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Abstract
Potential harms of large language models can be mitigated
by watermarking model output, i.e., embedding signals into
generated text that are invisible to humans but algorithmi-
cally detectable from a short span of tokens. We propose
a watermarking framework for proprietary language mod-
els. The watermark can be embedded with negligible im-
pact on text quality, and can be detected using an efficient
open-source algorithm without access to the language model
API or parameters. The watermark works by selecting a
randomized set of “whitelist” tokens before a word is gen-
erated, and then softly promoting use of whitelist tokens
during sampling. We propose a statistical test for detecting
the watermark with interpretable p-values, and derive an
information-theoretic framework for analyzing the sensitiv-
ity of the watermark. We test the watermark using a multi-
billion parameter model from the Open Pretrained Trans-
former (OPT) family, and discuss robustness and security.

1. Introduction
Large language models (LLMs), such as the recently de-
veloped ChatGPT, can write documents, create executable
code, and answer questions, often with human-like capa-
bilities (Schulman et al., 2022). As these systems become
more pervasive, there is increasing risk that they may be
used for malicious purposes (Bergman et al., 2022; Mirsky
et al., 2023). These include social engineering and election
manipulation campaigns that exploit automated bots on so-
cial media platforms, creation of fake news and web content,
and use of AI systems for cheating on academic writing and
coding assignments. Furthermore, the proliferation of syn-
thetic data on the web complicates future dataset creation
efforts, as synthetic data is often inferior to human content
and must be detected and excluded before model training
(Radford et al., 2022). For many reasons, the ability to de-
tect and audit the usage of machine-generated text becomes
a key principle of harm reduction for large language mod-
els (Crothers et al., 2022; Grinbaum & Adomaitis, 2022).

*Equal contribution . Code will be available at github.
com/jwkirchenbauer/lm-watermarking. Correspon-
dence to: John Kirchenbauer <jkirchen@umd.edu>.

…The watermark detection algorithm 
can be made public, enabling third 
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Figure 1. Outputs of a language model, both with and without
the application of a watermark. The watermarked text, if written
by a human, is expected to contain 9 “whitelisted” tokens, yet
it contains 28. The probability of this happening by random
chance is ≈ 6× 10−14, leaving us extremely certain that this text
is machine generated. Whitelist words are green, blacklist words
are red. The model is OPT-6.7B using multinomial sampling.
Watermark parameters are γ, δ = (0.25, 2). The prompt is the
whole blue paragraph marked in blue below.

In this work, we study watermarking of language
model output. A watermark is a hidden pattern in
text that is imperceptible to humans, while making
the text algorithmically identifiable as synthetic. We
propose an efficient watermark that makes synthetic
text detectable from short spans of tokens (as few as
25 tokens), while false-positives (where human text
is marked as machine-generated) are statistically im-
probable. The watermark detection algorithm can be
made public, enabling third parties (e.g., social media
platforms) to run it themselves, or it can be kept private
and run behind an API. We seek a watermark with the
following properties:
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• The watermark can be algorithmically detected with-
out any knowledge of the model parameters or access
to the language model API. This property allows the
detection algorithm to be open sourced even when the
model is not. This also makes detection cheap and fast
because the LLM does not need to be loaded or run.

• Watermarked text can be generated using a standard
language model without re-training.

• The watermark is detectable from only a contiguous
portion of the generated text. This way, the watermark
remains detectable when only a slice of the generation
is used to create a larger document.

• The watermark cannot be removed without modifying
a significant fraction of the generated tokens.

• We can compute a rigorous statistical measure of con-
fidence that the watermark has been detected.

1.1. Notation & Language model basics

Language models have a “vocabulary” V containing words
or word fragments known as “tokens.” Typical vocab-
ularies contain |V| = 50, 000 tokens or more (Radford
et al., 2019; Liu et al., 2019). Consider a sequence of
T tokens {s(t)} ∈ VT . Entries with negative indices,
s(−Np), · · · , s(−1), represent a “prompt” of length Np and
s(0), · · · , s(T ) are tokens generated by an AI system in re-
sponse to the prompt.

A language model (LM) for next word prediction, is a func-
tion f , often parameterized by a neural network, that accepts
as input a sequence of known tokens s(−Np), · · · , s(t−1),
which contains a prompt and the first t− 1 tokens already
produced by the language model, and then outputs a vector
of |V | logits, one for each word in the vocabulary. These
logits are then passed through a softmax operator to convert
them into a discrete probability distribution over the vocab-
ulary. The next token at position t is then sampled from this
distribution using either standard multinomial sampling, or
greedy sampling (greedy decoding) of the single most likely
next token. Additionally, a procedure such as beam search
can be employed to consider multiple possible sequences
before selecting the one with the overall highest score.

1.2. A caveat: The difficulty of watermarking
low-entropy sequences

Consider the following two sequences of tokens, with
prompts in red:

The quick brown fox jumps over the lazy dog
for(i=0;i<n;i++) sum+=array[i]

Were they produced by a human or by a language model?
Determining this is fundamentally hard because these se-

quences have low entropy; the first few tokens strongly
determine the following tokens.

Low entropy text creates two problems for watermarking.
First, both humans and machines provide similar if not
identical completions for low entropy prompts, making it
impossible to discern between them. Second, it is difficult
to watermark low entropy text, as any changes to the choice
of tokens may result in high perplexity, unexpected tokens
that degrade the quality of the text. Later, we rigorously de-
fine sentence entropy, and analyze its impact on watermark
detection.

2. A simple proof of concept
We start out by describing a simple “hard” blacklist water-
mark in Algorithm 1 that is easy to analyze, easy to detect
and hard to remove. The simplicity of this approach comes
at the cost of poor generation quality on low entropy se-
quences. We will discuss more sophisticated strategies later.

Algorithm 1 Text Generation with Hard Blacklist

Input: prompt, s(−Np) · · · s(−1)

for t = 0, 1, · · · do
1. Apply the language model to prior tokens

s(−Np) · · · s(t−1) to get a probability vector p(t)

over the vocabulary.

2. Compute a hash of token s(t−1), and use it to
seed a random number generator.

3. Using this seed, randomly partition the vocabu-
lary into a “whitelist” W and a “blacklist” B of
equal size.

4. Sample s(t) from W , never generating any
token in the blacklist.

end for

The method works by generating a pseudo-random blacklist
of tokens that are barred from appearing as s(t). The black-
list generator is seeded with the prior token s(t−1), enabling
the blacklist to be reproduced later without access to the
entire generated sequence.

Detecting the watermark. While producing watermarked
text requires access to the language model, detecting the
watermark does not. A third party with knowledge of the
hash function and random number generator can re-produce
the blacklist for each token and count how many times the
blacklist rule is violated. We can detect the watermark by
testing the following null hypothesis,

H0: The text sequence is generated with

no knowledge of the blacklist rule.
(1)
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Because the blacklist is chosen at random, a natural writer
is expected to violate the blacklist rule with half of their to-
kens, while the watermarked model produces no violations.
The probability that a natural source produces T tokens
without violating the blacklist rule is only 1/2T , which is
vanishingly small even for short text fragments with a dozen
words. This enables detection of the watermark (rejection
of H0) for, e.g., a synthetic tweet.

A more robust detection approach uses a one proportion
z-test to evaluate the null hypothesis. If the null hypothesis
is true, then the number of whitelist tokens, denoted |s|w,
has expected value T/2 and variance T/4. The z-statistic
for this test is

z = 2(|s|w − T/2)/
√
T . (2)

We reject the null hypothesis and detect the watermark if z
is above a chosen threshold. Suppose we choose to reject
the null hypothesis if z > 4. In this case, the probability of
a false positive is 3× 10−5, which is the one-sided p-value
corresponding to z > 4. At the same time, we will detect
any watermarked sequence with 16 or more tokens (the
minimum value of T that produces z = 4 when |s|w=T).

How hard is it to remove the watermark? The use of
the one proportion z-test makes removal of the watermark
difficult. Consider the case of a watermarked sequence of
length T = 1000. Suppose an adversary modifies 200 to-
kens in the sequence to add blacklist words and scrub the
watermark. A modified token at position t can violate the
blacklist rule at position t. Furthermore, the value of st
determines the blacklist for token st+1, and a maximally ad-
versarial choice of st will put st+1 in violation of the black-
list rule as well. For this reason, 200 token flips can create
at most 400 violations of the blacklist rule. Unfortunately
for the attacker, this maximally adversarial sequence with
600 remaining whitelist tokens still produces a z-statistic of
2(600−1000/2)/

√
1000 ≈ 6.3, and a p-value of≈ 10−10,

leaving the watermark readily detectable with extremely
high confidence. In general, removing the watermark of a
long sequence requires modifying roughly one quarter of
the tokens or more.

Note the analysis above assumes the attacker has complete
knowledge of the watermark, and each selected token
is maximally adversarial (which likely has a negative
impact on quality). Without knowledge of the watermark
algorithm, each flipped token has only a 50% chance of
being blacklisted, as does the adjacent token. In this case,
the attacker above only creates 200 blacklist words (in
expectation) by modifying 200 tokens. Methods for keeping
the watermark algorithm secret but available via API are
discussed in Section 5.

Drawbacks of the hard blacklist rule. The hard blacklist
rule handles low entropy sequences in a simple way; it

prevents the language model from producing them. For
example, the token “Barack” is almost deterministically
followed by “Obama” in many text datasets, yet “Obama”
may be disallowed by the blacklist.

A better behavior is to use a “soft” watermarking rule that
is only active for high-entropy text that can be impercep-
tibly watermarked. As long as low-entropy sequences are
wrapped inside a passage with enough total entropy, the
passage will still easily trigger a watermark detector, solv-
ing the problem described in Section 1.2. Further, one can
combine the watermark with a beam search decoder that
“irons-in” the watermark. By searching the hypothesis space
of likely token sequences, candidates sequences with a high
density of whitelisted tokens are found, resulting in a high
strength watermark with minimal perplexity cost.

3. A more sophisticated watermark
We now discuss the “soft” watermark that promotes the
use of the whitelist for high entropy tokens when many
good choices are available, while having little impact on the
choice of low-entropy tokens that are nearly deterministic.

To derive this watermark, we examine what happens in the
language model just before it produces a probability vector.
The last layer of the language model outputs a vector of
logits l(t). These logits get converted into a probability
vector p(t) using the softmax operator

p
(t)
k = exp(l

(t)
k )/

∑
i

exp(l
(t)
i ).

