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Abstract

Building robust deterministic deep neural networks is still a challenge. On the one
hand, some approaches improve out-of-distribution detection at the cost of reducing
classification accuracy in some situations. On the other hand, some methods
simultaneously increase classification accuracy, out-of-distribution detection, and
uncertainty estimation, but reduce inference efficiency, in addition to training the
same model many times to tune hyperparameters. In this paper, we propose training
deterministic deep neural networks using our DisMax loss, which works as a drop-
in replacement for the commonly used SoftMax loss (i.e., the combination of the
linear output layer, the SoftMax activation, and the cross-entropy loss). Starting
from the IsoMax+ loss, we created novel logits that are based on the distance to all
prototypes rather than just the one associated with the correct class. We also propose
a novel way to augment images to construct what we call fractional probability
regularization. Moreover, we propose a new score to perform out-of-distribution
detection and a fast way to calibrate the network after training. Our experiments
show that DisMax usually outperforms all current approaches simultaneously
in classification accuracy, uncertainty estimation, inference efficiency, and out-
of-distribution detection, avoiding hyperparameter tuning and repetitive model
training. The code to replace the SoftMax loss with the DisMax loss and reproduce
the results in this paper is available.1

1 Introduction

Currently, deep neural networks have been used for classification in many applications. However,
improving the robustness of such systems remains a significant challenge. Classification accuracy
itself, out-of-distribution (OOD) detection performance, and uncertainty estimation comprise three
major points regarding measuring the robustness of deep learning approaches.

On the one hand, most OOD detection approaches do not address uncertainty estimation or produce
diminished classification accuracy in some cases [24, 7]. These solutions also require changing
the training of the last layer by removing its weight decay to work properly. Therefore, they do
not work as straightforward SoftMax loss drop-in replacements. On the other hand, some recent
approaches that address both OOD detection and uncertainty estimation require hyperparameter
tuning and/or reduce the efficiency of inferences when compared with pure deterministic deep neural
networks [10, 25, 14]. Therefore, simultaneously increasing classification accuracy, OOD detection,

1https://github.com/dlmacedo/distinction-maximization-loss
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Figure 1: Loss Surface Study. 3D loss surfaces and 2D loss contours as proposed in [12] for
ResNet34 trained on CIFAR10. (a, d) SoftMax; (b, e) IsoMax+; and (c, f) DisMax (ours). Con-
sidering that IsoMax+ usually outperforms SoftMax, and DisMax generally outperforms IsoMax+,
we concluded that a less steep 3D inclination (i.e., a lower concentration of 2D contours) provides
increased robustness performances.

and uncertainty estimation performances while maintaining inference efficiency poses a challenge,
mainly if we also desire to avoid training the same architecture many times for hyperparameter tuning.

Recently, so-called IsoMax loss variants have been proposed [17, 16, 18]. They increase OOD
detection performance without reducing inference efficiency compared with pure deterministic deep
neural networks trained using the usual SoftMax loss (i.e., the combination of the linear output layer,
the SoftMax activation, and the cross-entropy loss [15]). Moreover, they do not require repetitive
neural network training for hyperparameter tuning. However, they neither increase the classification
accuracy nor uncertainty estimation by themselves.

Contributions In this paper, starting from IsoMax+ loss [18], we construct the Distinction Maxi-
mization (DisMax) loss. Our main contributions are the following. First, we create the enhanced logits
(logits+) by using all feature-prototype distances rather than just the feature-prototype distance to the
correct class. Second, we introduce the fractional probability regularization (FPR) by minimizing
the Kullback–Leibler (KL) divergence between the output probability distribution associated with
an augmented image and a target probability distribution containing fractional rather than integer
probabilities. We call DisMax dagger (DisMax†) the variant of our loss without using the FPR. Third,
we construct a composite score for OOD detection that combines three components: the maximum
logit+, the mean logit+, and the entropy of the network’s output. Fourth, we experimentally show
that a simple temperature scaling after training makes DisMax produce high-performance uncertainty
estimation. Similarly to the IsoMax and IsoMax+ losses, the DisMax loss works as a SoftMax loss
drop-in replacement, as only a simple neural network training is required to use the proposed solution.
Finally, we show experimentally that to obtain improved OOD detection performance, we need to
construct losses with less steep 3D landscapes, as explained in Fig. 1.
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Figure 2: All-Distances-Aware Logits, Enhanced Logits, or Logits+. The illustration represents
the difference between IsoMax+ [18] and DisMax with respect to logit formation. P1, P2, and P3

