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Abstract
A “bigger is better” explosion in the num-
ber of parameters in deep neural networks has
made it increasingly challenging to make state-
of-the-art networks accessible in compute-
restricted environments. Compression tech-
niques have taken on renewed importance as a
way to bridge the gap. However, evaluation of
the trade-offs incurred by popular compression
techniques has been centered on high-resource
datasets. In this work, we instead consider
the impact of compression in a data-limited
regime. We introduce the term low-resource
double bind to refer to the co-occurrence of
data limitations and compute resource con-
straints. This is a common setting for NLP for
low-resource languages, yet the trade-offs in
performance are poorly studied.
Our work offers surprising insights into the
relationship between capacity and generaliza-
tion in data-limited regimes for the task of ma-
chine translation. Our experiments on magni-
tude pruning for translations from English into
Yoruba, Hausa, Igbo and German show that in
low-resource regimes, sparsity preserves per-
formance on frequent sentences but has a dis-
parate impact on infrequent ones. However,
it improves robustness to out-of-distribution
shifts, especially for datasets that are very dis-
tinct from the training distribution. Our find-
ings suggest that sparsity can play a beneficial
role at curbing memorization of low frequency
attributes, and therefore offers a promising so-
lution to the low-resource double bind.

1 Introduction

Over the years, the size of language models have
grown exponentially (Amodei et al., 2018; Thomp-
son et al., 2020; Bender et al., 2021). Additional
parameters have improved quality on a variety of
downstream NLP tasks, but drive up the cost of
training (Horowitz, 2014; Strubell et al., 2019; Pat-
terson et al., 2021) and increase the latency and
memory footprint at inference time (Warden and
Situnayake, 2019; Samala et al., 2018).

Figure 1: Cost of mobile data by country per language
rank according to the taxonomy by Joshi et al. (2020).

Extending state-of-the-art language models to
low-resource languages requires addressing what
we term the low-resource double bind. Low-
resourcedness goes beyond mere data availability
and reflects systemic issues in society (Martinus
and Abbott, 2019; Nekoto et al., 2020). Classifica-
tions of languages with respect to “resourcedness”
have focused on the relative availability of data
(Zoph et al., 2016; Joshi et al., 2020), and the con-
centration of NLP researchers from these regions
or the over-fitting of model design around a small
set of high resource languages (Cieri et al., 2016;
Nekoto et al., 2020).

Less well documented and explored is the over-
indexing of low-resource languages in ecosystems
which simultaneously present severe constraints of
computational resource. In Fig. 1 we plot 22 lan-
guages grouped by the availability of labelled and
unlabelled data as proposed by Joshi et al. (2020)
against the cost of 1 GB of data as a percentage of
monthly income. Each language is mapped to the
country with the most speakers. The cost of data is
a valuable proxy for the cost of access to technol-
ogy in an ecosystem (Oughton, 2021). Here, this
visibly co-occurs with the limitations in available
data for different languages.



In computationally constrained environments,
access to machine learning technology depends
upon optimizing jointly for both model perfor-
mance and compactness. Pruning and quantiza-
tion are widely applied techniques for compressing
deep neural networks prior to deployment, as com-
pressed models require less memory, energy con-
sumption and have lower inference latency (Esteva
et al., 2017; Lane and Warden, 2018; Sun et al.,
2020). To-date, evaluating the merits and trade-
offs incurred by compression have overwhelmingly
centered on settings where the data is relatively
abundant (Gale et al., 2019; Li et al., 2020a; Hou
et al., 2020; Chen et al., 2021; Bai et al., 2020;
ab Tessera et al., 2021).

In this work, we instead ask how these design
choices trade-off with performance in data-limited
regimes typical of low resource languages. We con-
duct large scale experiments on Neural Machine
Translation (NMT) models trained to translate be-
tween English and three low resource African lan-
guages (Yoruba, Igbo and Hausa) and one high
resourced language (German). We compare perfor-
mance across models independently trained to very
different levels of sparsity — ranging from 50 % to
98 % — and evaluate performance on the original
distribution, in addition to establishing sensitivity
to distribution shift across multiple corpora.

Recent work restricted to the computer vision do-
main has found that sparse models with comparable
top-line performance metrics diverge considerably
in behavior on the long-tail of the distribution and
are sensitive to distribution shifts (Hooker et al.,
2020a; Liebenwein et al., 2021). Here, we rigor-
ously characterize the impact of sparsity on learned
decision boundaries in NMT. In addition to held-
out set BLEU, we measure sub-group performance
on sentences grouped by prototypicality and study
generalization properties over test corpora with dif-
ferent out-of-vocabulary ratios. We also evaluate
whether humans prefer translations from sparse or
dense models.

Our contributions can be enumerated as follows:

1. We introduce the term low-resource double-
bind and develop an extensive experimental
framework to understand the impact of com-
pression in a data-limited regime across 4 lan-
guages and 5 different data sets.

2. We find that models are tolerant of high levels
of sparsity while retaining BLEU performance
and also human-judged translation quality.

This holds until extremely high levels of spar-
sity (95%–99% of all weights removed) where
a severe decline in BLEU is notable.

3. There is a more pronounced degradation when
evaluation includes less frequent input pat-
terns. On closer investigation, we find that
sparsity disproportionately degrades perfor-
mance on the long-tail of the data distribution.

4. Curbing memorization of the long-tail can pro-
vide unexpected benefits. In a data-limited
regime, we find that sparsity benefits general-
ization to out-of-distribution corpora.