Rather than strictly prohibiting the blacklist tokens, Algo-
rithm 2 adds a constant δ to the logits of the whitelist tokens.

The soft blacklist rule adaptively enforces the watermark in
situations where doing so will have little impact on quality,
while almost ignoring the watermark rule in the low entropy
case where there is a clear and unique choice of the “best”
word. A highly likely word with p(t)

k ≈ 1 has a much larger
logit than other candidates, and this will remain the largest
regardless of whether it is blacklisted. But when the entropy
is high, there are many comparably large logits to choose
from, and the δ rule has a large impact on the sampling dis-
tribution, strongly biasing the output towards the whitelist.

3.1. Detecting the soft watermark

The process for detecting the soft watermark is identical to
that for the hard watermark. We assume the null hypothesis
(1) and compute a z-statistic using Equation (2). We reject
the null hypothesis and detect the watermark if z is greater
than a threshold. For arbitrary γ we have

z = (|s|w − γT )/
√
Tγ(1− γ). (3)
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Algorithm 2 Text Generation with Soft Blacklist

Input: prompt, s(−Np) · · · s(−1)

whitelist size, γ ∈ (0, 1)
hardness parameter, δ > 0

for t = 0, 1, · · · do
1. Apply the language model to prior tokens

s(−Np) · · · s(t−1) to get a logit vector l(t) over
the vocabulary.

2. Compute a hash of token s(t−1), and use it to
seed a random number generator.

3. Using this random number generator, randomly
partition the vocabulary into a “whitelist” W of
size γ|V |, and a “blacklist” B of size (1− γ)|V |.

4. Add δ to each whitelist logit. Apply the stan-
dard softmax operator to these modified logits
to get a probability distribution over the vocabu-
lary.

p̂
(t)
k =


exp(l

(t)
k +δ)∑

i∈B exp(l
(t)
i )+

∑
i∈W exp(l

(t)
i +δ)

, k ∈W
exp(l

(t)
k )∑

i∈B exp(l
(t)
i )+

∑
i∈W exp(l

(t)
i +δ)

, k ∈ B.

5. Sample the next token, s(t), using the water-
marked distribution p̂(t).

end for

Consider again the case in which we detect the watermark
for z > 4. Just like in the case of the hard watermark, we
get false positives with rate 3 × 10−5. In the case of the
hard watermark, we could detect any watermarked sequence
of length 16 tokens or more, regardless of the properties
of the text. However, in the case of the soft watermark our
ability to detect synthetic text depends on the entropy of
the sequence. High entropy sequences are detected with
relatively few tokens, while low entropy sequences require
more tokens for detection. Below, we rigorously analyze
the detection sensitivity of the soft watermark, and its
dependence on entropy.

4. Analysis of the soft watermark
In this section, we examine the expected number of whitelist
tokens used by a watermarked language model and analyze
the dependence of this quantity on the entropy of a generated
text fragment. Our analysis assumes the blacklist is sampled
uniformly at random. This is a deviation from the method
used in practice, which generates blacklists using a pseudo-
random number generator seeded with previous tokens. The
consequences of pseudo-random sampling are explored in
Section 5. We analyze the case in which text is generated

by multinomial random sampling. In our experiments, we
consider two more sampling schemes, greedy decoding and
beam search.

We need a definition of entropy that is appropriate for our
analysis. The strength of our watermark is weak when the
distribution over tokens has a large “spike” concentrated
on one or several tokens. We define the following type of
entropy to quantify this phenomenon.

Definition 4.1. Given a discrete probability vector p and a
scalar z, we define the spike entropy of p with modulus z as

S(p, z) =
∑
k

pk
1 + zpk

.

Like the classical Shannon entropy, the spike entropy is
a measure of how spread out a distribution is; The spike
entropy assumes its minimal value of 1

1+z when the en-
tire mass of p is concentrated at a single location, and its
maximal value of N

N+z when the mass of p is uniformly
distributed. For large z, the value of pk

1+zpk
≈ 1/z when

pk > 1/z and ≈ 0 for pk < 1/z. For this reason, one can
interpret the spike entropy as a softened measure of the
number of entries in p greater than 1/z.

The following theorem predicts the number of whitelist
tokens that appear in a sequence with the watermark.

Theorem 4.2. Consider watermarked text sequences of T
tokens. Each sequence is produced by sequentially sam-
pling a raw probability vector p(t) from the language model,
sampling a random whitelist of size γN , and boosting the
whitelist logits by δ using Equation 4 before sampling each
token. Define α = exp(δ), and let |s|w denote the number
of whitelist tokens in sequence s.

If a randomly generated watermarked sequence has average
spike entropy at least S?, i.e.,

1

T

∑
t

S

(
p(t),

(1− γ)(α− 1)

1 + (α− 1)γ

)
≥ S?,

then the number of whitelist tokens in the sequence has
expected value at least

E |s|w ≥
γαT

1 + (α− 1)γ
S?,

Furthermore, the number of whitelist tokens has variance at
most

Var |s|w ≤ T
γαS?

1 + (α− 1)γ

(
1− γαS?

1 + (α− 1)γ

)
.

If we have chosen γ ≥ .5, then we can use the strictly looser
but simpler bound

Var |s|w ≤ Tγ(1− γ).
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Remark. It may seem like there are a lot of messy constants
floating around in this bound. However, when we choose
γ = 1

2 and δ = ln(2) ≈ 0.7, this bound simplifies to

E |s|w ≥
2

3
TS?, Var |s|w ≤

2

3
TS?

(
1− 2

3
S?
)

where S? is a bound on spike entropy with modulus 1/3. If
we study the “hard” blacklist rules by choosing γ = 1

2 and
letting δ →∞, we have

E |s|w ≥ TS?, Var |s|w ≤ TS? (1− S?)

where S? is a bound on spike entropy with modulus 1.

4.1. Sensitivity of the watermark test

The sensitivity of the soft watermark can be computed using
standard type-II error analysis. For illustrative purposes,
we estimate the type-II (false negative) error rate of a soft
watermark with γ = .5 and δ = 2. We assume 200 tokens
are generated using OPT-1.3B (Zhang et al., 2022) using
prompts from the C4 dataset’s RealNewsLike subset (Raffel
et al., 2019). We also assume a detection threshold of z = 4
(which occurs at ∼ 128.2/100 tokens) which gives us a
type-I error (false positive) rate of 3× 10−5.

Theoretical bound. Our generations have an average spike
entropy per sample of S = 0.807 over ∼ 500 generations.
Theorem 4.2 says that the expected number of whitelist to-
kens per generation is at least 142.2. Indeed, the empirical
average is 159.5. For sequences with entropy equal to the
mean (S = 0.807) we get σ ≤ 6.41 tokens, and 98.6% sen-
sitivity (1.4% type-II error rate), using a standard Gaussian
approximation for the whitelist count. Note, this is a lower
bound on the sensitivity for this particular entropy. If we use
the true empirical mean of 159.5 rather than the theoretical
bound, we get a 5.3 × 10−7 type-II error rate, a realistic
approximation but not a rigorous lower bound.

Empirical sensitivity. Empirically, 98.4% of generations
are detected at the z = 4 (128 token) threshold when multi-
nomial sampling is used. When 4-way beam search over a
greedy decoding is used, we get 99.6% empirical sensitivity.
Unlike the theoretical bounds, these are computed over all
generations, which have the same length but vary in their
individual entropies. Here, the primary source of type-II
errors is low entropy sequences, as calculations above show
that we expect a very low error rate when the entropy lies
near the mean. To validate this, we examine the subset of
375/500 generations that have spike entropy above the 25th
percentile, of which we detect 100% of generations at the
z = 4 threshold.

What do failure cases look like? We display typical suc-
cess and failure cases for the watermark in Table 1. We
observe that low-entropy (undetectable) sequences typically

involve data memorization; the model regurgitates a copy
(or near copy) of human-written text which is therefore not
detectable as machine-written. A detailed exploration of
model accuracy is presented in Section 6.

4.2. Impact on quality of generated text

A soft watermark has very little impact on the perplexity of
tokens with extremely high or low entropy. When the distri-
bution produced by the language model is uniform (maximal
entropy), the randomness of the white list results in tokens
being uniformly sampled, and the perplexity remains un-
touched. Conversely, in the case of minimal entropy, where
all probability mass is concentrated on a single token, the
soft watermark rule has no effect and there is once again no
impact on perplexity.

The watermark rule does impact perplexity for tokens of
moderate entropy. In this case, we can provide the following
simple bound that holds uniformly over all entropy values.
Theorem 4.3. Consider a sequence s(i),−Np < i < T.
Suppose the (non-watermarked) language model produces
a probability vector p(T ) for the token at position T. The
watermarked model predicts the token at position T using
modified probability vector p̂(T ). The expected perplexity of
the T th token with respect to the randomness of the blacklist
partition is

E
W,B

∑
k

p̂
(T )
k ln(p

(T )
k ) ≤ (1 + (α− 1)γ)P ∗,

where P ∗ =
∑
k p

(T )
k ln(p

(T )
k ) is the perplexity of the

original model.

5. Private Watermarking
The watermark algorithms above are designed to be pub-
lic. A watermark can also be operated in private mode, in
which the algorithm uses a random key that is kept secret and
hosted behind a secure API. If the attacker has no knowledge
of the key used to produce the blacklist, it becomes more
difficult for the attacker to remove the watermark as the
attacker does not know which tokens are blacklisted. How-
ever, testing for the presence of the watermark now requires
using the same secure API and, if this API is public, access
needs to be monitored to prevent an adversary from making
too many queries using minor variants of the same sequence.