represent prototypes of classes 1, 2, and 3, respectively. F denotes the feature associated with a given
image. IsoMax+ constructs each logit associated with F considering its distance to a single prototype
(olive dashed line). In contrast, DisMax loss builds each logit associated with F considering its
distance to all prototypes (purple dashed lines). We use the terms all-distances-aware logits, enhanced
logits, or logits+ terms indistinctly in this paper.

2 Distinction Maximization Loss

All-Distances-Aware Logits In IsoMax loss variants (IsoMax, IsoMax+, and DisMax), logits are
formed from distances and are usually used to calculate the score to perform OOD detection. Hence, it
is essential to build logits that contain semantic information relevant to separating in-distribution (ID)
from OOD during inference. IsoMax+ uses the so-called isometric distances [18]. In the mentioned
solution, the logits are simply the negatives of the isometric distances. We have two motivations to
add the mean isometric distance (considering all prototypes) to the isometric distance associated with
each class to construct what we call all-distances-aware logits or simply enhanced logits (logits+).

First, considering that IsoMax+ is an isotropic loss, the distances between the prototypes and ID are
forced to become increasingly smaller. Therefore, after training, it is reasonable to believe that these
distances are, on average, usually smaller than the distances from the prototypes to OOD, as they
were not forced to be near the prototypes. OOD is not even used during training. Hence, adding
their average to the distances used in IsoMax+ may help distinguish between ID and OOD more
effectively. Second, taking all feature-prototype distances to compose the logits makes them a more
stable source of information to perform OOD detection (Fig. 2).

Lj
+ = −

(
Dj

I + 1
N

N∑
n=1

Dn
I

)
(1)

all-distances-aware logit
for the j-th class

isometric distance to
the j-th class prototype

mean isometric distance
to all prototypes

PDisMax(y
(i)|x) =

exp( Li
+ /T )

N∑
j=1

exp( Lj
+ /T )

(2)

predicted probability
distribution

all-distances-aware logit
for the j-th class

all-distances-aware logit
for the i-th class
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Figure 3: Fractional Probability Regularization. We use augmented images composed of patches
of four randomly selected training examples. The KL divergence regularization term forces the
network to predict fractional probabilities on augmented data.

Therefore, we consider an input x and network that performs a parametrized transformation fθ(x).
We also consider pj

φ to be the learnable prototype associated with class j. Moreover, considering
that ‖v‖ represents the 2-norm of a vector v, and v̂ represents 2-norm normalization of v, we can

write the isometric distance relative to class j as Dj
I = |ds| ‖f̂θ(x)−p̂j

φ‖, where |ds| represents the
absolute value of the learnable scalar called distance scale [18]. Finally, we can write the proposed
enhanced logit for class j using the equation (1). The probabilities are given by the equation (2),
where T is the temperature. For the rest of this paper, distance means isometric distance.

Fractional Probability Regularization Until now, we train neural networks with unitary proba-
bilities. Indeed, the usual cross-entropy loss always forces a probability equal to one on a given
training example. Currently, we force the neural network to learn by providing an miniscule propor-
tion of points in the learning manifold. Hence, we propose what we call the fractional probability
regularization (FPR). The idea is to force the network to learn a more diverse set of points in the
learning manifold. Consequently, we confront the target and predicted probability distributions also
on fractional probability values rather than only unitary probability manifold points. This procedure
dramatically expands the points in the learning manifold from which the network can learn.