Implications of Our Work Understanding the
impact of compression on low-resource languages
is key to making technology accessible and inclu-
sive. Our work suggests that compression in these
settings alters generalization in ways that can be
beneficial and go beyond merely fulfilling deploy-
ment constraints. A challenge in low-resource NLP
is that the existing publicly available corpora often
come from very specific domains, such as mis-
sionary websites or translations of religious texts.
These sources do not adequately reflect the reality
of the potential applications of NLP technologies,
and are rarely sufficient for deployment (Öktem
et al., 2020; Anastasopoulos et al., 2020; Öktem
et al., 2021). Thus, a task of great interest is es-
tablishing what model design choices can lead to
generalization properties that extend beyond the
immediate task at hand. Our work suggests that
sparsity can play an important role in aiding gen-
eralization by curbing the memorization of rare
long-tail instances.

2 Methodology

Addressing the low-resource double bind requires
a careful setup of experiments to reflect the reali-
ties of low-resource translation. In particular, we
want to control the effects of (1) network sparsity,
(2) training data size, (3) target language, and (4)
domain shifts.

In this work we focus on pruning, a widely fa-
vored compression technique due to remarkably
high levels of compression that can be achieved
while retaining top-line performance (Gale et al.,
2019). Pruning typically involves three separate
stages: 1) training a dense model, 2) progressively
removing a subset of weights estimated to be unim-
portant, and 3) continuing to train the smaller
sparse network for a certain number of steps to



recoup performance (Reed, 1993; Blalock et al.,
2020). Pruning is the subject of considerable re-
search and numerous techniques have been pro-
posed, which differ in how weights are identified
for removal and the schedule for introducing spar-
sity/allowing recovery (Cun et al., 1990; Hassibi
et al., 1993a; Ström, 1997; Louizos et al., 2017; See
et al., 2016; Evci et al., 2019; Narang et al., 2017).
The development of specialized software kernels
has enabled the acceleration of sparse networks on
traditional hardware (Gale et al., 2020; Elsen et al.,
2019; Zhu et al., 2019) with new generations of
hardware directly facilitating sparse training (Zhu
et al., 2019).

State of art pruning techniques can achieve a far
higher level of compression and performance than
simply using a smaller dense network (Zhu and
Gupta, 2017; Li et al., 2020b). In our setting, a
90% sparse base transformer greatly outperforms
a tiny dense one across all the languages despite
having a fraction of the parameters (14M vs 4.6M)
(Appendix Table 8).

2.1 Magnitude Pruning
We use magnitude pruning (Zhu and Gupta, 2017)
to introduce sparsity across all experiment vari-
ants. It consistently achieves comparable or better
results than competing state of art approaches on
large scale benchmarks of computer vision and lan-
guage models (Gale et al., 2019) and is widely
used in practice due to the ease of implementation.
Magnitude pruning estimates weight importance as
the absolute weight value, and removes the weights
with lowest magnitude according to a pre-specified
schedule which determines the interval of training
steps and frequency between begin and end step
across which sparsity is introduced.

Magnitude pruning allows for the pre-
specification of desired sparsity such that we can
train models from random initialization to precise
levels of end sparsity. We carry out extensive
experiments and train networks independently for
each language to end sparsity of 0–98 where 98%
designates a network with 98% of the weights
removed by the end of training. 0% is a dense
network (no weights removed).

2.2 Languages
We validate the effectiveness of magnitude-based
pruning method in NMT models trained to trans-
late from English into German (de), Yoruba (yo),
Igbo (ig) and Hausa (ha). While German as a

Training Distribution Shift Test
JW300 Gnome Ubuntu Flores ParaCrawl Tanzil Tatoeba

de 1.9M 5,963 11,161 1012 2,000 2,000 10,145
yo 414.0k 1,467 120 1012 - - -
ig 414.9k 3,173 608 1012 2,000 - -
ha 211.9k 998 219 1012 2,000 2,000 -

Table 1: Number of sentences in each parallel corpora
we evaluate. For ParaCrawl and Tanzil, we sample
2000 sentences from the full dataset.

high-resource language serves as a point of com-
parison to previous works, Yoruba, Igbo and Hausa
represent three of the highest-resource African
languages with (near-)sufficient resources for reli-
able MT experimentation, i.e. multiple publicly-
available parallel corpora. Joshi et al. (2020) clas-
sify Yoruba and Hausa as “Hopeful” in terms of
available NLP resources and research, whereas
Igbo is slightly lower-resourced and classified as
“Scraping-by”. All constitute important test beds
for developing technologies that improve treatment
of low-resource technologies, since they each have
more than 50 million native speakers. Yoruba and
Igbo belong to the Niger-Congo language family
and use diacritics that pose challenges for text-
based NLP (Orife, 2018; Dossou and Emezue,
2021). Hausa is a Chadic language which is part of
the Afroasiatic phylum. It features complex plural-
ization and agglutination.

2.3 Training and Test Data
JW300 Training data for all languages is ob-
tained from the JW300 parallel corpus (Agić and
Vulić, 2019), since it is the largest source of data
that covers all languages we evaluate. It comprises
more than 300 languages of which 101 are African,
and is collected from religious magazines by Jeho-
vah’s Witnesses (JW) published on jw.org.

Pre-processing Parallel sentences are tokenized
and encoded using BPE (Sennrich et al., 2016),
resulting in a shared vocabulary of 4096 tokens.
Sentences are batched together with a maximum se-
quence length of 64. For each training batch, the ap-
proximate number of source/target tokens is 2048.
We compute detokenized and case-sensitive BLEU
using a helper script in tensor2tensor (Vaswani
et al., 2018) equivalent to SacreBLEU (Post, 2018).