Let F be a pseudorandom function (PRF) that, for simplicity,
we view as accepting arbitrary length inputs and producing
output as long as needed. F could be a standard block cipher
like AES or a cryptographic hash function like SHA3. To
create a private watermark, we first choose a random key K;
a private blacklist for token s(t) can then be generated in a
manner similar to what was described earlier, but now by
first computing FK(s(t−h), · · · , s(t−1)), a pseudorandom
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prompt real completion no watermark (NW) watermarked (W) S (W)
z

(NW)
PPL

(W)
PPL

...tled out of court and publicly
reconciled.\nIn the ’80s the band’s
popularity waned in the United
States but remained strong abroad.
Robin released three solo albums,
with limited success. The Bee Gees

returned with some moderate hits
in the late 1990s and were inducted
into the Rock and Roll Hall of
Fame in 1997. With his brothers,
Mr. Gibb won six Grammys.\nIn
addition to his wife and his brother
[...continues]

continued to tour, and Barry became
a television producer.\nBut in the
early ’90s, the Bee Gees’ popularity
remained high. They scored a
hit with “Don’t Stop Believing”
in 1990, and in 1992 the Bee
Ge[...continues]

’ 1990 album, “Spirits of the Cen-
tury,” was a mixed critical and
commercial success.\nWhen the
brothers were nominated for a
Grammy Award in 1990, Mr. Gibb’s
“You Should Be Dancing” and
“Massachusetts,[...continues]

0.68 12.73 3.15 1.93

... logged into their Google account
and have verified profiles that match
queries for the site.\nGoogle’s John
Mueller said there is no ranking
benefit in using different Google
Search Console and Google

Analytics accounts for each indi-
vidual web site you manage. The
topic came up before, as long as
you are not spamming Google -
there also is no down side to using
the same accounts across multiple
we[...continues]

Analytics data to calculate ranking
sentiment.\nGoogle have a new
feature called Keyword Difficulty
Analysis that shows you the key-
words your competitors are ranking
for. It shows the demand curve as
[...continues]

+ accounts to see different num-
bers.\nGoogle also released
their own great blog post on the
news algorithm. They give lots
of great advice to help your site
do better.\nFinally, at the end of
September [...continues]

0.77 11.88 9.24 4.10

...1 on the season with a 2.76 GAA
and.906 save percentage.\nMar. 11
5:28 PM PT6:28 PM MT7:28 PM
CT8:28 PM ET0:28 GMT8:28 5:28
PM MST6:28 PM CST7:28 PM
EST4:28 UAE (+1)20:28 ET21:28
BRT - Sergei Bobrovsky

stopped 18 of 19 shots in the Blue
Jackets’ 2-0 loss to the Islanders
on Monday. The defeat dropped
him to 29-22-1 on the season
with a 2.74 GAA and.907 save
percentage.\nMar. 9 5:41 PM
PT6:41 PM MT7:[...continues]

stopped 28 of 30 shots in the Blue
Jackets’ 3-2 shootout loss to the
Islanders on Sunday. The loss
dropped him to 30-22-1 on the
season with a 2.76 GAA and.906
save percentage.\nMar. 10 6:15 PM
PT7:15[...continues]

stopped 30 of 34 shots in the Blue
Jackets’ 6-2 win over the Canadiens
on Monday. The victory pushed
him to 31-21-1 on the season
with a 2.72 GAA and.908 save
percentage.\nMar. 10 11:49 AM
PT12:49 PM [...continues]

0.62 2.40 1.33 1.45

...cond season at Hall Bros
Oval.\nThe defender also ad-
mitted his surprise at Young’s run to
the finals but credited the injection
of youth into the side.\n“We were
really in a building phase last year
and

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together for
two years and I think we’ve come
along quicker than we antici-
pated.\nROCK[...continues]

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together for
two years and I think we’ve come
along quicker than we antici-
pated.\n“Tha[...continues]

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together for
two years and I think we’ve come
along quicker than we antici-
pated.\n“Tha[...continues]

0.58 -1.13 1.05 1.04

Table 1. Selected outputs from non-watermarked (NW) and watermarked (W) multinomial sampling using γ = 0.5 and δ = 2.0. The
examples in the first two rows have high entropy and correspondingly high z-scores, without any perceptible degradation in output
quality. The two lower rows are failure cases where the watermark is too weak to be detected – they have low entropy and correspond-
ing low z-scores. Anecdotally, failure cases typically seem to involve data memorization in which the model regurgitates a near-copy
of human text. Note the output similarity between the generated and “real” human text in the bottom two rows. Memorization leads
to large, high confidence logit values that constrain the outputs. Another common factor in failure cases is templated outputs (see the
date/time formatting in row 3) that constrain model choices.

function evaluated on the prior h tokens.

An attacker can discover the watermarking rules by ob-
serving occurrences of token tuples in generated text and
tabulating the frequencies of the immediately subsequent
tokens, even if the underlying key is unknown. To tabulate
every blacklist in such a brute-force attack, |V |1+h tokens
need to be submitted to the detection API. When h = 1,
the blacklists produced by many tokens could be discovered
(at least partially) with conceivable effort. This brute-force
method is ineffective for h � 1, as there is now a unique
blacklist for each ordered combination of words. At the
same time, large values of h decrease watermark robustness
when a naive method is used. When, say, h = 5 consecu-
tive tokens are used to produce a blacklist, an adversarial
change to just one of those tokens randomizes the blacklist
for 5 different downstream tokens, increasing the number
of blacklist words by 2.5 (in expectation) if γ = .5. We
call this downstream impact attack amplification. To limit
amplification, we suggest using a small window (h = 2
or 3) when using the naive watermarking rule.

When a wider window h is desired, more complex, robust
watermarking rules can achieve security against brute-force
attacks without attack amplification. We describe such a rule
in Algorithm 3. Here, the blacklist for s(t) depends on itself,

and additionally on one prior token s(t−i?) chosen using a
pseudo-random rule. To satisfy this self-hash condition, we
iteratively tests different tokens as s(t), from highest logit to
least logit, until the blacklist rule is satisfied. If, during this
search, the logit of the test token falls by more than δ, we
give up and accept the (blacklisted) token with largest logit.

Algorithm 3 has several nice security properties. When one
of the prior h tokens is changed, the watermark at position
t changes with probability only 1/h. As such, this rule is
free of attack amplification; in expectation, a change to a
token results in one additional blacklist token.1 Like the
naive method with h = 2, there are |V|2 unique blacklists,
but now the choice of the index i? depends on combinations
of s(t) and all h tokens before it, which hides the choice of
tokens used as input to F . For simplicity, Algorithm 3 is
presented as a greedy sampler, but can be easily extended to
handle multinomial sampling or beam search.

A range of more complex mechanisms are possible with dif-
ferent efficiency and security tradeoffs, but we leave detailed
consideration to future research.

1When γ = .5, the flipped token is blacklisted 1/2 of the
time, and one of the h downstream blacklists is expected to
randomize, resulting in another 1/2 blacklist token.
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Algorithm 3 Robust Private Watermarking

Input: prompt s(−Np) · · · s(−1)

PRF F with key K
hardness parameter δ > 0
window width h > 0

for t = 0, 1, · · · do
1. Apply the language model to s(−Np) · · · s(t−1)

to get a logit vector l(t) over the vocabulary.

2. Sort the vocabulary so l(t) is in descending or-
der. Set k = 0, the index of the most likely
token.

3. Temporarily set s(t) to be the kth token in the
vocabulary. Compute

Hi = FK(s(t), s(t−i)) for 1 ≤ i ≤ h.

4. Set i? = arg mini>0Hi.

5. Using Hi? as a seed, produce a random bit to
decide if token k is on the white or black list.

if white list is chosen then
keep s(t) and continue.

else if black list is chosen, and l(t)k+1 < l
(t)
0 − δ, then

choose s(t) to be the most likely (k = 0) token,
which is blacklisted, and continue.

else
set k ← k + 1, goto to step 3.

end if
end for

6. Experiments
In this section we explore the behavior of the watermark us-
ing the OPT-1.3B model (Zhang et al., 2022). We measure
watermark strength using the rate of type-I errors (human
text falsely flagged as watermarked) and type-II errors (wa-
termarked text not detected).

We implement the proposed watermark using the Pytorch
backend of the Huggingface library (Wolf et al., 2020). The
generate API provides useful abstractions, including
modules for warping the logit distribution that comes out
of the language model. We generate blacklists using the
torch random number generator and one previous token as
described in Section 3.

Datasets and Prompts. To simulate a variety of realistic
language modeling scenarios we slice and dice a random
selection of texts from the news-like subset of the C4 dataset
(Raffel et al., 2019). For each random string, we trim a
fixed length of tokens from the end and treat them as a
“baseline” completion. The remaining tokens are a prompt.
For the experimental runs using multinomial sampling, we

pull examples from the dataset until we achieve at least 500
of generations with length T = 200± 5 tokens. In the runs
using greedy and beam search decoding, we suppress the
EOS token during generation to combat the tendency of
beam search to generate short sequences. We then truncate
all sequences to T = 200. A larger oracle language model
(OPT-2.7B) is used to compute perplexity (PPL) for the
generated completions and for the human baseline.

Watermark Strength vs Text Quality. One can achieve a
very strong watermark for short sequences by choosing a
small white list size γ and a large white list bias δ. How-
ever, creating a stronger watermark may distort generated
text. Figure 2 (left) shows the tradeoff between watermark
strength (z-score) and text quality (perplexity) for various
combinations of watermarking parameters. We compute
results using 500 ± 10 sequences of length T = 200 ± 5
tokens for each parameter choice. Interestingly, we see that
a small whitelist, γ = .1 is pareto-optimal.

In addition to these quantitative results, we show exam-
ples of real prompts and watermarked outputs in Table 1 to
provide a qualitative sense for the behavior of the test statis-
tic and quality measurement on different kinds of prompts.
Additional examples are compiled in Appendix A.1.

Ironing in the Watermark with Beam Search. Figure 2
(right) shows the tradeoff between watermark strength and
accuracy when beam search is used. Beam search has a
synergistic interaction with the soft watermarking rule. Par-
ticularly when 8 beams are used, the points in Figure 2 form
an almost vertical line, showing very little perplexity cost to
achieve strong watermarking.

Watermark Strength vs Number of Tokens. Theory pre-
dicts that the type I and type II error rates of the watermark
should decay to zero as the sequence length T increases.
Figure 3 shows the strength of the watermark, measured
using the average z-score over samples, as T sweeps from 2
to 200. Curves are shown for various values of δ and γ. The
left two charts use multinomial sampling, while the right
chart uses 8-way beam search and γ = .25. Once again, we
see the power of the beam search in achieving high whitelist
ratios; even for the moderate bias of δ = 2, an average
z-score greater than 5 is achieved for as few as 35 tokens.