QTarget(y
(i)|x̃) = 1

4

4∑
m=1

δ[y(i) − y(j
m)] (3)

desired probability distribution
for the augmented image

sum one quarter to the
probability of each class
in the augmented image

LDisMax = − log∗

 exp(Es L
k
+ )∑

j

exp(Es L
j
+ )

+ DKL(PDisMax(y|x̃) || QTarget(y|x̃)) (4)

enhanced logit
for the correct class k

enhanced logit
for the j-th class

fractional probability
regularization

loss
function

*The probability (i.e., the expression between the outermost parentheses) and logarithm operations are
computed sequentially and separately for higher OOD detection performance [17].
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Therefore, our batch is divided into two halves. In the first half, we use the usual unitary probability
training. For the second batch, we construct augmented images specifically composed of patches of
four others (Fig. 3). We construct our target probability distribution Q for those images by adding a
quarter probability for each class corresponding to a patch of the augmented image. Finally, we mini-
mize the KL divergence regularization between our predicted and target probability distribution on
the second batch. These procedures do not increase training memory size requirements. Considering
δ the Kronecker delta function, equation (3) represents the FPR in math terms. By combining the
enhanced logits and the FPR, equation (4) presents the mathematical expression for the DisMax loss.

We recognize one similarity between CutMix [27] and FPR: both are based on the combination of
images patches to create augmented data. However, we identify many differences. CutMix combines
patches from two images, while FPR combines patches from four images. The format of the patches
in CutMix is variable, as one of the images is usually not a rectangle, and the two patches typically
have different areas. In FPR, all four patches always have the same size and format.

On the one hand, CutMix is randomly entirely applied to some batches and not to others. On the
other hand, FPR is always applied to half of each batch. Unlike FPR, CutMix does not create a
target probability distribution containing fractional probabilities and forces the predicted probability
distribution to follow it by minimizing the KL divergence between them. Indeed, CutMix does not use
the KL divergence at all. CutMix simply calculates the regular cross-entropy loss of the augmented
image considering the labels of the original data and takes a linear interpolation between the resulting
loss values. Therefore, while CutMix operates on loss values rather than probabilities, FPR operates
directly on probabilities before calculating loss values. The concept of fractional probabilities is not
even present in CutMix.

The design and theoretical differences mentioned above produce significant practical consequences.
First, while CutMix increases the training time, FPR does not. Another relevant practical implication
of the cited differences is the fact that CutMix presents hyperparameters. In addition to adding a
validation procedure to the project pipeline, the need for reserving training data for validation to tune
hyperparameters may hurt the classification accuracy, mainly on small datasets. Unlike CutMix, FPR
does not introduce any hyperparameter. As FPR is an integral part of DisMax loss, the mentioned
regularization is entirely transparent to the user of the provided code.

Max-Mean Logit Entropy Score For OOD detection, we propose a score composed of three
parts. The first part is simply to calculate the maximum logit+. The second part is the mean logit+.
Although each logit+ already considers the mean distances to all prototypes, we go a step further
and now calculate the mean of the logits+ themselves. Finally, we subtract the entropy calculated
considering the probabilities of the neural network’s output. We call this combined score Max-Mean
Logit Entropy Score (MMLES), and it is given by equation (5). We call MMLES a composite score
because it is formed by the sum of many other scores.

SMMLES = maxj(L
j
+) + 1

N

N∑
n=1

Ln
+ − H(PDisMax) (5)

max-mean logit
entropy score

mean logit+

entropy

maximum logit+

Temperature Calibration Unlike the usual SoftMax loss, the IsoMax loss variants produce un-
derestimated probabilities to obey the Maximum Entropy Principle [16, 18]. Therefore, we need to
perform a temperature calibration after training to improve the uncertainty estimation. To find an
optimal temperature, we used the L-BFGS-B algorithm with approximate gradients and bounds equal
to 0.001 and 100 [1, 29, 21] for expected calibration error (ECE) minimization.
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Figure 4: Max-Mean Logit Entropy Score (MMLES). In addition to the maximum logit and the
negative entropy, the MMLES incorporates the mean logit that considers the distances from the
example feature vector to all prototypes of the class. The composition of many sources of information
provides a high performance to MMLES. In DisMax, logits+ are used rather than usual logits.