Full vs limited data regime For our experi-
ments, we train on these datasets in two settings:
First, with all data available for each of the lan-
guages, sizes listed in Table 1. In this setting, the
dataset sizes range from 212k for Hausa to 1.9M

jw.org


(a) Global Test Full (b) Global Test Limited (c) Random Test Limited

(d) Global Test Full (e) Global Test Limited (f) Random Test Limited

Figure 2: Impact of pruning on BLEU performance across languages, sparsity levels and training data regimes. We
evaluate test set performance on both a Global test set designed around common phrases to allow comparability
between data corpus, and a Random test set with sentences sampled at random. Top row: Absolute change to
BLEU and by test set and sample size Bottom row: Change in BLEU relative to the dense (0% sparse) model.

for German. Our second setting holds constant the
amount of data available by sampling a uniform
number of sentence pairs for each language. We
randomly sample 200k sentences from the train set
of each language, limited by the smallest corpus
Hausa which consists of approximately 210k sen-
tences. We refer to these settings in experiment
discussion as Full and Limited.

Validation & testing The need for multiple test
sets to capture performance on a variety of down-
stream conditions has already been recommended
by recent work (Søgaard et al., 2021; Lazaridou
et al., 2021). The JW300 test sets were constructed
and released by Nekoto et al. (2020) to contain
the most frequent sentences in the JW300 corpus
across African languages and were filtered from
the training corpus. This construction ensures that
test sets across languages contain similar content,
which leads to increased comparability. However,
this cross-lingual selection may introduces a bias
towards frequent sentences, and under-represents
language-specific outliers.

Only measuring performance on frequent sen-
tences across languages may be a particular con-
cern in evaluating the impact of sparse models, as
prior work has shown that the introduction of spar-
sity disproportionately impacts the long-tail of the
data distribution (Hooker et al., 2020a,b). To cap-
ture possible disparate impact on the long-tail, we

also sample at random from the remainder of the
data to craft a secondary test set (as has been done
for validation). In the results section, we refer to
the Nekoto et al. (2020) test data as the Global
test set and random sample as the Random test
set. A comparison of differences in performance
between Global and Random test sets provides
insights into how sparsity impacts generalization
performance on text which is common relative to
a more typical Zipf distribution with long-tail fea-
tures (Zipf, 1999).

2.4 Sensitivity to Distribution Shift
We select corpora which differ from the training
distribution in both domain (ranging from every-
day sentences to technical documentation), sen-
tence length and OOV rate (ranging from 2.68% to
20.42%). Given these large deviations in statistics
from the JW300 training corpus, our expectation is
not that the model preserves performance but rather
to understand the sensitivity of sparse models to
distribution shift relative to dense models.

Our selection of corpora is also guided by the
size of public data sets that cover Yoruba, Hausa,
Igbo and German. When the test set is small,
reliability in BLEU scores between models and
inferred conclusions may be compromised (Card
et al., 2020). To estimate the impact that limitation
in test size can have on our results, we simulate
the variability of BLEU under different amounts



Figure 3: Mean BLEU scores (shaded: ± standard vari-
ation) for the dense en-de models on subsets of the
Tatoeba data.

of test data in Figure 3. As can be seen, a sample
size of at least 100 reasonably reduces variance in
BLEU, so we only investigate out-of-distribution
sensitivity with datasets of at least that size.

The domains of the datasets can be character-
ized below. Statistics for corpus sizes are given in
Table 1, and out-of-vocabulary rates (OOV) and
average source lengths in Table 3.

2.5 Datasets evaluated
The domains of each dataset considered are char-
acterized below. Additionally, we include statis-
tics for 1) corpus size in Table 3, and 2) out-of-
vocabulary rates (OOV) and average source lengths
in Table 1:

• Gnome is a dataset in the technical domain
that contains 187 languages pairs derived from
the translation of GNOME documentation.1

The size of test sets for this corpus ranges be-
tween 998 (Hausa) and 5,963 (German). “Sen-
tences” are often entities or phrases, with an
average length of only 6-9 tokens.

• Ubuntu is a dataset in the technical domain. It
consists of 42 languages pairs generated from
translating localization files of the Ubuntu
OS.2 The size of test sets for this corpus
ranges between 120 (Yoruba) and 11,161 (Ger-
man), and it shows similar length statistics to
GNOME.

• Tanzil is a religious dataset with 42 language
pairs. It is a collection of Quran translations
compiled by the Tanzil project.3 We sample

1https://www.gnome.org/
2https://ubuntu.com/
3https://tanzil.net/

2000 sentences for both German and Hausa,
which have an average length of 23 tokens,
being slightly longer than the average JW300
training sentence.

• ParaCrawl is a dataset obtained from mining
the web for parallel sentences (Bañón et al.,
2020). v8 covers 41 mostly European lan-
guages, but a pre-release of Igbo and Hausa
allowed evaluation here. 4 The crawled web-
sites for Hausa and Igbo are largely religious
but some also publish news. We sample 2000
sentences for Hausa, Igbo and German with
an average length of 22 tokens.

• Tatoeba is a crowdsourced dataset of short
sentences concerning every day life translated
by users of https://tatoeba.org/.
We only report Tatoeba results for German as
this is the only corpus with more than 100 sen-
tences. Tatoeba sentences have similar length
to Gnome and Ubuntu, but are full sentences.

• Flores is a multi-domain dataset contain-
ing professional translations of sentences ex-
tracted from English Wikipedia in 101 lan-
guages (Goyal et al., 2021). The size of test
sets released for this corpus is 1012 sentences
across all languages with similar length to
Tanzil and Paracrawl.