Performance and Sensitivity for Multinomial Sampling.
To show the sensitivity of the resulting hypothesis test based
on the observed z-scores, we provide a table of error rate for
various watermarking parameters in Table 2. We also sweep
a range of thresholds in ROC charts in Figure 4. We further
report detection performance and error rates for various
cutoffs in Appendix C, and provide a comparison between
empirical z-scores and theoretical predictions.
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Figure 2. The tradeoff between average z-score and language model perplexity for T = 200± 5 tokens. (left) Multinomial sampling.
(right) Greedy and beam search with 4 and 8 beams for γ = .5. Beam search promotes higher whitelist usage and thus larger z-scores
with smaller impact to model quality (perplexity, PPL).
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Figure 3. The average z-score as a function of T the token length of the generated text. (a) The dependence of the z-score on the
whitelist size parameter γ, under multinomial sampling. (b) The effect of δ on z-score, under multinomial sampling. (c) The impact of
the whitelist size parameter γ on the z-score, but with greedy decoding using 8-way beam search.

7. Attacking the watermark
Like any software tool, care must be taken when implement-
ing a watermark and watermark detector so that security is
maintained. Otherwise, an adversarial user may modify text
to add blacklist tokens, and thus avoid detection. In many
cases, simple attacks can be avoided by properly normal-
izing text before hashes are computed. We now discuss a
range of attacks that we are currently aware of, and meth-
ods to mitigate them. We assume a threat model in which
an attacker must create watermark-free text using a com-
bination of a private watermarked model and other public
models, but the public models are much weaker than the
watermarked model. We only consider attacks that maintain
text of quality similar to the raw private model.

Three types of attacks are possible. Text insertion attacks
add additional tokens after generation that may be black-
listed and may alter the blacklist computation of down-
stream tokens. Text deletion removes tokens from the gen-
erated text, potentially removing whitelisted tokens and

modifying downstream blacklists. This attack increases the
monetary costs of generation, as the attacker is “wasting”
tokens, and may reduce text quality due to effectively de-
creased LM context width. Text substitution swaps one
token with another, potentially introducing one blacklist
token, and possibly causing downstream blacklisting. This
attack can be automated through dictionary or LM substitu-
tion, but may reduce the quality of the generated text.

Below we catalog a range of attacks that fall into these
categories.

Paraphrasing Attacks. A baseline substitution attack is
manual paraphrasing by the human attacker. This attack
is technically outside the threat model we are interested
in, as it requires extensive human intervention. Note that,
especially on longer text fragments such as essays, a few
sentences that are partially or not at all paraphrased can be
sufficient to trigger watermark detection at a statistically
significant threshold.
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Figure 4. ROC curves with AUC values for watermark detection. Several choices of watermark parameter δ are shown for (a) multi-
nomial sampling and (b) greedy decoding with 8-way beam search. (c,d) The same charts with semilog axes. Higher δ values achieve
stronger performance, but additionally we see that for a given δ, the beam search allows the watermark to capture slightly more AUC
than the corresponding parameters under the multinomial sampling scheme.

z=4.0 z=5.0

sampling δ γ count FPR TNR TPR FNR FPR TNR TPR FNR

m-nom. 1.0 0.50 506 0.0 1.0 0.767 0.233 0.0 1.0 0.504 0.496
m-nom. 1.0 0.25 506 0.0 1.0 0.729 0.271 0.0 1.0 0.482 0.518
m-nom. 2.0 0.50 507 0.0 1.0 0.984 0.016 0.0 1.0 0.978 0.022
m-nom. 2.0 0.25 505 0.0 1.0 0.994 0.006 0.0 1.0 0.988 0.012
m-nom. 5.0 0.50 504 0.0 1.0 0.996 0.004 0.0 1.0 0.992 0.008
m-nom. 5.0 0.25 503 0.0 1.0 1.000 0.000 0.0 1.0 0.998 0.002
8-beams 1.0 0.50 495 0.0 1.0 0.873 0.127 0.0 1.0 0.812 0.188
8-beams 1.0 0.25 496 0.0 1.0 0.819 0.181 0.0 1.0 0.770 0.230
8-beams 2.0 0.50 496 0.0 1.0 0.992 0.008 0.0 1.0 0.984 0.016
8-beams 2.0 0.25 496 0.0 1.0 0.994 0.006 0.0 1.0 0.990 0.010
8-beams 5.0 0.50 496 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
8-beams 5.0 0.25 496 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000

Table 2. Empirical error rates for watermark detection using multinomial sampling and beam search. Each row is averaged over ∼ 500
generated sequences of length T = 200± 5. A maximum of one type-I (false positive) error was observed for any given run. All soft
watermarks at δ = 2.0 incur at most 1.6% (8/500) type-II error at z = 4. No type-II errors occurred for the hardest watermarks with
δ = 10.0 and γ = 0.25.

A more scalable version of this attack is to use automated
paraphrasing. An attacker that has access to a public lan-
guage model can use this model to rephrase the output of the
generated model. We provide an experimental evaluation of
this attack in Section 7.1.

Discreet Alterations. An attacker could make small al-
terations, adding additional whitespaces, or misspelling a
few words to impact the computation of the hash. A well-
constructed watermark should normalize text to ignore ex-
plicit whitespaces when computing the hash. Changing the
spelling of many words is likely to severely degrade the
quality of text. When implemented carefully, surface level
alterations should not pose a serious threat to a watermark.

Tokenization Attacks.. An attacker can modify text
so that sub-word tokenization of a subsequent word
changes. For example (again with BPE), if the text
fragment life.\nVerrilius is modified to life.
Verrilius (i.e. \n is replaced), then the tokenization of
the succeeding word also switches from V err ili us to

Ver r ili us. This results in more blacklist tokens than
one would expect from a single insertion. The attack can
contribute to the effectiveness of a more powerful attack,
but most tokens in a default sentence will not be vulnerable.

Homoglyph and Zero-Width Attacks. This is a special
case of the discreet alteration attack. The effect of tokeniza-
tion attacks can be multiplied through homoglyph attacks
(Gabrilovich & Gontmakher, 2002). Homoglyphs attacks
are based on the fact that unicode characters are not unique,
with multiple unicode IDs resolving to the same (or a very
similar-looking) letter. This breaks tokenization, for ex-
ample the word Lighthouse (two token) expands to 9
different tokens if i and s are replaced with their equivalent
Cyrillic unicode characters. Security against Homoglyph
and tokenization attacks can be maintained using input nor-
malization before the text is tested for watermarks, for exam-
ple via canonicalization as in Helfrich & Neff (2012). Oth-
erwise, simple replacements of characters with their homo-
glyphs could break enough tokens to remove the watermark.
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Figure 5. Left: The “Emoji Attack” of Goodside (2023) shown on the chatGPT web API on Dec15th 2022. After generation, the
attacker can remove the emoji tokens, which randomizes the blacklists of subsequent non-emoji tokens. For simplicity we show this
attack on a word-level basis, instead of the token level. Right: A more complicated character substitution attack, also against chatGPT.
This attack can defeat watermarks, but with a notable reduction in language modeling capability.

Likewise, there are Zero-width joiner/non-joiner unicode
characters that encode zero-width whitespace and hence are
effectively invisible in most languages. Like homoglyphs,
these characters must be removed through canonicalization
(Pajola & Conti, 2021; Boucher et al., 2022).

Generative Attacks. Generative attacks abuse the capabil-
ity of large language models for in-context learning, and
prompt the model to change its output in a predictable and
easily reversible way. For example, the Emoji attack of
Goodside (2023) proceeds by prompting the model to gen-
erate an emoji after every token, see Figure 5, left. These
emojis can be removed, randomizing the blacklist for sub-
sequent tokens. More broadly, all attacks that prompt the
model to change its output “language” in a predictable way
can potentially cause this, for example prompting the model
to replace all letters a with e, see Figure 5, right. Or, as a
reverse homoglyph attack, prompting the model to “switch
the letter i with i”, where the second i is a Cyrillic letter.

These attacks are the strongest tools against watermarking
to our knowledge, but also require a strong LM with the
capacity to follow the prompted rule without a loss in output
quality. Additionally, this increases the cost of text gener-
ation by requiring more tokens than usual to be generated
and reducing effective context width.

A defense against these attacks is to include negative
examples of such prompts during finetuning, training
the model to reject these requests. Note that instruction
finetuning is already common (for example in ChatGPT) for
other categories of malicious prompts, using reinforcement
learning protocols (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022; Bai et al., 2022).

7.1. Degradation Under Attack: Span Replacement
Using a LM

We study a realistic black-box attack by attempting to re-
move the presence of the watermark by replacing spans in
the original output text using another language model. We
treat the watermark algorithm as if it is private, mocking
seclusion behind an API. The attacker does not have access
to the locations of whitelisted tokens and instead tries to
modify the text through token replacement at random in-
dices until a certain word replacement budget, ε, is reached.
The budget constraint maintains a level semantic similarity
between the original watermarked text and the attacked text,
otherwise the “utility” of the original text for its intended
task may be lost. Also, each span replacement in the attack
is performed via inference using a multi-million parameter
language model, roughly a third the size of the target model,
but still with an associated cost per execution that requires a
base level of efficiency with respect to model calls.

In our experiment, we adopt T5-Large (Raffel et al., 2020)
as the replacement model and iteratively select and replace
tokens until the attacker either reaches the budget or no
more suitable replacement candidates are returned.

Details of the T5 Span Attack. We tokenize the water-
marked text using the T5 tokenizer. Then, while fewer
than εT successful replacements have been performed or a
maximal iteration count is reached:

1. Randomly replace one word from the tokenization with
a <mask>.

2. Pass the region of text surrounding the mask token
to T5 to obtain a list of k = 20 candidate replace-
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unattacked, AUC:0.998, PPL:6.3

ε = 0.1, AUC:0.988, PPL:13.1

ε = 0.3, AUC:0.954, PPL:21.2

ε = 0.5, AUC:0.838, PPL:28.4

ε = 0.7, AUC:0.696, PPL:33.9

Figure 6. ROC curves for watermark detection under attack via
the T5 Span Attack detailed in Section 7.1, with various replace-
ment budgets ε. The initial, unattacked watermark is a γ = 0.5,
δ = 2.0 soft watermark generated using multinomial sampling.
The attack achieves a high level of watermark degradation, but
only at ε = 0.3, which costs the attacker an average of ∼ 15
points of perplexity compared the PPL of the original water-
marked text.

ment token sequences via a 50-way beam search, with
associated scores corresponding to their likelihood.

3. Each candidate is decoded into a string. If one of the
k candidates returned by the model is not equal to the
original string corresponding to the masked span, then
the attack succeeds, and the span is replaced with the
new text.

