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Abstract: Previous polarization underwater imaging methods based on the physical scattering
model usually require background region included in the image and the prior knowledge, which
hinders its practical application. In this paper, we analyze and optimize the physically feasible
region and propose an improved method by degenerating intermediate variables, which can
realize automatic underwater image recovery without background region or any prior. The
proposed method does not need to estimate the intermediate variables in the traditional underwater
imaging model and is adaptable to the underwater image with non-uniform illumination, which
avoids the poor and unstable image recovery performance caused by inaccurate estimation of
intermediate parameters due to the improper identification of the background region. Meanwhile,
our method is effective for both images without background region and images in which the
background region is hard to be identified. In addition, our method solves the significant variation
in recovery results caused by the different selection of background regions and the inconsistency
of parameter adjustment. The experimental results of different underwater scenes show that the
proposed method can enhance image contrast while preserving image details without introducing
considerable noise, and the proposed method is effective for the dense turbid medium.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Underwater imaging with good performance is a challenging task, in which the scattering and
absorption of the incident light wave by particles lead to the distortion of the originally ordered
wavefront phase and the attenuation of the amplitude of the light wave. According to the scattering
degree of light in the scattering medium, it can be divided into the ballistic regime, the increasing
photon scattering and random walk [1]. As the scattering distance and the concentration of
the scattering medium increase, the imaging quality in the scattering medium decays sharply.
Therefore, suppressing the scattering light is critical for underwater imaging.

Since the scattered light is partially polarized [2,3], polarization imaging has become an effective
way of suppressing scattering to achieve a clear underwater vision [4–12]. The polarization-
difference method is served as a common-mode rejection amplifier, which can suppress the effect
of backscattered light and amplify the signal from the targets whose polarization-difference
magnitude is distinct from the background based on the bionic research by Rowe and Tyo et al.
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[13,14]. Schechner et al. combined the atmospheric imaging scattering model with polarization
and used the backscattering polarization difference between two orthogonal polarization images
to achieve underwater imaging [3]. Li et al. greatly improved the quality of underwater imaging
by combining the physical scattering model of polarization imaging with histogram stretching
[15]. In addition, Alfalou et al. combined polarization with low-pass filtering [16] and correlation
technique [17] to achieve polarization-assisted underwater target detection. In general, the
method based on the physical scattering model can be used to retrieve the original intensity image
more effectively. However, most of the methods that combine the physical scattering model of
polarization imaging require the background area to be included in the image to estimate the
backscattered light. For the image without background and whose background region is too
small to accurately estimate the parameters of the backscattered light, these methods will fail. In
addition, these methods usually require manual selection for the background area, which makes
it impossible to realize fully automatic image recovery. Meanwhile, the selection of different
background regions will greatly influence the results of image recovery. These all limit the
practical application of underwater polarization imaging technology. To overcome this problem,
Shwartz et al. performed independent component analysis (ICA) over polarization imaging to
solve the degree of polarization (DoP) of the airlight, then estimated and separated the airlight
[18]. They also proposed the scattering suppression method through similar objects prior and
distance prior [19]. Liang et al. realized image recovery by introducing the orientation-angle
information from Stokes matrix [20]. However, these methods require prior knowledge or four
polarization images.

In this paper, a fully automatic underwater imaging method without background or any prior
is proposed. We improve the underwater imaging model based on degenerating intermediate
variables and achieve a better scattering suppression effect by automatic optimization of
backscattered light intensity information at two orthogonal polarization orientations based
on analyzing the physically feasible region of them. The proposed method does not need to
estimate any intermediate variables. On one hand, the original image information can directly
be utilized to the maximum extent to avoid the inaccurate estimation of intermediate variables.
On the other hand, this method can get rid of the limitation of the image background to realize
the scattering suppression for the image without background and the image from which the
backscattered light information is difficult to be accurately estimated. Meanwhile, it can restrain
the non-uniformity of the image to a certain extent, avoid human-computer interaction, and
require no prior information to achieve automatic image recovery in a scattering medium, which
also solves the large gap of scattering suppression results caused by different selections of
background regions and inconsistent parameter adjustment for diverse scenes in some traditional
methods.