Our choice of datasets is guided by a desire to
capture datasets with different degrees of differ-
ence from the original training corpus. JW300 is
a religious dataset, so one could expect more over-
lap with both ParaCrawl and Tanzil and far less
with Ubuntu and Gnome which are both techni-
cal writing to document the use of a technology.
We include Flores which covers a variety of differ-
ent domains and finally Tatoeba for completeness,
as a more general dataset consisting of everyday
sentences.

2.6 Architecture and Training

We train transformer models (Vaswani et al., 2017)
for each NMT task with a modified version of
the tensor2tensor library (Vaswani et al., 2018)
from (Gale et al., 2019). The transformer base
model consists of 60M parameters, with 31% of
the parameters in the attention layers, and 41%

4https://bit.ly/3f7WfVI

https://www.gnome.org/
https://ubuntu.com/
https://tanzil.net/
https://tatoeba.org/
https://bit.ly/3f7WfVI


Training Global test Random test
Avg Len Dense 90% Sparse Avg Len Dense 90% Sparse Avg Len Dense 90% Sparse

Low 33.01 62.04 24.93 23.58 31.41 29.45 32.73 22.35 23.08
Mid 18.26 80.09 26.82 14.03 35.37 34.68 17.53 23.99 23.58
High 8.99 78.91 28.58 9.86 48.56 48.05 9.09 25.47 24.86

Table 2: BLEU for different sets split according to sentence typicality for German, which is defined as average
token log-frequencies in the training corpus (FS in (Raunak et al., 2020)).

JW300 Global JW300 Random Tanzil Tatoeba ParaCrawl Gnome Ubuntu Flores
OOV Len OOV Len OOV Len OOV Len OOV Len OOV Len OOV Len OOV Len

de 0.25 15.81 0.66 19.76 2.68 22.48 4.89 8.78 9.86 20.09 12.37 8.09 16.64 5.56

15.53 21.64
ha 0.26 16.28 0.37 18.72 4.95 22.86 7.00 7.76 3.39 24.67 15.22 9.81 20.42 7.83
ig 0.30 15.98 0.50 18.58 - - 12.10 6.89 6.95 20.91 14.19 6.99 13.99 6.81
yo 0.24 15.98 0.56 18.77 - - 9.05 5.69 - - 16.66 6.36 13.55 6.46

Table 3: Out-of-vocabulary rates (OOV, %) and average source lengths (Len) for different test set sources.

in the position wise feed-forward layers. Train-
ing hyperparameters are detailed in Appendix Sec-
tion A.3. We release our code here https://
github.com/orevaahia/mc4lrnmt.

Throughout training we introduce sparsity of
levels percentages [0, 50, 60, 70, 80, 90, 95, 98]
using magnitude pruning (Zhu and Gupta, 2017).
All fully-connected layers and embeddings making
up 99.87% of all of the parameters in the model
are considered for sparsification. The tuning of
pruning hyper-parameter is described in Appendix
Section A.4.

2.7 Human Evaluation: Dense vs Sparse

We complement automatic BLEU evaluation with
a human evaluation study to compare the transla-
tion quality of dense and sparse models. We elicit
absolute ratings on a 6-point scale for 500 pairs of
differing translations of the JW300 Global and
Random test set on a crowd-sourcing platform.

3 Results

Sparsity BLEU trade-off In Figure 2, we can
see that models are tolerant of moderate to high
levels of sparsity (50% - 80%) while retaining
BLEU performance relative to dense. Between
50% and 80% sparsity, any degradation is mini-
mal as sparse performance remains at 95% or more
of dense performance for all languages. Hausa
even has a slight exception where pruning 70%
or 80% of the model parameters performs on par
with the baseline or even better. However, for both
Global and Random test sets, there is a notice-
ably sharp degradation in BLEU when progressing

to extremely high sparsity levels of 90% and be-
yond.

Long-tail test set Translation quality on the
Global and Random test sets differs consider-
ably. We control for data size by comparing on
the same Limited datasets. Languages perform
within a narrow band of comparable BLEU for
Global, with the degradation in BLEU at higher
levels of sparsity occurring at a similar rate across
languages. In contrast, absolute BLEU scores on
Random are noticeably lower at both dense and all
sparsity levels, coupled with a far wider spread of
BLEU between languages. This suggests that a low
data regime disproportionately impacts translation
quality on the long-tail and that the Random set is
a more discriminative evaluation protocol. When
we compare relative differences of sparse models
to dense, we can see that relative to Global, there
is sharper degradation in Random under high spar-
sity (90%+). However, with mid-level sparsity, the
quality of the dense model is maintained or even
slightly outperformed (German) on all test sets.

Learning prototypical instances is less sensitive
to data size In Figure 2, it is noticeable that per-
formance on the Global test set, does not vary
noticeably between the Limited (2b) and Full (2a)
training setting. This is surprising given the large
difference in training corpus size for many of the
languages (for German 1.9 M in Full vs 200,000 in
Limited).

Additionally, even when restricting attention to
the Full training setting, the ranking of absolute
BLEU scores on the Global test set does not ap-
pear to be sensitive to the size of the training cor-

https://github.com/orevaahia/mc4lrnmt
https://github.com/orevaahia/mc4lrnmt


(a) Gnome (b) Ubuntu (c) ParaCrawl (d) Flores

(e) Tanzil (f) Tatoeba: Limited vs Full (g) All (German)

Figure 4: Robustness to distribution shift at different levels of sparsity for models trained in a data-limited regime
(Limited). For Tatoeba with only German we compare performance for a model trained on Full is added for
comparison.

pus, as Igbo (414.9K) and Yoruba (414.0K) achieve
nominally higher BLEU on Global than German
(1.9M) despite having only a fifth of training data
in the Full setup. This suggests that learning a
representation for the most frequent patterns in the
dataset does not require a substantial amount of
data.