After attacking a set of 500 sequences of length T = 200±5
token sequences this way, we compute updated z-scores and
tabulate error rates (Table 8 in the Appendix). We also
generate ROC plots for a range of ε budgets. While this
attack is effective at creating blacklist tokens as shown in
Figure 6, we only measure a decrease in watermark strength
of 0.01 AUC when ε = 0.1. While the watermark removal
is more successful at a larger budget of 0.3, the average
PPL of attacked sequences increases by 3× in addition to
requiring more model calls.

8. Related Work
The idea of watermarking, defined as unseen modifications
to data that hide identifying information, has a long
history. However, watermarking of digital text has been
considered challenging in the past, due to its discrete
nature (Katzenbeisser & Petitcolas, 2000). Watermarking
is considered easier for continuous-valued data, where
watermarks can be encoded with a variety of well-studied
strategies (Petitcolas et al., 1999; Zhu et al., 2018; Lu et al.,

2021; Boenisch, 2021).

In the following, we note that watermarking, as a method
that encodes enough information to identify the source of a
text fragment, is strictly a subset of steganography, the task
of embedding arbitrary hidden information into data.

Watermarking Natural Language. Early approaches to
watermarking natural text in digital form in Atallah et al.
(2001; 2003) pose a similar problem with similar desiderata
as in our setting, except targeted towards classical models.
Given a string of text s, Atallah et al. (2001) propose to gen-
erate text s′ with the properties that s′ has similar meaning,
contains a watermark with an extremely small false-positive
rate that is not readable by a party without knowledge of the
secret key that generated the watermark, is hard to remove
through editing of s′ and is further detectable without knowl-
edge of s (or the scheme generating s). The actual steganog-
raphy scheme described therein is limited by its rule-based
understanding of natural text to modifications of parsed syn-
tactic tree structures. Finally, the watermark can be read by
reconstructing the tree structure, with the chance of a false-
positive for a watermark of w bits vanishing quickly at 2−w.

Rule-based watermarks were further improved in a series of
works (Chiang et al., 2004; Topkara et al., 2006a;b; Meral
et al., 2009) with variants also embedding watermarks based
on synonym tables instead of only parse trees. Early de-
velopments were summarized in Jalil & Mirza (2009), but
strong watermarks significantly degraded the text quality
due to the limited capacity for natural language understand-
ing at the time.

While approaches via hierarchical language models in Wil-
son et al. (2014) still required human interactions, the emer-
gence of modern neural language models (Vaswani et al.,
2017; Devlin et al., 2019) also allowed for improved wa-
termarking/steganography (Fang et al., 2017; Ziegler et al.,
2019; Dai & Cai, 2019). Fang et al. (2017) propose such a
neural steganography approach where, to encode a message
of w bits, the message is first separated into blocks of length
b. Then, the vocabulary V of a language model is partitioned
at random into disjoint sets of size |V |/2b. A generative
LM can then encode the message by generating only a to-
ken from the “allowed” set at each position. However, this
hard rule reduces the quality of generated text, boxing the
LM into only a small selection of valid tokens at every step.
Other approaches, such as Ueoka et al. (2021) use mask-
infilling models such as BERT to edit already-generated
text for the purpose of steganography. Finally, Abdelnabi
& Fritz (2021) design an end-to-end system where both en-
coding and decoding are handled by text-to-text language
models that are trained adversarially for this purpose.

Recently, Aaronson (2022) announced that he is studying
cryptographic approaches to watermarking in collaboration
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with OpenAI. Their preliminary method is based only on
biasing of the LM output, as opposed to complete determina-
tion as in Fang et al. (2017). While details are not currently
available, the description suggests that hashing of n-gram
sequences is involved. We hope to extend our comparison
to this work when more information becomes available.

In contrast to other currently published works, we want to
focus on strategies that are both minimally restrictive to
a language model, leverage the LMs own understanding
of natural text, require no usage of the LM to decode the
watermark, and can be theoretically analyzed and validated.

Post-hoc Detection. An alternative to watermarking is to
develop detection models that perform a post-hoc analysis
of machine-generated text, for example using language
model features or finetuning existing large language models
to behave as detectors (Zellers et al., 2019; Tan et al., 2020),
see an overview in Jawahar et al. (2020). These detectors
work because LMs still leave detectable signals in generated
text. Implementation details, such as sampling strategies,
can be reverse-engineered from text (Tay et al., 2020).
However, detection approaches are slowly losing ground
as LM capabilities increase, for example Gambini et al.
(2022) note that a range of detection strategies for GPT-2
already struggle with GPT-3. Further, known detectors
are also vulnerable to adversarial attacks that degrade their
functionality (Wolff & Wolff, 2022).

While efforts to provide strong detectors continue, as in Tian
(2023a), ultimately language model progress may make
detection infeasible. All post-hoc detection methods require
the LM to be significantly biased away from human text in
some measurable way, such as low variation in perplexity
across sentences (Tian, 2023b). Even for current LLMs,
this margin might be small. This is already problematic,
as detection schemes that operate within this small margin
are susceptible to labeling human text as false-positive, a
concern that is especially pressing for people who produce
unusual text, such as a non-native speakers, and people
who use computer tools to assist them in writing. Such
populations might be especially at risk for false-positives,
which could lead to academic problems if these detectors
are used in schools (Butoi, 2023).

The watermarking scheme we propose is designed so that
false positives are statistically improbable, regardless of the
writing patterns of any given human.

9. Conclusion
The presented watermark has a number of nice properties
that make it a practical choice: the watermark is computa-
tionally simple to verify without access to the underlying
model, false positive detections are statistically improbable,
and the watermark degrades gracefully under attack. Fur-

ther, the proposed scheme can be retro-fitted to any existing
model that generates text via sampling from a next token
distribution, without retraining. Note, however, that careful
implementation and instruction tuning against generative
attacks may be required for very large models.

There is one more important property of the proposed
method that we have not discussed: The z-statistic used
to detect the watermark depends only on the whitelist size
parameter γ and the hash function for generating white lists.
There is no dependence on δ or any other factor related
to how the whitelist is enforced. For this reason, one can
deploy the watermark using context-specific δ choices or
whitelist enforcement rules for different kinds of text (e.g.,
prose vs code, or small vs large models) while using the
same downstream watermark detector. One can also change
a proprietary implementation of the watermarked sampling
algorithm without any need to change the detector. Finally,
the watermarking method could be turned on only in certain
contexts, for example when a specific user seems to exhibit
suspicious behavior.

There are still a number of remaining open questions re-
garding watermarking. For example, what kind of robust
hashing rules are possible, and when are these rules prov-
ably optimal? What is the best way to deploy the model
in a streaming context, or in a context where a short span
of watermarked text lives inside a longer non-watermarked
span? Are there simple sensitivity bounds that are more
accurate than those presented above for large δ and small
γ? We leave these and other questions for future research.
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1011 [...]nned any special treatment
as an officer. The living quarters
reserved for him – palatial by
camp standards – remained
empty as he bunked nearer to
the workers. Straight-talking
and cigar-chomping (

a habit that earned him the
nickname ”Big Smoke”), he
and politics didn’t mix well.
Signing on in 1905 ”until
he could predict success or
failure according to his own
judgment,” Stevens resigned in
19[...truncated]

he was nicknamed ”The Devil”),
Stevens was a man who could
get anything done. He had
one major flaw: He was an
expert at getting things done
– without getting anything
done. The problem was, he got
t[...truncated]

another Stevens habit), Stevens
impressed them so much
that he even earned the nick-
name ”Bully Stevens” from
a group of workers.\nAs the
tedious, years-long construction
dragged on – years and years
a[...truncated]

0.87 0.14 8.20 8.77 10.33

924 [...] Helen Cavallo.... She’s
so funny and so warm, and
she’s the kind of person the
kids won’t look away from,
and the moms won’t look away
from.”\nTelevision personality
and author of ”Courtney’s
Creative

Adventurers,” Courtney
Watkins, hosts ”Thinking Up”
– which provides imaginative
children’s activities, drawing
from her eclectic background as
a teacher of kindergarten and art
and a designer of je[...truncated]

Child,” Courtney Love, is one of
the series’ executive producers.
Gilmore said the Disney team
has a ”talent for building
relationships” with the target
audience, who, she said, are
”very passionate [...truncated]

World: The Parental Roadmap
for Success,” Gilmore also
noted that there’s an oppor-
tunity to harness the power
of social media to share sto-
ries and provide expert ad-
vice.\n”We’ve seen that, too,”
she s[...truncated]

0.87 -0.28 9.62 6.95 10.30

1151 [...]Carrie and a formidable
Heather Orth as her frighten-
ingly religious mother.\nIt’s
not Oeschger’s fault that there’s
a big disconnect between the
painfully shy outsider she plays
so convincingly and the

forceful notes she sings with
dynamic conviction. Cohen’s
book works best for those
who know the story well -
no small number - jumping
from one plot point to the next
without connecting the dots.
Ca[...truncated]

confident, vampish Carrie
whose songwriting is in a
state of constant revising. It’s
a shame, because Oeschger
is an able actress. And a
terrific singer.\nThe original
production, which had just two
a[...truncated]

awful person inside that she
fights so hard to control with
forced bravado.\nBut the
script’s missteps and musical
shortcomings, especially in the
tightly-crafted scenes, leave the
main characters far[...truncated]

0.87 -0.99 8.77 8.40 12.33

853 [...]? Transferring misbehaving
government servants will not
solve any problem. They must
be suspended and demoted.
This is to ensure they will
think twice before doing
anything.\nAnonymous
#18452573: Bigot

ry is the by-product of racism.
This is just another form of eth-
nocentrism and xenophobia due
to BN’s 50 years of racially di-
vided political parties and racist
policies.\nIslam, Christianity
and other [...truncated]

ry in schools is rampant and
this is not acceptable. Muslims
should not be allowed to enter
the schools.\nTun: I am
saddened and disappointed
at how our education system
is being used to promote
discri[...truncated]

ry against Orang Asli children is
a new low. They’re not children
to be bullied or manipulated
by the teachers.\nHow come
the teachers are the only people
doing such acts? Why not the
parents?\nI read o[...truncated]

0.87 0.99 10.47 7.42 10.55

341 [...]When more responsible
people carry, violent crime goes
down. The FBI crime statistics
don’t lie. Why do the left and
gun grabbing crowd ignore this
fact? Liberalism is a mental
disorder.\nLets look one

poll that this particular article
is using for it’s numbers.\nThe
poll used 2 Senate Districts
in the State of VA. District 21
and District 38.\nwith the total
numbers of respondents being
305 voters i[...truncated]

more time at the facts.\nThe
“Fix Gun Checks Act” would
make it tougher for the mentally
ill to legally buy guns by
strengthening background
checks so people like James
Holmes (the Aurora shooter)
can[...truncated]

day at the number of school
shootings that have occurred
since Columbine. They were
not just random shootings. They
were planned. In the preplanned
shootings, the students/victims
were well trained a[...truncated]

0.88 -0.42 9.22 1.12 13.66

Table 3. High spike entropy examples under a δ = 2.0, γ = 0.5 watermark with multinomial sampling.