2. Methodology of image recovery without background or any prior

Based on the traditional polarization image recovery model, the total light intensity I(x, y)
received by the detector can be divided into two parts on the premise that the forward scattering
is ignored [17,21]. One part is direct transmission light D(x, y) from the targets, which is usually
called target reflected light. The other part is backscattered light B(x, y) from scattering media,
which is also called background light or veiling light.

I(x, y) = D(x, y) + B(x, y) = L(x, y) · t(x, y) + A∞[1 − t(x, y)] , (1)

where L(x, y) is the object radiance without scattering or absorption along the line of sight, t(x, y)
represents the transmission coefficient of the scattering medium, and A∞ corresponds to the
backscattered light at the infinite distance in the scattering medium according to the physical
scattering model. x and y represent the pixel position of the image.
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Here, we assume that light travels along the z-axis in Cartesian coordinates. The attenuation
coefficient due to absorption and scattering in the scattering medium is distance-dependent which
can be represented as β(x, y, z). The transmission coefficient t(x, y) can be express as

t(x, y) = exp
[︃
−

∫ z′

0
β(x, y, z)dz

]︃
, (2)

where z′ refers to the distance between the object and the detector.
According to the above formulas, the object radiance L(x, y) can be derived as

L(x, y) =
I(x, y) − A∞[1 − t(x, y)]

t(x, y)
. (3)

The attenuation coefficient β(x, y, z) can be simplified to be a constant β when it is position
invariant. At this point, Eq. (2) can be simplified as

t(x, y) = exp[−βz(x, y)]. (4)

By combining Eq. (1), Eq. (4) and the physical meaning of A∞, it can be known that t(x, y) → 0
and B(x, y) → A∞ when z(x, y) → ∞. A∞ is usually replaced by the average of pixel grayscale in
the background region Ω of the image in traditional methods. Therefore, the estimation of the
backscattered light from infinity Â∞ can be calculated by the following equation.

Â∞ =
∑︂
Ω

I(x, y)
/︁

N =
∑︂
Ω

I//(x, y)
/︁

N +
∑︂
Ω

I⊥(x, y)
/︁

N, (5)

where N refers to the number of pixels in the selected background region Ω. The superscripts //
and ⊥ respectively represent the relationship (parallel or perpendicular) between the polarization
state of the polarizer in front of the detector and the linear polarization state of the illumination
source.

Next, the DoP of backscattered light Pscat is estimated. There is not only backscattered light
but also direct transmission light in the target region. Therefore, compared with using the target
region, it is more accurate to use the background region to estimate the DoP of backscattered
light.

Pscat =
B//

Ω
(x, y) − B⊥

Ω
(x, y)

B//

Ω
(x, y) + B⊥

Ω
(x, y)

=
I//
Ω
(x, y) − I⊥

Ω
(x, y)

I//
Ω
(x, y) + I⊥

Ω
(x, y)

(6)

It is assumed that the scattering medium is uniformly distributed and the DoP of backscattered
light does not change with position. In this case, the estimation of the DoP of backscattered light
P̂scat can be calculated by employing Eq. (7).

P̂scat =

∑︁
Ω

I//(x, y) −
∑︁
Ω

I⊥(x, y)∑︁
Ω

I//(x, y) +
∑︁
Ω

I⊥(x, y)
(7)

The transmission coefficient of the background region Ω can be demonstrated as follows
according to Eq. (1) and Eq. (6).

tΩ(x, y) = 1 −
B//

Ω
(x, y) − B⊥

Ω
(x, y)

P̂scatÂ∞

= 1 −
I//
Ω
(x, y) − I⊥

Ω
(x, y)

P̂scatÂ∞

(8)
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The transmission coefficient of the target region Ψ can be described as

tΨ(x, y) = 1 −
B//

Ψ
(x, y) − B⊥

Ψ
(x, y)

P̂scatÂ∞

= 1 −
I//
Ψ
(x, y) − I⊥

Ψ
(x, y) − (D//

Ψ
(x, y) − D⊥

Ψ
(x, y))

P̂scatÂ∞

.