Data size for long-tail patterns In contrast,
learning a good representation for the long-tail ap-
pears to be far more sensitive to the size of the
training corpus. In Figure 4f, we compare the OOD
performance on Tatoeba of the Full vs Limited
model trained on German. Here, we are evaluating
performance on a dataset with a much higher OOV
ratio of 2.68%. Here, on a dataset with more rare
instances and distribution shift, the amount of train-
ing data makes a larger difference. Across all levels
of sparsity the model trained on Full generalizes
better than the Limited model.

Do humans notice the difference between dense
and sparse models? Human annotators rate test
translations of the dense model and 90%-sparsity
model as described in Section 2.7. Table 4 reports
the average ratings (1-6 scale, the higher the better)
for both types of models across languages for both
in-domain test sets. The ratings reveal that there
is no clear preference of dense over sparse model
outputs across languages and sets. For German the
sparse model scores 0.1 lower on average for both
test sets. For Igbo and Hausa sparse scores slightly
higher on the Global set, but this gain is lost on

Random. Hausa receives the nominally highest
ratings on both test sets, but we note that raters
might not be well calibrated across languages, and
test sets are not completely identical. Nevertheless,
the Random translations score consistently lower
than the Global translations, indicating that the
quality loss on long-tail examples was indeed no-
ticeable. All in all, the roughly 2-8% drop in BLEU
that occurred through pruning at 90% is not nega-
tively affecting human-judged translation quality
in any of the studied languages, which is a promis-
ing finding for the deployment of such models in
practice. However, this evaluation is oblivious of
effects like translation biases (Edunov et al., 2020)
that could be caused by less memorization.

How sensitive are sparse models to distribution
shift? Figure 4 shows the absolute change in
BLEU when evaluating the Limited models on
the out-of-distribution datasets.

We find that across dense and sparse models,
degradation in performance is sensitive to OOV
rates and difference in sentence lengths, with the
most pronounced degradation on Tanzil (longer av-
erage sentence length), Ubuntu and Gnome (techni-
cal domains with far higher OOV rates of 12–20%).
The transfer to ParaCrawl was the most successful
across languages. For Flores, we don’t see a uni-
form performance across all languages. Our results
show that the transfer to all languages but Yoruba
is almost similar to that of Paracrawl.

One trend that is consistent across languages and
domains is an increase in quality around 70%–95%



sparsity (even more visible when plotting relative
change in Figure 5 in the Appendix). As a re-
sult, 90% sparse models outperform their baselines
across all languages under the Limited condition.
This means that increased sparsity during training
with limited data has a beneficial influence for out-
of-distribution generalization. With larger amounts
of training data—in the case of German (Entire)
a factor of 10— however, this relative advantage
is lost (Figure 4f). This finding is highly relevant
for the reality of low-resource languages, where
training data is limited and often available only
for a narrow domain, so strong generalization is
essential.

Does sparsity curb memorization? The results
on OOD generalization are surprising, as it sug-
gests that in a low-data regime less capacity rather
than more can aid generalization. It is worth plac-
ing these results in the context of recent work in
computer vision that has found that sparsity curbs
memorization of the long-tail of the training dis-
tribution (Hooker et al., 2020a,b). Impeding mem-
orization constrains model learning to the most
general high level features, rather than atypical
low-frequency features and noisy examples which
typically require memorization and are less likely
to generalize across other tasks (Brown et al., 2020;
Feldman and Zhang, 2020). In the setting of low-
resource languages, the training corpus is often
highly restricted to a narrow domain such as reli-
gion. Here, it may be more likely the long-tail will
contain specialized artefacts and noise that do not
generalize.

To explore this further, in Table 2 we look at
training and test performance grouped by sentence
typicality for German (typicality measured as per
(Raunak et al., 2020)). At training time, the dense
model evidences clear overfitting and outperforms
the sparse on low, mid and high typicality. The
difference in relative performance on sentences of
low typicality is striking (62.04 dense vs 24.93
sparse BLEU), confirming that capacity aids mem-
orization of the long-tail. However, at test time the
dense memorization of a specialized training set
exhibits a negative knowledge transfer cost relative
to sparse. On the Random test set, sparse in fact
slightly outperforms relative to dense on low typi-
cality. Both Table 2 and the OOD result in Figure 4
show that sparsity has an important role to play in
data limited regimes at curbing memorization of
rare artefacts that do not generalize.

Global Random
Dense 90% Sparse Dense 90% Sparse

de 4.17 4.06 3.80 3.66
yo 3.66 3.66 3.51 3.51
ig 3.87 3.96 3.81 3.85
ha 4.77 4.85 4.53 4.53

Table 4: Average human ratings of 500 test set
translations comparing dense and 90%-sparse models
(Limited) on Global and Random JW300 test sets.

4 Related Work

Compression techniques for NMT There has
been recent works on compressing recurrent neu-
ral networks (RNN) and transformer networks for
NMT (Gale et al., 2019; Narang et al., 2017;
See et al., 2016; Zhang et al., 2017; Li et al.,
2020b). With the exception of a proof-of-concept
experiment with RNN on a small-scale English-
Vietnamese translation task (See et al., 2016), all
of the works above focus on compressing models
trained on large data sets, and exclude African Lan-
guages.