3 Experiments

To allow standardized comparison, we used the datasets, training procedures, and metrics that were
established in [6] and used in many subsequent OOD detection papers [13, 11, 5]. We trained many
100-layer DenseNetBCs with growth rate k=12 (i.e., 0.8M parameters) [8], 34-layer ResNets [4],
and 28-layer WideResNets (widening factor k=10) [28] on the CIFAR10 [9] and CIFAR100 [9]
datasets with SoftMax, IsoMax+, and DisMax losses using the same procedures (e.g., initial learning
rate, learning rate schedule, weight decay). We used DisMax† for DenseNetBC trained on CIFAR10
because this is a very small model, and the mentioned dataset has too many examples per class;
therefore, no augmentation is needed. For all other cases, we used DisMax.

We used stochastic gradient descent with the Nesterov moment equal to 0.9 with a batch size of
64 and an initial learning rate of 0.1. The weight decay was 0.0001, and we did not use dropout.
We trained during 300 epochs. We used a learning rate decay rate equal to ten applied in epoch
numbers 150, 200, and 250. Using DisMax, “you only train once”, as no hyperparameter tuning is
required. We used resized images from TinyImageNet [2], the Large-scale Scene UNderstanding
dataset (LSUN) [26], CIFAR10, CIFAR100, and SVHN [23] to create out-of-distribution samples.
We added these out-of-distribution images to the validation sets of the in-distribution data to form the
test sets and evaluate the OOD detection performance. We evaluated the accuracy (ACC) to assess
classification performance.

We evaluated the OOD detection performance using the area under the receiver operating characteristic
curve (AUROC), the area under the precision-recall curve (AUPR), and the true negative rate at a
95% true positive rate (TNR@TPR95). We used the expected calibration error (ECE) [22, 3, 20] for
uncertainty estimation performance. The results are the mean and standard deviation of five runs.
Two methods are considered to produce the same performance if their mean performance difference
is smaller than the sum of the error margins.

Ablation Study The main aims of the ablation study are as follows: To verify whether the logits+
and FPR introduced by DisMax improve the accuracy and OOD detection performance, and to verify
whether MMLES improves the OOD detection performance regarding MDS when using DisMax. As
expected, Table 1 shows that logits+ and FPR often improve accuracy and OOD detection performance
compared to IsoMax+ even when using MDS. Moreover, it also shows that replacing MDS with the
composite score MMLES often increases OOD detection. These conclusions are essentially true
regardless of the model, in-distribution, and (near, far, and very far) out-of-distribution.
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Table 1: Ablation Study. MPS means Maximum Probability Score (i.e., the standard score for
SoftMax loss). MDS means Minimum Distance Score (i.e., the standard score for IsoMax+ loss).
MMLES means Max-Mean Logit Entropy Score (i.e., the standard score for DisMax loss). The best
performances are bold.

CIFAR10

Model Method
Classification Score

Out-of-Distribution Detection

Near Far Very Far

CIFAR100 TinyImageNet LSUN SVHN

ACC MPS,MDS TNR@95TPR TNR@95TPR TNR@95TPR TNR@95TPR
(%) [↑] MMLES (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) [6] 95.2±0.1 MPS 39.5±2.1 53.1±7.8 62.1±6.2 41.2±3.6
IsoMax+ [18] 95.1±0.1 MDS 57.3±1.1 86.9±0.4 91.4±0.3 96.4±0.6

DisMax† (ours) 95.1±0.1 MDS 56.2±0.5 88.0±0.3 92.2±0.3 97.5±0.3
MMLES 54.2±1.0 89.0±1.0 92.4±1.1 98.3±0.3

ResNet34
(medium size)

SoftMax (baseline) [6] 95.6±0.1 MPS 40.0±1.6 46.4±4.9 53.6±4.7 44.1±9.3
IsoMax+ [18] 95.5±0.1 MDS 55.1±1.3 71.0±6.4 81.5±4.4 82.4±8.8

DisMax (ours) 96.7±0.2 MDS 60.4±0.7 92.0±1.5 97.2±0.4 91.1±2.9
MMLES 60.0±0.5 93.3±1.1 98.0±0.3 91.2±2.7

WideResNet2810
(big size)