(9)

According to Eq. (8) and Eq. (9), the transmission coefficient of the whole image can degenerate
as Eq. (10) when the direct transmission light is unpolarized or it has a very low DoP relative to
the backscattered light.

t(x, y) = 1 −
I//(x, y) − I⊥(x, y)

P̂scatÂ∞

(10)

We substitute Eq. (5), Eq. (7) and Eq. (10) into Eq. (3) to get the object radiance L(x, y). Here,
∆I means the difference between I// and I⊥, and f represents a functional relationship.

L(x, y) = f (I,∆I, IΩ ,∆IΩ)

=

[︃∑︁
Ω

∆I(x, y) · I −
∑︁
Ω

I(x, y) · ∆I(x, y)
]︃
/N[︃∑︁

Ω

∆I(x, y)/N − ∆I(x, y)
]︃ (11)

It can be apparently seen that there are two important approximate processing procedures about
uniformity in Eq. (5) and Eq. (7). But in fact A∞ and Pscat are spatially non-uniform variables.
In Ref. [22], A∞ and Pscat are calculated by the method of two-dimensional polynomial fitting,
and it is shown that the values of A∞ and Pscat vary considerably even in the background region.
Therefore, the proper estimation of A∞ and Pscat is significant, and meanwhile, it still affects the
estimation of t(x, y). The key point to estimate A∞ and Pscat is the selection of Ω for I//

Ω
(x, y) and

I⊥
Ω
(x, y) in traditional methods. However, on one hand, the background region Ω needs to be

manually selected and cannot be automated for complex scenes. On the other hand, I//(x, y) and
I⊥(x, y) have a corresponding relationship in pixels. Therefore, A∞ and Pscat depend on the same
background region in the polarized images, which severely limits the estimation range of A∞ and
Pscat, and leads to the poor suppressing scattering effect since the optimal Â∞ and P̂scat cannot be
obtained.

In order to solve the problem of non-uniformity of the image, we break the pixel correspondence
between I//(x, y) and I⊥(x, y) to expand the range of A∞ and Pscat so as to get a better image
recovery effect. According to the above ideas, Eq. (11) is transformed into a new function f ′
containing only the original image information (I// and I⊥) by means of variable substitution. It
is further simplified and organized to be Eq. (12), and then the histogram stretching is applied to
maximize the use of the grayscale storage range of the digital image to get the final output.

L(x, y) = f ′(I//, I⊥, IΩ//, IΩ⊥)

=

2
[︃
I⊥(x, y) ·

∑︁
Ω

I//(x, y)/N − I//(x, y)·
∑︁
Ω

I⊥(x, y)/N
]︃

[︃(︃∑︁
Ω

I//(x, y) −
∑︁
Ω

I⊥(x, y)
)︃
/N − (I//(x, y) − I⊥(x, y))

]︃ (12)

In order to reduce the search range, avoid non-physically feasible points, and get a stable
image recovery effect, the physically feasible region of light intensity is determined in the dark
gray region in Fig. 1. The physical meanings of the numerator and denominator for L(x, y)
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before the simplification represents the direct transmission light and the transmission coefficient,
respectively. The signs of the numerator and the denominator are not changed in the whole
simplification process. Therefore, the constraints of the following equation set Eq. (13) need to
be satisfied according to the denominator and the numerator of Eq. (12).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min[I//(x, y)] ≤
∑︁
Ω

I//(x, y)
/︁

N ≤ arg max[I//(x, y)]

arg min[I⊥(x, y)] ≤
∑︁
Ω

I⊥(x, y)
/︁

N ≤ arg max[I⊥(x, y)]∑︁
Ω

I//(x, y)
/︁∑︁
Ω

I⊥(x, y) ≥ arg max[I//(x, y)
/︁

I⊥(x, y)]∑︁
Ω

I//(x, y)
/︁

N −
∑︁
Ω

I⊥(x, y)
/︁

N> arg max[I//(x, y) − I⊥(x, y)]

(13)
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Fig. 1. The physical interpretation of constraints for Eq. (12).

Fig. 1. The physical interpretation of constraints for Eq. (12).