To the best of our knowledge, our work is
the first to apply pruning methods to train trans-
former NMT models on low-resourced data, and on
African languages with different syntactic and mor-
phological features distinct from English. More-
over, all of the above works rely solely on auto-
matic evaluation metrics, and do not qualify trans-
lation quality using human annotation or sensitivity
to different distribution shifts.

Optimized training for low-resource NMT
Sennrich and Zhang (2019) find that hyperparam-
eter tuning is essential for NMT on low-resource
data, such as the depth or regularization of the
network. Duh et al. (2020) highlight the impor-
tance of hyper-parameter tuning for NMT for So-
mali and Swahili. Fadaee et al. (2017); Sennrich
and Zhang (2019) and Xu et al. (2020) explore tai-
lored augmentation and curriculum learning strate-
gies for data-limited regimes. Sennrich and Zhang
(2019) additionally assume limitations to compute
at training time when modeling Somali and Gu-
jarati. In contrast, in our work, we consider the
impact of resource constraints present at inference
time/deployment of a model.

Transformer size for low-resource NMT More
relevant to our work are works that have evalu-
ated transformers of different sizes in the light of
low-resource translation. Biljon et al. (2020) in-



vestigate the effect of transformer depth on low-
resource translation for three South-African lan-
guages. Murray et al. (2019) study auto-size feed-
forward and attention layers in transformers for
low-resource translations of Hausa, Tigrinya, and
Arabic, and find BLEU and efficiency improve-
ments with smaller models. Tapo et al. (2020)
succeed in training a smaller transformer model
for Bambara with as few as 10k examples, but find
only limited generalization under distribution shift
(Tapo et al., 2021).

In contrast to these works, we study generaliza-
tion at different levels of sparsity. Pruning is a more
precise experimental framework to understand the
relationship between capacity and generalization
because we can exactly vary the sparsity in a range
between 0% and 100% controlling for the same ar-
chitecture. Pruning also achieves far higher levels
of compression in terms of the number of parame-
ters relative to substitutes evaluated in these works
such as the tiny transformer. In our work, we also
seek to not only measure the impact of capacity but
also to better understand why counter-intuitively
higher levels of sparsity aid generalization. Finally,
our experiments are extensive relative to (Biljon
et al., 2020; Tapo et al., 2020), both in terms of
number of languages and variety of training and
evaluation conditions. Furthermore, we are the
first to report human evaluation on the effects of
pruning for MT.

5 Future Work

Our work introduces the term low-resource double-
bind and conducts extensive experiments to study
the impact of pruning. In this setting, we are con-
cerned with resource constraints present at deploy-
ment. An important area for further work is to
explore a setting where resource constraints are
present at both training and deployment time. For
example, a consideration of the impact of pruning
on pre-trained models, such as large multilingual
MT models that are known to boost low-resource
NMT quality (Aharoni et al., 2019; Arivazhagan
et al., 2019). Additionally, the minimal differences
observed in our human evaluation of preferences
open up a range of questions for deeper qualita-
tive analysis of the resulting translations: Under
which conditions do humans notice differences,
and how do translations differ in style? There may
be interesting connections to recent findings about
output hallucinations occurring on memorized ex-

amples (Raunak et al., 2021), or with respect to
translation bias (Koppel and Ordan, 2011).

6 Conclusion

We demonstrate the effectiveness of introducing
sparsity when training NMT models for low-
resourced languages. We show that small perfor-
mance drops in extremely sparse regimes according
to automatic metrics are not reflected in human-
judged translation quality. Our extensive study
of the impact of pruning on out-of-distribution
generalization reveals that sparse models improve
over dense models in a limited data regime. Over-
all, these insights are promising for overcoming
the low-resource double bind: Pruned models re-
duce resource requirements for deployment, and
increase the robustness towards out-of-domain sam-
ples due to reduced memorization during training.
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A Training

A.1 Overview of Compression
Popular model compression research directions in-
cludes reducing the precision or bit size per model
weight (quantization) (Jacob et al., 2018; Cour-
bariaux et al., 2014; Hubara et al., 2016; Gupta
et al., 2015), efforts to start with a network that
is more compact with fewer parameters, layers or
computations (architecture design) (Howard et al.,
2017; Iandola et al., 2016; Kumar et al., 2017),
student networks with fewer parameters that learn
from a larger teacher model (model distillation)
(Hinton et al., 2015) and finally pruning by set-
ting a subset of weights or filters to zero (Louizos
et al., 2017; Wen et al., 2016; Cun et al., 1990;
Hassibi et al., 1993a; Ström, 1997; Hassibi et al.,
1993b; See et al., 2016; Narang et al., 2017). Of-
ten, a combination of compression methods might
be applied. For example, pruning might be com-
bined with other efficiency-improving methods, e.g.
quantization or faster search algorithms. Quantiza-
tion can be used to speed up inference and relax
hardware requirements, as has been shown for e.g.,
8-bit (Quinn and Ballesteros, 2018), 4-bit (Aji
and Heafield, 2020) and recently also below 3-bit
quantization (Chung et al., 2020) of NMT models.
In the wider NLP space, there has been interest
in evaluating the trade-offs of different compres-
sion techniques for downstream finetuning. Sanh
et al. (2020) propose the use of movement pruning,
a simple, deterministic first-order weight pruning
method that is more adaptive to pre-trained model
fine-tuning.