A. Experimental Details
A.1. Sample Outputs

We provide series of representative outputs from different ranges in the sample space for model generations under a soft
watermark with parameters δ = 2.0, γ = 0.5 under the multinomial sampling scheme. To tabulate these outputs, the ∼ 500
generations collected at this setting are either sorted by the average spike entropy of the watermarked model’s output
distribution at generation time, or the measured test statistic, the z-score for that sequence. The top and bottom 5 samples
according to these orderings are shown for both entropy (Table 4 and Table 3) and z-score (Table 6 and Table 5).

A.2. Measuring Perplexity: Oracle Language Model

To compute perplexity, the larger, Oracle Language Model is fed the original prompt as input, as described in the main
body, and perplexity is computed via taking the exponential of the average token-wise loss according to the oracle’s next
token distribution at every output index. Note that loss is computed for only the generated tokens produced by either a
watermarked or non-watermarked model.

B. Detailed Threat Model
For completeness, we formally define the threat model for the attacks discussed in Section 7 here. As described, attacks may
occur when malicious users operate bots/sock-puppets on social media, try to fool a CATPCHA, or complete an academic
assignment (Foltýnek et al., 2019). In this work we formally define adversarial behavior as all efforts by a party the using
machine-generated text to remove the watermark. It is ultimately important to remember that we describe a watermark only
on the tokens of the generated text, i.e. on its form and style, and not on its semantic content. For example, a completely
new essay written based on an outline or initial draft provided by a LM could not be detected. Such semantic watermarks
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132 [...]cond season at Hall Bros
Oval.\nThe defender also
admitted his surprise at Young’s
run to the finals but credited
the injection of youth into the
side.\n“We were really in a
building phase last year and

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together
for two years and I think we’ve
come along quicker than we an-
ticipated.\nROCK[...truncated]

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together
for two years and I think we’ve
come along quicker than we
anticipated.\n“Tha[...truncated]

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together
for two years and I think we’ve
come along quicker than we
anticipated.\n“Tha[...truncated]

0.58 -1.27 -1.13 1.05 1.04

850 [...]son tear through the
banner Friday, Nov. 16, in
Copper Mountain’s East Vil-
lage.\nBetty the Yeti rallies
the first chairlift riders of the
2018-2019 ski season Friday,
Nov. 16, in Copper Mountain’s
East

Village.\nCopper Ski Resort
Chief Operations Officer Jesse
True high fives first chairlift
riders of the 2018-2019 ski
season Friday, Nov. 16, in
Copper Mountain’s East
Village.\nCopper Mountain
reside[...truncated]

Village.\nCopper Mountain
Resort will open Friday with
275 acres of skiable terrain
based out of East and West
villages.\nThe ski area will
open on a limited schedule on
Friday, Nov. 16, followed by a
[...truncated]

Village.\nA rider heads down
a slope on the opening day of
2018-2019 season at Copper
Mountain.\nA rider heads
down a slope on the opening
day of 2018-2019 season at
Copper Mountain.\nA rider
heads down[...truncated]

0.61 0.00 5.37 4.58 1.18

939 [...]ngs.\nAnd now we have
Trump calling on Bee to be
fired. You know who else
hates comedy at their expense?
Authoritarian leaders. Egypt’s
President Abdel Fattah el-Sisi,
a man Trump loves, banned
Egypt’s

version of The Daily Show
because of the way its comedy
mocked the government. The
show’s star, Bassem Youssef,
had to flee the country and is
now living in exile with his
family.\nTurkey’s strongman
[...truncated]

top comedy show after the
host criticized the military’s
coup over a year ago. And
then President Vladimir Putin
banned comedy on Russian
television over the same
topic.\nIt’s not hard to see
why Trum[...truncated]

leading comedy show and radio
host, Ahmed Mansour, from en-
tering the country.\nTrump’s at-
tacks on freedom of expression
go far beyond just news media.
Trump also wants to silence
those in the entertai[...truncated]

0.61 0.99 2.83 4.86 1.27

444 [...]1 on the season with a 2.76
GAA and.906 save percent-
age.\nMar. 11 5:28 PM PT6:28
PM MT7:28 PM CT8:28 PM
ET0:28 GMT8:28 5:28 PM
MST6:28 PM CST7:28 PM
EST4:28 UAE (+1)20:28
ET21:28 BRT - Sergei Bo-
brovsky

stopped 18 of 19 shots in
the Blue Jackets’ 2-0 loss
to the Islanders on Monday.
The defeat dropped him to
29-22-1 on the season with
a 2.74 GAA and.907 save
percentage.\nMar. 9 5:41 PM
PT6:41 PM MT7:[...truncated]

stopped 28 of 30 shots in the
Blue Jackets’ 3-2 shootout loss
to the Islanders on Sunday. The
loss dropped him to 30-22-1
on the season with a 2.76 GAA
and.906 save percentage.\nMar.
10 6:15 PM PT7:15[...truncated]

stopped 30 of 34 shots in the
Blue Jackets’ 6-2 win over the
Canadiens on Monday. The
victory pushed him to 31-21-1
on the season with a 2.72 GAA
and.908 save percentage.\nMar.
10 11:49 AM PT12:49 PM
[...truncated]

0.62 -0.99 2.40 1.33 1.45

1171 [...]South Elliott Place, near
Lafayette Street, Fort Greene;
$; no smoking; Mastercard and
Visa.\n(718) 857-8863; 620
Vanderbilt Avenue, Prospect
Heights; $$; no smoking;
American Express, Mastercard,
Visa

.\n(718) 624-9267; 218 Court
Street, near Warren Street,
Cobble Hill; $; no smoking;
American Express, Mastercard
and Visa.\n(718) 499-5557;
426A Seventh Avenue, near
15th Street, Park Slope; $; no
smok[...truncated]

.\n(718) 857-8863; 620 Vander-
bilt Avenue, Prospect Heights;
$$; no smoking; American Ex-
press, Mastercard, Visa.\n(718)
857-8863; 620 Vanderbilt
Avenue, Prospect Heights;
$$; no smoking; American
Express[...truncated]

.\n\nBusiness in the
Park\n\nHaley’s,
77\n\nHaley’s Restau-
rant, 77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,
77\n\nHaley’s,[...truncated]

0.62 -0.71 11.17 1.09 1.48

Table 4. Low spike entropy examples under a δ = 2.0, γ = 0.5 watermark with multinomial sampling.

may be possible, but we do not study this setting here.

Threat Model. We assume two parties, a model owner providing a text generation API, and an attacker attempting to
remove the watermark from the API output. The attacker moves second, and is aware that the API contains a watermark.
In public mode, the attacker is aware of all details of the hashing scheme and initial seed. In private mode, the attacker is
aware of the watermark implementation, e.g. Algorithm 3, but has no knowledge of the key of the pseudo-random function
F . The attacker attempts to reduce the number of white-listed occurrences in the text, reducing the z-score computed by a
defender. In public mode, any party can evaluate the watermark. In private mode, only the model owner can evaluate the
watermark and provides a text detection API. We assume that this API is rate-limited. We assume the attacker has access to
other non-watermarked language models, but these models are weaker than the API under attack. The attacker is allowed to
modify the generated text in any way.

Note that removing the watermark is always a trivial task if language model quality is disregarded – one can simply replace
the entire text with random characters. For this reason only attacks that result in a reasonable language quality trade-off for
the attacker are relevant. A defense is hence also successful if any watermark removal by the attacker reduces the quality of
generated text to that of generated text achievable using a public model.

C. Detection Accuracy of Multinomial Sampling
When a multinomial sampler is used (which is assumed by Theorem 4.2), we use the softmax output with standard
temperature hyperparameter temp=0.7. We analyze the alignment between the empirical strength of the watermark and
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1105 [...]ent to mark 80 important
moments in our shared history.
Looking back it’s easy to
see these moments changed
the way Australians lived
and thought.\nThe Opera
House Project is an online
documentary that

tells the story behind one of
the greatest buildings of the
twentieth century and explores
the cultural heritage that has
ensued for more than forty years
to the present day.\nA selection
of archival [...truncated]

uses archive footage to ex-
plore the history of the Opera
House. It’s the first and only
full-length documentary on
the Opera House, and the
production is helmed by 90s
documentary maker and broad-
cast[...truncated]

explores Australia’s National
Art Gallery. It tells the history
of the construction, and evo-
lution of a work that has been
called one of the most signif-
icant cultural legacies of Aus-
tralian art.\nSydn[...truncated]

0.78 0.85 11.46 3.40 5.22

354 [...]epeatedly to first see the
group list, then the correct
usage of the commands.\nwill
turn the Tool Tips on. Using
the value 0 in front of the above
command will turn the Tool
Tips off. This is shown as

1/0 below (called a Boolean
value - [bool]), which indicates
that using 1 enables a function,
0 disables it. The use of #
(or [float]) after a command
below means a numeric value is
required for the [...truncated]

the command ”tooltips 0” in the
Console.\n\nThere are a range
of useful commands which can
be accessed through the game
console, or entered into the.con
files. To open the console, press
the tilde (˜) [...truncated]

the tooltip to the right of this
group list.\n\nA list of all com-
mands can also be displayed
by pressing the ˜key repeat-
edly, typing the commands
and then pressing the TAB
key repeatedly, again.\n\nA
li[...truncated]