We use
∑︁
Ω

I⊥(x, y)/N and
∑︁
Ω

I//(x, y)/N as the two coordinate axes of the rectangular coordinate

system. The physical interpretation of Eq. (13) is shown in Fig. 1, where k represents the slope
of the straight line.

Therefore, Eq. (12) can be calculated under the premises that Eq. (13) is satisfied and the object
radiance can be obtained by combining the image quality evaluation index under no reference
conditions EME as the final evaluation criterion for scattering suppression [23]. EME is short for
the value of the measure of enhancement, and under the circumstances without reference, EME
can describe image quality accurately in most cases.(︄∑︂

Ω

I//(x, y)/N,
∑︂
Ω

I⊥(x, y)/N

)︄
optimal

= arg max{EME(L(x, y))}

= arg max

{︄|︁|︁|︁|︁|︁ 1
k1k2

k2∑︂
l=1

k1∑︂
k=1

20 log
Lω

max;k,l(x, y)
Lω

min;k,l(x, y) + q

|︁|︁|︁|︁|︁
}︄

,

(14)
where q is a small constant to avoid being divided by zero which equals 0.0001. The object
radiance image is split up into k1 ×k2 blocks with the sequence number of (k, l), while Iωmax;k,l(x, y)
and Iωmin;k,l(x, y) are the maximum and minimum value in the block ω with the sequence number
of (k, l) in the image.
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The proposed method can restrain the non-uniformity of the image to a certain extent. It directly
processes the two original polarization images without estimating intermediate variables such as
A∞, Pscat and t(x, y), which avoids the poor scattering suppression effect caused by inaccurate
estimation of intermediate variables and large difference resulted from different background
selections and inconsistent parameter adjustment for images of diverse scenes in traditional
methods. Meanwhile, our method does not require any prior and is not limited by the image
background or human-computer interaction. It can fully realize automatic underwater image
recovery for the image without background and the image whose background is too small to
estimate the backscattered light information.

3. Real-world experiments and results

We perform the real-world experiments and obtain the polarization images of various scenes at
different concentrations in the turbid water through the experimental setup shown in Fig. 2. The
scattering event is influenced by the wavelength of active illumination. In the same detection
distance, red light experiences fewer scattering events than visible light at other wavelengths.
Meanwhile, the scattering coefficient decreases with the increase of wavelength in the visible
light range. Therefore, in order to achieve a better scattering suppression effect, the light source
we employed in the experiment is a mounted Light-Emitting Diode (THORLABS M625L3)
with a central wavelength of 625 nm. The light emitted by the light source passes through the
polarization state generator (PSG) to produce a beam of horizontal linearly polarized light as the
active illumination of the underwater scene. The imaging device is a 14-bit digital monochrome
CCD camera (AVT Stingray F-033B). The horizontal and vertical linearly polarized images are
obtained by placing a rotatable polarization state analyzer (PSA) in front of the camera. PSG and
PSA are both composed of a linear polarizer. In future practical applications, a division of focal
plane (DoFP) polarization camera can be directly used to obtain two mutually perpendicular
linearly polarized images at the same time to achieve automatic scattering suppression.
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Fig. 2. The schematic of the experimental setup.

Fig. 2. The schematic of the experimental setup.

We employ a transparent polymethyl methacrylate (PMMA) tank filled with different volumes
of water and milk to control the concentration of milk in the water to simulate different scattering
intensities. Milk contains spherical particles such as casein molecules with diameters of 0.04∼0.3
µm and fat globules with diameters of 1∼20 µm. The milk we used in the experiments is
whole milk with protein content of 3.6 g/100mL and fat content of 4.4 g/100mL. The scattering
coefficient of the medium is affected by the milk and solution of microsphere concentrations,
which equals 3.00c in cm−1 for whole milk, where c represents the concentration of milk in
water [24]. The long-term scattering experiment shows that milk can simulate the scattering
characteristics of seawater [17].
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First, the scattering suppression effect of images with backgrounds at different concentrations
in the same scene is analyzed, and the results compared with other methods are performed, which
verify the effectiveness of our proposed method compared to other methods and its adaptability
to different concentrations. Secondly, we extract images without background from images of
various scenes with background by image segmentation method and make comparison with
other methods to verify that our method can automatically realize the image recovery without
background. Finally, we perform image recovery by the proposed method on uncropped standard
target without background (standard resolution plates) in different concentrations of scattering
media to clearly and intuitively prove the advantages of our method in three aspects of fully
automatic, background free and adaptable for dense turbid medium.