Magnitude-based weight pruning schemes use
the magnitude of each weight as a proxy for its
importance to model quality, and remove the least
important weights according to some sparsification
schedule over the course of training. Many vari-
ants have been proposed (Collins and Kohli, 2014;
Han et al., 2015; Guo et al., 2016; Zhu and Gupta,
2017), which can be distinguished by differences in
the criteria used to remove weights, when weights
are removed and whether weights that have been
pruned can still receive gradient updates after being
removed.

Han et al. (2015) use iterative magnitude pruning
and re-training to progressively sparsify a model.
The target model is first trained to convergence,
after which a portion of weights are removed and
the model is re-trained with these weights fixed
to zero. This process is repeated until the target

sparsity is achieved. Guo et al. (2016) improve on
this approach by allowing masked weights to still
receive gradient updates, enabling the network to
recover from incorrect pruning decisions during op-
timization. They achieve higher compression rates
and interleave pruning steps with gradient update
steps to avoid expensive re-training. Zhu and Gupta
(2017) similarly allow gradient updates to masked
weights, and make use of a gradual sparsification
schedule with sorting-based weight thresholding to
maintain accuracy while achieving a user specified
level of sparsification.

Magnitude pruning can easily be adapted to in-
duce block or activation level sparsity by removing
groups of weights based on their p-norm, average,
max, or other statistics. Variants have also been
proposed that maintain a constant level of sparsity
during optimization to enable accelerated training
(Mocanu et al., 2018).

A.2 Architecture Size
Table 5 compares the sizes for base and tiny trans-
formers. We do a model size ablation, comparing
two model types (sizes in Appendix Table 5). Table
8 displays the results showing that the tiny trans-
former gives a lower BLEU score than the base
transformer even with extensive hyperparameter
tuning. Hence we use the sparse transformer base
model for all our preferred experiments.

A.3 Training Hyperparameters
We train the transformer with the hyper-parameters
and optimizer settings described in (Vaswani et al.,
2017). We use a batch size of 2048, and train on
a Google Cloud TPU v2-8 with a default learn-
ing rate of 0.2, and learning rate warm-up steps of
8000. Regularization is introduced with dropout
and label smoothing with rates 0.1. We are in-
terested in a setting where resource constraints
are present at deployment time, and do not as-
sume constraints present at training. Our code is
publicly available at https://github.com/
orevaahia/mc4lrnmt. In our experiments on
the Full dataset, models for Yoruba and Igbo and
German are trained for a total number of 100k steps
while the Hausa models are trained for 60k steps.
For our experiments in a data limited regime, we
train for a total of 60k steps across all languages.

A.4 Pruning Hyperparameters
We perform a limited hyperparameter search with
manual tuning to determine the best pruning start

https://github.com/orevaahia/mc4lrnmt
https://github.com/orevaahia/mc4lrnmt


Hyperparameters Base Tiny

Transformer Layers 6 2
Hidden Size 512 128
Attention Heads 8 4
Filter Size 2048 512
Optimizer adafactor adafactor
Max Length 64 64

Table 5: Hyperparameters for transformer variants.

time, end time and recovery interval and select the
best models based on the BLEU performance, we
notice that when we train on the Full data, we
see an average difference of 0.7 if we introduce
pruning early and stop pruning close to the end of
training on all sparsity levels we train for. In our
case, we begin pruning on the 2000th train step and
end pruning on the 80000th step for German, Igbo
and Yoruba and begin pruning on the 2000th train
step and end pruning on the 40000th for Hausa.
This is line with the results reported by Gale et al.
(2019) when evaluating different compression tech-
niques on high resourced languages. Training on
limited data however shows slightly different
results. In most cases, we see also see an average
increase of 0.7 when we start to prune at nearly
a quarter of the total train steps and stop pruning
20,000 steps before training ends. For all experi-
ments on the Full data, the frequency of pruning
is every 2000 steps, however for limited data
experiments it is either 1000 or 2000 steps. Full
tuning results are in Table 10.

B Human Evaluation Details

Test set quality is evaluated independently, transla-
tions for rating were randomly selected from each
test set that yielded different translations from the
two models. The ratio of identical translations that
are withheld from this rating lies around 27% for
all languages.

The absolute ratings allow us to draw conclu-
sions about the absolute quality, and the presenta-
tion in pairs encourages the rater to consider dif-
ferences between both translations for their rating.
We gather three independent ratings for translations
into German, and one rating for translations into
Yoruba, Hausa and Igbo. Ratings from multiple
raters are aggregated by using the median score.

Table 7 reports absolute scores as well as
wins/losses of sentence-level comparisons.

Absolute Ratings Relative Wins [%]
Sparsity 0 90 0 Neither 90

de 4.17 4.06 31 46 23
yo 3.66 3.66 26 48 26
ig 3.87 3.96 31 31 37
ha 4.77 4.85 29 38 34

Table 6: Results of the human evaluation study of 500
Global test set translations comparing dense (0) and
90%-sparse (90) models (Limited). Absolute rat-
ings are averaged across sentences.

Absolute Ratings Relative Wins [%]
Sparsity 0 90 0 Neither 90

de 3.80 3.66 29 50 21
yo 3.51 3.51 19 61 19
ig 3.81 3.85 35 28 37
ha 4.53 4.53 26 47 27

Table 7: Results of the human evaluation study of 500
Random test set translations comparing dense (0) and
90%-sparse (90) models (Limited). Absolute rat-
ings are averaged across sentences.

C Distribution Shift Evaluation Results

We provide multiple views on translation quality
under distribution shift for all languages in Fig-
ures 4 and 5. To ease comparison, we summa-
rize all results for German in Figure 6 since it is
present in all the datasets we consider. Relative
performance degradation is measured by dividing
the BLEU (Papineni et al., 2002) from the sparse
models by that of the dense model.