SoftMax (baseline) [6] 96.2±0.1 MPS 44.9±0.7 53.4±3.3 59.2±3.6 50.1±5.2
IsoMax+ [18] 96.0±0.1 MDS 61.5±0.4 80.2±4.2 87.4±3.0 96.3±1.4

DisMax (ours) 97.0±0.1 MDS 60.2±1.3 98.4±0.4 99.4±0.1 93.8±1.7
MMLES 62.9±0.5 98.6±0.2 99.5±0.1 92.8±2.0

CIFAR100

Model Method
Classification Score

Out-of-Distribution Detection

Near Far Very Far

CIFAR10 TinyImageNet LSUN SVHN

ACC MPS,MDS TNR@95TPR TNR@95TPR TNR@95TPR TNR@95TPR
(%) [↑] MMLES (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) [6] 77.3±0.4 MPS 17.6±1.1 18.1±1.7 18.7±2.0 19.8±2.9
IsoMax+ [18] 76.9±0.3 MDS 17.2±0.7 71.6±6.5 66.8±9.4 67.1±3.0

DisMax (ours) 79.4±0.2 MDS 16.6±0.6 97.7±0.3 98.5±0.4 57.9±3.6
MMLES 22.1±1.1 99.0±0.5 99.4±0.3 66.6±2.6

ResNet34
(medium size)

SoftMax (baseline) [6] 77.7±0.3 MPS 19.4±0.5 20.6±2.4 21.3±3.4 17.1±5.0
IsoMax+ [18] 76.5±0.3 MDS 18.0±0.7 43.3±4.3 41.5±5.7 43.6±3.5

DisMax (ours) 80.6±0.3 MDS 20.8±0.4 79.9±1.5 81.5±1.4 43.7±1.6
MMLES 22.0±0.5 85.4±1.7 86.4±1.3 48.5±2.0

WideResNet2810
(big size)

SoftMax (baseline) [6] 79.9±0.2 MPS 21.8±0.7 26.7±5.9 28.7±6.7 15.8±5.5
IsoMax+ [18] 79.5±0.1 MDS 19.0±0.7 66.9±3.9 67.9±3.3 61.8±1.9

DisMax (ours) 83.0±0.1 MDS 22.4±0.2 92.3±1.3 95.2±0.4 56.8±1.8
MMLES 24.6±0.3 96.3±1.2 97.8±0.9 65.6±1.2

Classification, Efficiency, Uncertainty, and OOD Detection Results Table 2 compares DisMax
with major approaches such as Scaled Cosine [24], GODIN [7], Deep Ensemble [10], DUQ [25],
and SNGP [14] regarding classification accuracy, inference efficiency, uncertainty estimation, and
(near, far, and very far) out-of-distribution detection. Unlike other approaches, DisMax is as inference
efficient as a trivially trained neural network using the usual SoftMax loss. Moreover, using DisMax,
“you only train once” the neural network, as no hyperparameter tuning is needed. Furthermore,
DisMax often outperforms other approaches simultaneously in all evaluated metrics.

Additional Analyses Fig. 5 illustrates the distribution of mean logits+ under some scenarios. We
see that prototypes are usually near to in-distribution than out-of-distribution, which explains why the
mean all-distances-aware logit (i.e., a mean of means) improves OOD detection performance when
combined with the maximum logit+ and the negative entropy to compose the MMLES.
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Table 2: Classification, Efficiency, Uncertainty, and OOD Detection Results. Efficiency repre-
sents the inference speed (i.e., the inverse of the inference delay) calculated as a percentage of the
performance of a single deterministic neural network trivially trained. For a fair comparison, we also
calibrated the temperature of the SoftMax loss and IsoMax+ loss approaches using the same procedure
that we defined for DisMax loss. Considering that input preprocessing can be applied indistinctly to
improve the OOD detection performance of all methods compared [7] (at the cost of making their
inferences approximately four times less efficient [16]), unless explicitly mentioned otherwise, all
results are presented without using input preprocessing. The results worse than the baseline or most
of the other approaches are shown in red. The methods that present the best performances are bold.