0.71 -0.42 11.46 1.59 3.00

808 [...]called it Kevin Hart Presents
Chris Rock’s “Top Five With
Kevin Hart.” Hillary should
announce Kevin as her run-
ning mate and be done with
it.\nAfter he makes you laugh
for an hour, you feel like you’re

his friend—you feel his joy and
his pain. If he has asthma, you
have asthma. That’s because
Kevin’s vulnerable. When he’s
talking about his kids, his kids
know more than him. He’s not
afraid to be “f[...truncated]

in bed with him, and you’re
ready to go to sleep. I met
Kevin the night before the
show, and he came up to my
dressing room and hugged
me and said, “This is the best
show of the year.” He was just
li[...truncated]

the luckiest man in the world.
And then just like that, Kevin
Hart makes you feel like a
complete moron.\nI just
finished playing an iPhone
game called You’re the Best
Dad Ever, and I was trying to
gi[...truncated]

0.81 3.68 11.74 3.75 5.17

438 [...] logged into their Google
account and have verified
profiles that match queries
for the site.\nGoogle’s John
Mueller said there is no ranking
benefit in using different Google
Search Console and Google

Analytics accounts for each
individual web site you manage.
The topic came up before, as
long as you are not spamming
Google - there also is no down
side to using the same accounts
across multiple we[...truncated]

Analytics data to calculate
ranking sentiment.\nGoogle
have a new feature called
Keyword Difficulty Analysis
that shows you the keywords
your competitors are ranking for.
It shows the demand curve as
[...truncated]

+ accounts to see different num-
bers.\nGoogle also released
their own great blog post on the
news algorithm. They give lots
of great advice to help your site
do better.\nFinally, at the end
of September [...truncated]

0.77 1.41 11.88 9.24 4.10

315 [...]tled out of court and publicly
reconciled.\nIn the ’80s the
band’s popularity waned in
the United States but remained
strong abroad. Robin released
three solo albums, with limited
success. The Bee Gees

returned with some moderate
hits in the late 1990s and were
inducted into the Rock and Roll
Hall of Fame in 1997. With
his brothers, Mr. Gibb won
six Grammys.\nIn addition
to his wife and his brother
[...truncated]

continued to tour, and Barry
became a television pro-
ducer.\nBut in the early
’90s, the Bee Gees’ popularity
remained high. They scored a
hit with “Don’t Stop Believing”
in 1990, and in 1992 the Bee
Ge[...truncated]

’ 1990 album, “Spirits of
the Century,” was a mixed
critical and commercial suc-
cess.\nWhen the brothers
were nominated for a Grammy
Award in 1990, Mr. Gibb’s
“You Should Be Dancing” and
“Massachusetts,[...truncated]

0.68 2.97 12.73 3.15 1.93

Table 5. High z-score examples under a δ = 2.0, γ = 0.5 watermark with multinomial sampling.

the theoretical lower bound for γ = .5 in Figure 7. We find that the theoretical bound is quite tight for smaller values of δ,
but the theorem under-estimates watermark sensitivity for larger δ.
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Figure 7. Empirical whitelist fraction vs bias parameter δ. We compare to the theoretical bound predicted by Theorem 4.2.

ROC curves for multinomial sampling, and greedy decoding with 8-way beam search in the 200 token case are depicted in
Figure 8 and Figure 9 (Subsets of Figure 4 from the main work.). Tables with error rates and accuracy numbers at selected z
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132 [...]cond season at Hall Bros
Oval.\nThe defender also
admitted his surprise at Young’s
run to the finals but credited
the injection of youth into the
side.\n“We were really in a
building phase last year and

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together
for two years and I think we’ve
come along quicker than we an-
ticipated.\nROCK[...truncated]

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together
for two years and I think we’ve
come along quicker than we
anticipated.\n“Tha[...truncated]

we copped a few floggings with
all those juniors blokes coming
in,” Galvin said.\n“Now, we’ve
kept that core group together
for two years and I think we’ve
come along quicker than we
anticipated.\n“Tha[...truncated]

0.58 -1.27 -1.13 1.05 1.04

444 [...]1 on the season with a 2.76
GAA and.906 save percent-
age.\nMar. 11 5:28 PM PT6:28
PM MT7:28 PM CT8:28 PM
ET0:28 GMT8:28 5:28 PM
MST6:28 PM CST7:28 PM
EST4:28 UAE (+1)20:28
ET21:28 BRT - Sergei Bo-
brovsky

stopped 18 of 19 shots in
the Blue Jackets’ 2-0 loss
to the Islanders on Monday.
The defeat dropped him to
29-22-1 on the season with
a 2.74 GAA and.907 save
percentage.\nMar. 9 5:41 PM
PT6:41 PM MT7:[...truncated]

stopped 28 of 30 shots in the
Blue Jackets’ 3-2 shootout loss
to the Islanders on Sunday. The
loss dropped him to 30-22-1
on the season with a 2.76 GAA
and.906 save percentage.\nMar.
10 6:15 PM PT7:15[...truncated]

stopped 30 of 34 shots in the
Blue Jackets’ 6-2 win over the
Canadiens on Monday. The
victory pushed him to 31-21-1
on the season with a 2.72 GAA
and.908 save percentage.\nMar.
10 11:49 AM PT12:49 PM
[...truncated]

0.62 -0.99 2.40 1.33 1.45

302 [...] rating. The price target
for Sol Gel Technologies is set
to $20. Sol Gel Technologies
shares closed at $11.13 on
Friday.\nAnalysts at Wells
Fargo initiated coverage on
Landmark Infrastructure
Partners

LP (NASDAQ: LMRK) with
a Market Perform rating. The
price target for Landmark
Infrastructure Partners is
set to $18.50. Landmark
Infrastructure Partners closed
at $17.75 on Friday.\nBarclays
initiated[...truncated]

L.P. (NASDAQ: LMRK) with
an Overweight rating. The
price target for Landmark
Infrastructure Partners is set to
$12. Landmark Infrastructure
Partners shares closed at
$10.02 on Friday.\nAnalysts at
Jef[...truncated]

, L.P. (NASDAQ: LMRK)
with an Overweight rating.
Landmark Infrastructure
Partners shares rose 7.39
percent to close at $22.75 on
Friday.\nWells Fargo initiated
coverage on Freshpet Inc.
(NASDAQ: FRPT) [...truncated]

0.66 -2.55 2.83 1.75 2.08

482 [...]nika Aigner, with sister
Elisabeth as her guide, sprang
a surprise in women’s visually
impaired event on the fourth day
of the World Para Alpine Skiing
World Cup at the Spanish resort
of La Molina.\nSw

itzerland’s Theo Gmur, Para-
lympic champion in the men’s
standing giant slalom, suc-
ceeded at the third attempt in
beating France’s 18-year-old
world champion Arthur Bauchet
at the World Para Alpine
Ski[...truncated]

eden’s Chris Vos won gold
in the men’s super-G at the
World Para Snowboard World
Cup Finals in Klövsjö in
Sweden.\nThe final day of
action in Klövsjö concludes
today with the men’s super-G
and women’s [...truncated]

eden’s Chris Vos clinched gold
as the World Para Snowboard
World Cup Finals in Klövsjö
concluded on Friday with
the main event for men’s and
women’s single and double
slalom.\nKlövsjö is set to host
th[...truncated]

0.70 -0.71 2.83 2.86 3.34

939 [...]ngs.\nAnd now we have
Trump calling on Bee to be
fired. You know who else
hates comedy at their expense?
Authoritarian leaders. Egypt’s
President Abdel Fattah el-Sisi,
a man Trump loves, banned
Egypt’s

version of The Daily Show
because of the way its comedy
mocked the government. The
show’s star, Bassem Youssef,
had to flee the country and is
now living in exile with his
family.\nTurkey’s strongman
[...truncated]

top comedy show after the
host criticized the military’s
coup over a year ago. And
then President Vladimir Putin
banned comedy on Russian
television over the same
topic.\nIt’s not hard to see
why Trum[...truncated]

leading comedy show and radio
host, Ahmed Mansour, from en-
tering the country.\nTrump’s at-
tacks on freedom of expression
go far beyond just news media.
Trump also wants to silence
those in the entertai[...truncated]

0.61 0.99 2.83 4.86 1.27

Table 6. Low z-score examples under a δ = 2.0, γ = 0.5 watermark with multinomial sampling.

Text is watermarked, i.e. machine-generated

Hypothesis Test is Rejected TP - Watermarked text is correctly flagged. FP - Text that is not watermarked is flagged.
FN - Text is watermarked, but cannot be detected. TN - Text is not watermarked and is not flaggged.

Table 7. Reference table for possible outcomes of the hypothesis test. Type-I errors, false positives, are improbable by construction of
the watermarking approach, but type-II errors, false negatives, appear naturally for low-entropy sequences that cannot be watermarked.

values are provided in Table 2.

D. Minor Variations
Multiple Watermarks. A company might also apply multiple watermarks to generated text, taking the union of all
blacklists at each token. This is a compromise in terms of watermark effectiveness, compared to a single watermark, however
it allows additional flexibility. A company could run a public/private watermarking scheme, giving the public access to
one of the watermarks to provide transparency and independent verification that text was machine-generated. At the same
time, the company can keep the second watermark private and test text against both watermarks, to verify cases reported by
the public watermark, or again to provide a stronger detection API. Such a setup would be especially effective in detecting
whether an attack took place that attempted to remove the public watermark.

