 67.49 36.79 27.68 12.45 39.47 0.58 19.40 62.04 85.32
MAE (FT) ViT-L/16 IN-1k 57.07 76.65 55.31 42.64 18.05 50.14 3.12 36.87 66.66 74.10
MAE (FT) + LLE ViT-L/16 IN-1k 56.65 76.74 55.46 43.95 19.31 51.67 3.27 38.05 67.29 72.87
MAE (FT) + LLE + Edge Aug ViT-L/16 IN-1k 56.77 76.66 55.65 44.24 19.06 51.81 3.44 38.88 67.29 72.65

MAE (FT) ViT-H/14 IN-1k 68.17 78.46 60.47 43.69 19.10 51.29 3.89 39.17 67.61 72.63
MAE (FT) + LLE ViT-H/14 IN-1k 68.27 78.34 60.61 45.40 20.80 52.94 4.24 40.75 68.20 71.12
MAE (FT) + LLE + Edge Aug ViT-H/14 IN-1k 68.35 78.32 60.78 45.76 20.66 53.06 4.40 41.60 68.23 70.86

Table 17. Results of LLE on other OOD variants of ImageNet, i.e., ImageNet-A (IN-A), ImageNetV2 (IN-V2), ObjectNet, and ImageNet-D
(IN-D). Except for IN-D overall results (i.e., last column), all other results are in top-1 accuracy. The overall IN-D results are reported in
mDE, where lower numbers indicate better results (↓).

The results are shown in Tab. 17. On both ObjectNet and IN-D datasets, LLE consistently improves the results over various
baselines (i.e., ERM, SWAG (FT), and MAE (FT)) in different network architectures. When the shortcut type is unknown, LLE
achieves comparable results against the baselines with slight performance improvement or drop depending on the architectures
and pretraining datasets. Note that LLE is designed for mitigating multiple known shortcuts (cf . Sec. 4). Therefore, it may not
improve the results when the types of shortcuts remain unknown. However, due to the theoretical impossibility of inferring
shortcut labels [57] and the practical difficulty of mitigating multiple unknown shortcuts, we encourage future research
to tackle this problem by first interpreting the distributional shift on IN-A or IN-V2 before performing mitigation (more
discussion in Appendix G).

F. CutMix Amplifies Background Shortcut

Results of CutMix on Waterbirds On UrbanCars (cf . Tab. 5) and ImageNet (cf . Tabs. 4 and 13), we observe that
CutMix [92] amplifies the background shortcut. We further show its background shortcut reliance on Waterbirds dataset. We
use the following metrics on Waterbirds: (1) Average Group Accuracy: the unweighted average results over four groups
({waterbird, landbird} × {water background, land background}); (2) Worst Group Accuracy: the lowest per group accuracy
result. For this experiment on Waterbirds, we use the experiment setting on UrbanCars (cf . Appendix B.3). Tab. 18 shows that
CutMix achieves worse results of mitigating the background shortcut than ERM. Other techniques, i.e., Mixup and Cutout,
slightly mitigates background shortcut on Waterbirds.
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Average Group Accuracy (%) Worst Group Accuracy (%)

ERM 87.19 73.88
Mixup (α = 0.05) 87.76 75.73
Cutout (p = 0.1) 88.57 74.87
CutMix (α = 1.0) 74.51 (-12.68) 47.38 (-26.50)

Table 18. Results of standard augmentation and regularization on Waterbirds dataset. CutMix amplifies the background shortcut on
Waterbirds [72] dataset. (·): hyperparameter used in each approach.

Explaining the Background Shortcut Reliance of CutMix Since CutMix consistently amplifies the background shortcut
on three datasets (i.e., UrbanCars, Waterbirds, and ImageNet), we take a closer look at its augmentation and regularization
strategy. In terms of augmentation, CutMix crops a rectangular patch from one image and pastes it to the other to create
the augmented image. In the regularization, the ground-truth label for the augmented image is the linear interpolation of
ground-truth labels of two source images, where the interpolation co-efficient (i.e., called combination ratio λ in CutMix)
is proportional to the area of the patch. In this way, the network is regularized to predict the likelihood over classes that is
proportional to the area in the image. Therefore, when the background takes the larger area in the image, the model predicts
more on the background class instead of the smaller foreground object, leading to an amplified background shortcut reliance.

G. Discussion
We discuss the recommendations and limitations based on our multi-shortcut benchmarking results.

G.1. Recommendation and Future Direction

To future shortcut mitigation practitioners, we recommend the community drop the unrealistic single-shortcut assumption
and be aware of the multiple-shortcut problem by having a sanity check on various inductive biases in model design, such as
the usage of shortcut labels, assumption of shortcut learning during training, data augmentation, regularization, etc.

For future shortcut mitigation dataset creators, a broader range of factors of variations (FoV) needs to be studied since some
FoVs could serve as multiple shortcuts learned by models. This can be achieved by (1) manually choosing various FoVs under
the controlled setting [9,22,37,39,51,75] or (2) developing better approaches to detect and interpret shortcuts [2,6,18,23,42,54,
81] on in-the-wild datasets.

Although our work mainly focuses on the shortcut mitigation task, the importance and challenge of multiple shortcuts
also apply to the shortcut detection task. For example, Eyuboglu et al. [23] design a shortcut detection benchmark based
on CelebA, where only a single shortcut exists. Specifically, they achieve this by amplifying the correlation strength of the
spurious correlation between the target attribute and the shortcut attribute. Therefore, whether or not existing shortcut detection
approaches can detect multiple shortcuts is underexplored and is a promising future direction.

G.2. Limitations

Admittedly, our work has limitations. For example, Last Layer Ensemble (LLE) does not address the problem of unknown
types of shortcuts, which LLE may amplify. However, since mitigating unknown types of shortcuts without any inductive
biases is still a theoretical [57] and practical challenge, we advocate a human-in-the-loop solution. That is, detecting and
interpreting shortcuts at the first stage. Then, LLE can be applied to mitigate the detected shortcuts.
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