CIFAR10

Model Method
Classification Inference

Uncertainty
Estimation

Out-of-Distribution Detection

Near Far Very Far

CIFAR100 TinyImageNet LSUN SVHN

ACC Efficiency ECE AUPR AUROC AUROC AUPR
(%) [↑] (%) [↑] [↓] (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) [6] 95.2±0.1 100.0 0.0043±0.0008 86.2±0.5 92.9±1.6 94.7±0.9 93.7±3.3
Scaled Cosine [24] 94.9±0.1 100.0 - - 98.8±0.3 99.2±0.2 -
GODIN+preprocessing1 [7] 95.0±0.1 26.0 - - 99.1±0.1 99.4±0.1 -
IsoMax+ [18] 95.1±0.1 100.0 0.0043±0.0012 90.4±0.3 97.6±0.9 98.3±0.5 99.7±0.1
DisMax† (ours) 95.1±0.1 100.0 0.0045±0.0021 90.0±0.2 98.0±0.5 98.4±0.3 99.9±0.1

ResNet34
(medium size)

SoftMax (baseline) [6] 95.6±0.1 100.0 0.0060±0.0013 85.3±0.4 89.7±2.8 92.4±1.6 94.9±1.0
GODIN [7] 95.1±0.1 100.0 - - 95.6±0.5 97.6±0.2 -
IsoMax+ [18] 95.5±0.1 100.0 0.0133±0.0177 90.1±0.3 95.1±1.0 96.9±0.6 98.7±0.6
DisMax (ours) 96.7±0.2 100.0 0.0058±0.0008 90.3±0.2 98.3±0.3 99.5±0.1 99.1±0.3

WideResNet2810
(big size)

SoftMax (baseline) [6] 96.2±0.1 100.0 0.0038±0.0005 87.5±0.3 92.6±0.9 94.0±0.7 95.3±0.9
Deep Ensemble [10] 96.6±0.1 10.3 0.0100±0.0010 88.8±1.0 - - 96.4±1.0
DUQ2 [25] 94.7±0.1 45.0 0.0340±0.0020 85.4±1.0 - - 97.3±1.0
SNGP2 [14] 95.9±0.1 62.5 0.0180±0.0010 90.5±1.0 - - 99.0±1.0
Scaled Cosine [24] 95.7±0.1 100.0 - - 97.7±0.7 98.6±0.3 -
IsoMax+ [18] 96.0±0.1 100.0 0.0107±0.0166 91.8±0.1 96.6±0.6 97.7±0.4 99.7±0.3
DisMax (ours) 97.0±0.1 100.0 0.0043±0.0008 90.1±0.3 99.7±0.1 99.9±0.1 99.3±0.3

CIFAR100

Model Method
Classification Inference

Uncertainty
Estimation

Out-of-Distribution Detection

Near Far Very Far

CIFAR10 TinyImageNet LSUN SVHN

ACC Efficiency ECE AUPR AUROC AUROC AUPR
(%) [↑] (%) [↑] [↓] (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) [6] 77.3±0.4 100.0 0.0155±0.0026 71.3±0.8 71.8±2.2 73.1±2.4 87.5±1.5
Scaled Cosine [24] 75.7±0.1 100.0 - - 97.8±0.5 97.6±0.8 -
GODIN+preprocessing1 [7] 75.9±0.1 24.0 - - 98.6±0.2 98.7±0.0 -
IsoMax+ [18] 76.9±0.3 100.0 0.0108±0.0017 71.3±0.4 95.1±1.1 94.2±1.7 97.4±0.6
DisMax (ours) 79.4±0.2 100.0 0.0154±0.0006 74.4±0.2 99.8±0.1 99.9±0.1 96.4±0.8

ResNet34
(medium size)

SoftMax (baseline) [6] 77.7±0.3 100.0 0.0268±0.0015 73.3±0.1 79.0±2.1 79.6±1.7 86.3±3.3
GODIN [7] 75.8±0.2 100.0 - - 91.8±1.1 92.0±0.7 -
GODIN+dropout2 [7] 77.2±0.1 100.0 - - 87.0±1.1 87.0±2.2 -
IsoMax+ [18] 76.5±0.3 100.0 0.0190±0.0025 72.1±0.4 89.7±1.0 89.8±1.3 94.5±0.6
DisMax (ours) 80.6±0.3 100.0 0.0116±0.0014 74.2±0.6 97.6±0.5 97.7±0.6 94.8±1.0