D Results for Full vs Limited Training
Regime

Figure 2 shows the relative and absolute differences
in BLEU caused by pruning in both Limited and
Full models. We see minimal changes in BLEU
between both training regimes and conclude that
the ranking of absolute BLEU over all languages
doesn’t correspond to training data sizes as Yoruba
and Igbo; although one-fifth of the Full German
data still achieves higher BLEU than German.

E Results for In-domain Validation and
Test Sets

Figure 7 compares the performance across test and
validation sets. We can see that the validation set is
closer to the Random test set since it was sampled
randomly as well. The Global test set, however,
contains fewer long-tail examples and therefore
receives higher BLEU.



(a) Gnome (b) Ubuntu) (c) Flores)

(d) ParaCrawl (e) Tanzil

Figure 5: Relative change in BLEU on distribution shift datasets across languages and sparsity levels.

(a) Limited (b) Full

Figure 6: Absolute BLEU performance on out-of-distribution data for German across all sparsity levels.

(a) BLEU (Yoruba) (b) BLEU (Igbo)

(c) BLEU (Hausa) (d) BLEU (German)

Figure 7: Comparison of Absolute BLEU performance of Random Test, Global Test and Validation sets



Size %Sparse # Params yo ig ha de
Random Global Random Global Random Global Random Global

Tiny 0 14.0M 20.39 30.11 28.79 31.78 27.74 31.84 15.40 28.05

Base

0 46.1M 28.45 39.01 36.68 40.33 33.81 37.49 23.80 36.14
50 23.1M 28.83 38.96 37.05 40.02 33.82 37.61 23.95 36.60
60 18.6M 28.42 39.14 36.69 39.86 33.87 37.51 24.34 36.32
70 13.8M 28.59 38.90 36.89 39.92 34.20 37.74 24.84 36.41
80 9.4M 28.66 38.57 37.19 38.77 34.33 37.49 24.47 36.07
90 4.6M 27.42 37.01 35.93 36.93 33.20 32.05 23.08 34.96
95 2.5M 24.08 33.97 32.46 34.58 30.52 34.09 19.78 32.21
98 1.1M 18.34 27.97 26.02 30.32 24.99 30.09 13.78 25.58

Table 8: Number of non-zero parameters and test BLEU scores under the Limited training regime.

Size %Sparse # Params yo ig ha de
Global Global Global Global

Base

0 46.1M 39.01 40.33 37.49 36.14
50 23.1M 38.96 40.02 37.61 36.6
60 18.6M 39.14 39.86 37.51 36.32
70 13.8M 38.90 39.92 37.74 36.41
80 9.4M 38.57 38.77 37.49 36.07
90 4.6M 37.01 36.98 35.98 34.96
95 2.5M 33.97 34.58 34.09 32.21
98 1.1M 27.97 30.52 30.09 25.58

Table 9: Number of non-zero parameters and test BLEU scores under the Full training regime.

%Sparse BP EP PF yo ig ha de
Random Global Random Global Random Global Random Global

50
2000 60000 1000 28.45 38.82 36.93 39.247 33.81 38.14 24.26 35.77

12000 40000 2000 28.83 39.07 37.55 39.91 33.95 37.9 24.52 36.6
15000 40000 2000 28.64 38.77 37.05 40.02 34.02 37.99 23.95 36.25

60
2000 60000 1000 28.28 38.54 37.15 39.61 33.82 38.06 24.16 36.09

12000 40000 2000 28.42 39.14 36.69 39.86 33.68 37.9 24.3 36.32
15000 40000 2000 28.54 39.07 37.29 39.58 33.86 37.94 24.34 35.88

70
2000 60000 1000 28.12 38.46 37.55 38.88 34.10 37.84 24.54 36.2

12000 40000 2000 28.46 38.6 36.89 39.77 33.87 38.29 24.84 36.41
15000 40000 2000 28.59 38.9 37.32 39.92 33.80 38.15 24.41 36.25

80
2000 60000 1000 28.36 38.07 36.73 38.36 33.72 37.52 23.83 36.02

12000 40000 2000 28.66 38.57 37.1 38.54 34.41 37.95 24.47 36.07
15000 40000 2000 28.53 38.19 37.19 38.77 34.33 38.03 24.45 35.82

90
2000 60000 1000 26.50 36.09 35.42 36.73 32.35 36.38 22.68 34.29

12000 40000 2000 27.42 37.01 35.93 36.98 33.20 36.51 23.08 34.96
15000 40000 2000 26.96 36.72 36.08 36.91 33.15 36.41 23.23 34.36

95
2000 60000 1000 24.08 32.82 31.49 34.06 29.16 33.32 18.97 31.5

12000 40000 2000 23.93 33.71 32.46 34.58 30.69 34.39 20.01 32.14
15000 40000 2000 24.12 33.06 32.44 34.29 30.52 34.61 19.78 32.21

98
2000 60000 1000 18.34 25.95 25.05 28.87 24.22 28.63 12.9 24.35

12000 40000 2000 17.87 27.47 26.02 30.32 24.99 30.09 14.25 25.58
15000 40000 2000 17.54 27.28 26.00 29.39 24.99 29.5 13.78 25.13

Table 10: Absolute BLEU performance from tuning pruning hyperparameters across all languages under the
Limited training regime. BP= Begin Pruning Step, EP= End Pruning Step and Pruning Frequency= Prun-
ing Frequency