Selective Watermarks in response to malicious activity Watermarks could also be used selectively. An API owner
could turn on watermarking (or dial up its strength considerably via increased δ) only when faced with suspicious API usage
by some accounts, for example if a request appears to be part of malicious activity like creating synthetic tweets. This would
give more leeway to benign API usages, but allow for improved tracing of malicious API utilization.
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δ : 10.0, γ : 0.5, AUC:1.000, PPL:11.6

δ : 10.0, γ : 0.25, AUC:1.000, PPL:12.4

δ : 5.0, γ : 0.5, AUC:1.000, PPL:9.1

δ : 5.0, γ : 0.25, AUC:1.000, PPL:10.7

δ : 2.0, γ : 0.5, AUC:0.998, PPL:6.2

δ : 2.0, γ : 0.25, AUC:0.998, PPL:6.6

δ : 1.0, γ : 0.5, AUC:0.985, PPL:5.4

δ : 1.0, γ : 0.25, AUC:0.989, PPL:5.5

δ = 0, PPL: 5.1

(b)

Figure 8. (a) ROC curve with AUC values for watermark detection. Curves for several choices of watermark parameters γ and δ
are shown - multinomial sampling is used across all settings. (b) The same chart, but with different axes to make detail visible. The
stronger watermarks corresponding to lower γ values and higher δ values achieve the best error characteristics.

sampling ε count TPR@4.0 FNR@4.0
w/attck

TPR@4.0
w/attck

FNR@4.0 TPR@5.0 FNR@5.0
w/attck

TPR@5.0
w/attck

FNR@5.0

m-nom. 0.1 487 0.984 0.016 0.819 0.181 0.977 0.023 0.577 0.423
m-nom. 0.3 487 0.984 0.016 0.353 0.647 0.977 0.023 0.127 0.873
m-nom. 0.5 487 0.984 0.016 0.094 0.906 0.977 0.023 0.029 0.971
m-nom. 0.7 487 0.984 0.016 0.039 0.961 0.977 0.023 0.012 0.988
beams 0.1 489 0.998 0.002 0.834 0.166 0.998 0.002 0.751 0.249
beams 0.3 489 0.998 0.002 0.652 0.348 0.998 0.002 0.521 0.479
beams 0.5 489 0.998 0.002 0.464 0.536 0.998 0.002 0.299 0.701
beams 0.7 489 0.998 0.002 0.299 0.701 0.998 0.002 0.155 0.845

Table 8. Error rates for watermarked text before and after attack (w/attck) for generations of length T = 200± 5. For all settings we use
(δ, γ) = (2.0, 0.5). Results are shown for both multinomial sampling and greedy 8-way beam search. The TPR and FNR rates without
the attack are shown for reference, but they have no dependence on the attack budget ε. For all experiments, no false positives were
observed and so FPR= 0 and TPR= 1.

Discovering A Watermarking Scheme So far we assumed that an attacker is aware that a watermark is present. Could
the attack discover this fact only by analyzing generated text? For a hard watermark, this would be easy: Some combinations
of tokens will never be generated by the model, no matter how strongly they are prompted. Yet, for a soft watermark
(especially with small δ), that depends on, e.g. h = 10 tokens via Algorithm 3, this becomes harder. The attacker would
need to distinguish the modification of whitelisted logits via δ from naturally occurring biases of the LM.

E. Proof of Theorem 4.2
We begin our proof with a useful lemma. Using the spike entropy, we can predict how often a watermarked language model
will spit out a whitelist token. When the entropy is high, the language model has a lot of freedom and we expect the model
to use whitelist tokens aggressively. When the entropy is low, the model is more constrained and it is more likely to use a
blacklist token.

Lemma E.1. Suppose a language model produces a raw (pre-watermark) probability vector p ∈ (0, 1)N . Randomly
partition p into a whitelist of size γN and a blacklist of size (1 − γ)N for some γ ∈ (0, 1). Form the corresponding
watermarked distribution by boosting the whitelist logits by δ, as in Equation (4). Define α = exp(δ).

Sample a token index k from the watermarked distribution. The probability that the token is sampled from the whitelist is at
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δ : 10.0, γ : 0.5, AUC:1.000, PPL:1.2

δ : 10.0, γ : 0.25, AUC:1.000, PPL:1.2

δ : 5.0, γ : 0.5, AUC:1.000, PPL:1.2

δ : 5.0, γ : 0.25, AUC:1.000, PPL:1.3

δ : 2.0, γ : 0.5, AUC:0.999, PPL:1.2

δ : 2.0, γ : 0.25, AUC:1.000, PPL:1.3

δ : 1.0, γ : 0.5, AUC:0.987, PPL:1.2

δ : 1.0, γ : 0.25, AUC:0.977, PPL:1.2

δ = 0, PPL: 1.2

(b)

Figure 9. (a) ROC curve with AUC values for watermark detection. Curves for several choices of watermark parameter δ are shown -
greedy decoding and 8-way beam search is used to generate tokens in all settings. (b) The same chart, but with different axes to make
detail visible. Similarly to Figure 8, higher δ values achieve stronger performance, but additionally we see that for a given δ, the beam
search allows the watermark to capture slightly more AUC than the corresponding parameters under the multinomial sampling scheme.

least

P[k ∈W ] ≥ γα

1 + (α− 1)γ
S

(
p,

(1− γ)(α− 1)

1 + (α− 1)γ

)
.

Proof. When we add δ to the logits corresponding to the whitelist words, we increase their probabilities of being sampled.
We replace the raw probability pk for each whitelist word with the enlarged probability

pwk ,
αpk∑

i∈B pi + α
∑
i∈W pi

,

where W is the set of whitelist indices and B is the complementary set of blacklist indices. We denote the sizes of these sets
as Nw and Nb, respectively.

We begin our proof by bounding the size of a randomly chosen white-list probability after it has been enlarged. Consider the
following process for creating the lists. First, choose a random entry pk and place it in the whitelist. Then, randomly sample
the remaining entries in the whitelist. The expected value of a randomly chosen probability from the whitelist can be written

E
k<N

E
W,B

αpk∑
i∈B pi + α

∑
i∈W pi

, (4)

where the inner expectation is over uniformly random white/black partitions that satisfy k ∈W.

Now let’s bound the inner expectation on the right. Consider the helper function

fk(p) = E
W,B

αpk∑
i∈B pi + α

∑
i∈W pi

,

where W and B are sampled at random from the set of partitions that satisfy k ∈ W . The value of fk is invariant to
permutations in the order of the indices {pi, i 6= k}. For this reason f(p) = EΠ f(Πp), where Π is a random permutation
that leaves pk in place. Also, fk is convex in p−k. By Jensen’s inequality,

f(p) = E
Π
f(Πp) ≥ f(E

Π
Πp).
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The expectation on the right involves a probability vector p̄ , EΠ Πp in which p̄i = (1− p0)/(N − 1) for i 6= k. We now
have

fk(p) ≥ fk(p̄) =
αpk

Nb(1− pk)/(N − 1) + α(Nw − 1)(1− p0)/(N − 1) + αp0
(5)

=
αpk(N − 1)

(Nb + αNw − α)(1− pk) + αp0(N − 1)
(6)

=
αpk(N − 1)

Nb + αNw − α+ (αN −Nb − αNw)pk
(7)

= pk
αN − α

Nb + αNw − α+ (αNb −Nb)pk
(8)

≥ pk
αN

Nb + αNw + (αNb −Nb)pk
. (9)

In the last step we used the fact that the numerator is larger than the denominator, and so adding α to the numerator and
denominator results in a small decrease in the bound. Also, note that the fraction on the right side of (9) is strictly greater
than 1 for any value of pk ∈ (0, 1) and α ≥ 1. For this reason the bound is never vacuous, as fk(p) > pk.

Now let γ = Nw/N. This simplifies the notation of our intermediate result to

fk(p) ≥ αpk
(1− γ) + αγ + (α− 1)(1− γ)pk

. (10)

Using this expression to simplify (4) we get

E
k<N

E
W,B

αpk∑
i∈B pi + α

∑
i∈W pi

= E
k<N

fk(p) ≥ αN−1

1 + (α− 1)γ
S

(
p,

(1− γ)(α− 1)

1 + (α− 1)γ

)
.

The probability of sampling a token from the whitelist is exactly Nw times larger than an average whitelist probability. The
probability of sampling from the whitelist is thus given by

Nw E
k<N

E
W,B

αpk∑
i∈B pi + α

∑
i∈W pi

≥ γα

1 + (α− 1)γ
S

(
p,

(1− γ)(α− 1)

1 + (α− 1)γ

)
.

It can be observed that the bound in Lemma E.1 is never vacuous; The probability of choosing a token from the whitelist is
trivially at least γ, and for any combination of finite logits the bound in Lemma E.1 is strictly greater than this trivial lower
bound. See the proof for a discussion of why.

Using this lemma, it’s now fairly straightforward to prove the main theorem.

Proof. Lemma E.1 bounds the probability of a single token being in the whitelist. To compute the total number of whitelist
tokens in the sequence, we simply sum this bound over all the tokens to get.

E |s|w =
∑
t

γα

1 + (α− 1)γ
St = T E

t

γα

1 + (α− 1)γ
St ≥ γαT

1 + (α− 1)γ
S?,

where S(t) represents the entropy of the distribution of token t.

To get the variance bound, we begin by noting that the variance of a Bernoulli random variable with success probability p is
p(1− p). The expected number of whitelist tokens is a sum of independent random Bernoulli variables, each representing
one token. These variables are not identically distributed, but rather each has a success probability given by Lemma E.1.
The variance of the sum is the sum of the variances, which is

Var |s|w =
∑
t

γαS(t)

1 + (α− 1)γ

(
1− γαS(t)

1 + (α− 1)γ

)
= T E

t

γαS(t)

1 + (α− 1)γ

(
1− γαS(t)

1 + (α− 1)γ

)
.
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The expectation on the right contains a concave function of St. By Jensen’s inequality, we can pass the expectation inside
the function to get

Var |s|w ≤ T
γαEt S(t)

1 + (α− 1)γ

(
1− γαEt S(t)

1 + (α− 1)γ

)
.

Finally, note that the probability of a token being in the whitelist is always at least γ, regardless of the distribution coming
from the language model. Lemma E.1 is never vacuous, and the success probability predicted by the Lemma is always at
least γ. If γ ≥ .5, then the variance of each Bernoulli trial is at most the variance of a Bernoulli trial with success probability
γ, which is given by γ(1− γ). Plugging this into our bound gives

Var |s|w ≤ T
γαEt S(t)

1 + (α− 1)γ

(
1− γαEt S(t)

1 + (α− 1)γ

)
≤ Tγ(1− γ).

F. Proof of Proposition 4.3
Proof. The probability of sampling token k from the modified distribution is

p̂k = E
W,B

αpk∑
i∈B pi + α

∑
i∈W pi

, (11)

where W and B are random partitions of the vocabulary indices. We can write this expected value as the sum of a
contribution from the case in which k ∈W, and one in which k ∈ B. We get

E
W,B

αpk∑
i∈B pi + α

∑
i∈W pi

= E
W,B,k∈W

αpk∑
i∈B pi + α

∑
i∈W pi

(12)

+ E
W,B,k/∈W

αpk∑
i∈B pi + α

∑
i∈W pi

≤ γαpk + (1− γ)pk = (1 + (α− 1)γ)pk. (13)

The expected perplexity is then given by

E
W,B

∑
k

p̂
(t)
k ln(p

(t)
k ) =

∑
k

E
W,B

p̂
(t)
k ln(p

(t)
k ) ≤ (1 + (α− 1)γ)p∗.