WideResNet2810
(big size)

SoftMax (baseline) [6] 79.9±0.2 100.0 0.0272±0.0032 75.4±0.5 81.7±2.3 82.7±2.2 86.0±2.6
Deep Ensemble [10] 80.2±0.1 12.3 0.0210±0.0040 78.0±1.0 - - 88.8±1.0
DUQ2 [25] 78.5±0.1 79.9 0.1190±0.0010 73.2±1.0 - - 87.8±1.0
SNGP2 [14] 79.9±0.1 74.9 0.0250±0.0120 80.1±1.0 - - 92.3±1.0
Scaled Cosine [24] 78.5±0.3 100.0 - - 95.8±0.7 95.2±0.8 -
IsoMax+ [18] 79.5±0.1 100.0 0.0188±0.0016 73.0±0.8 94.2±2.1 94.6±2.0 96.7±1.7
DisMax (ours) 83.0±0.1 100.0 0.0143±0.0027 76.0±1.0 99.4±0.2 99.6±0.1 97.0±1.5

1Requires reserving training data for validation and performing hyperparameter tuning.
2Requires training the same neural network many times for validating hyperparameters.
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Figure 5: Mean logit+ contribution to out-of-distribution detection. In the feature space, the mean
distance from an in-distribution image to all prototypes is usually smaller than the mean distance from
an out-of-distribution image to the same prototypes. For example, consider a given class present in
CIFAR10. This figure shows that even the prototypes associated with classes other than the selected
class are usually nearer to images of the assumed class (in-distribution in blue) than images that do
not belong to CIFAR10 at all (out-of-distributions in orange). This explains why the mean value of
the logits+ considering all prototypes also contributes to the out-of-distribution detection performance.
Hence, not only the distance to the nearest prototype is used in the mentioned task.

4 Related Works

In 2019, on the one hand, IsoMax [19] proposed a end-to-end trainable non-squared Euclidean
distance last layer to address out-of-distribution detection. On the other hand, Scaled Cosine [24]
proposed using a cosine distance. While the scaled factor in IsoMax is a constant scalar called the
entropy scale, Scaled Cosine requires the addition of a block of layers to learn the scale factor. The
mentioned block is composed of an exponential function, batch normalization, and a linear layer
that has the features layer as input. Moreover, to present high performance, it is necessary to avoid
applying weight decay to this extra learning block. We believe that this additional learning block,
which adds an ad hoc linear layer in the final of the neural network, may make the solution prone to
overfitting and explain the classification accuracy drop mentioned by the authors.

In 2020, GODIN [7] cited and was heavily inspired by Scaled Cosine. GODIN kept the extra learning
block to learn the scale factor and also avoided applying weight decay to it. In addition to the
usual affine transformation and cosine distance from Scaled Cosine, it presents a variant that uses a
Euclidean distance-based last layer, similar to IsoMax. The major contribution of GODIN was to
allow using the input preprocessing introduced in ODIN without the need for out-of-distribution data.
However, input preprocessing increases the inference latency (i.e., reduces the inference efficiency)
approximately four times [16]. Also in 2020, SNGP [14] cited and followed a path similar to IsoMax:
A distance-based output layer for the detection of outside distribution. DUQ [25] also proposed a
distance-based loss function to address out-of-distribution detection. Unlike IsoMax variants, in
which we include DisMax, SNGP and DUQ are not as efficient as a single deterministic neural
network. Moreover, they require training the neural network many times for hyperparameter tuning.

5 Conclusion

In this work, we proposed DisMax, a novel IsoMax loss variant that keeps working as a drop-in
replacement for the SoftMax loss. We also presented a novel composite score called MMLES for
OOD detection by combining the maximum logit+, the mean logit+, and the negative entropy of the
network output. We present a simple temperature scaling procedure performed after training that
makes DisMax produce high-performance uncertainty estimation.

Our experiments showed that the proposed method usually outperforms the current approaches
simultaneously in classification accuracy, inference efficiency, uncertainty estimation, and out-of-
distribution detection.
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