Figure 3 shows the comparison results of different methods for the wood board scene with
background under the conditions of low and high concentration scattering media. In order
to maintain the consistency of the experimental results, we did not adjust the experimental
parameters such as exposure time and aperture during each set of experiments. Therefore, in the
case of high concentration, the grayscale value of the intensity image decreases, and the image
darkens due to the enhancement of scattering and absorption. Through comparison, it can be seen
that HSI and CLAHE have a good effect on image enhancement at low concentrations. However,
at high concentrations, due to the insufficient information of the intensity image, the two digital
image processing methods of HSI and CLAHE are limited. In contrast, Schechner’s method
and our method can achieve a relatively stable scattering suppression effect at both low and high
concentrations. In addition, Schechner’s method needs to identify the background and the target
so as to estimate the intermediate parameters through the background. The selection of different
background regions and the uniformity of the background will affect the final result of image
recovery for Schechner’s method. Compared with Schechner’s method, our method can achieve
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Fig. 3. The comparison results and their enlarged views of different methods for the
scene (wood board) with background under the conditions of low and high concentration
scattering media, which respectively are intensity image (original), histogram stretching for
intensity image (HSI), and contrast limited adaptive histogram equalization (CLAHE) [25],
Schechner’s method [3], and our method.

Fig. 3. The comparison results and their enlarged views of different methods for the
scene (wood board) with background under the conditions of low and high concentration
scattering media, which respectively are intensity image (original), histogram stretching for
intensity image (HSI), and contrast limited adaptive histogram equalization (CLAHE) [25],
Schechner’s method [3], and our method.
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fully automatic processing without any human-computer interaction and has a more significant
scattering suppression effect. In order to make the comparison clearer, we locally enlarged the
high-concentration image in Fig. 3. It can be seen that our method has higher contrast than other
methods. It is easier to distinguish the pattern details on the wood board and does not introduce
noise and distortion.

The corresponding histogram of the results for different concentrations and different methods
in Fig. 3 is shown in Fig. 4, and the grayscale distribution curve at the dashed line in the enlarged
view of Fig. 3 is plotted. It can be seen that in the case of high concentration, the distribution
of the grayscale histogram of the intensity image is relatively uniform, and therefore, the effect
of HSI is not as obvious as that in the case of low concentration. Due to the higher scattering
medium concentration, small ‘tails’ appear on both sides of the histogram of CLAHE, and the
histogram distribution becomes significantly narrowed. In order to appropriately compare the
grayscale distribution at the dashed line in the enlarged view of Fig. 3, we subtract the minimum
grayscale value of each curve without changing their shapes or relative relation so that the lowest
point of the curves can be shifted to the horizontal axis of the coordinate axis. According to
the corresponding images in Fig. 3, it can be known that the large downward spikes in Fig. 4
represent the signals and the small vibrations are the noises of the images. It can be seen from
the grayscale distribution curves in Fig. 4 that our method has the highest signal-to-noise ratio
(SNR). Our method has less noise when the signal intensity is similar, and in the case of similar
noise amplitudes, it has greater signal strength.
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Fig. 4. The histogram of the results for different concentrations and different methods in
Fig. 3 and the grayscale distribution curves at the dashed line in the enlarged views of Fig. 3.

Fig. 4. The histogram of the results for different concentrations and different methods in
Fig. 3 and the grayscale distribution curves at the dashed line in the enlarged views of Fig. 3.

In order to verify that our method can automatically realize scattering suppression of images
without background, we cut the above images to remove their background and directly process
the cropped images. The results are shown in Fig. 5. Longitudinal comparisons to the image with
backgrounds in Fig. 3 show that the effect of scattering suppression of our method for the image
without background is still very significant. As can be seen from Fig. 4, HSI cannot change
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the distribution shape of the overall grayscale value of the intensity image. The grayscale value
of the image after HSI is more widely distributed, so the overall contrast of the image can be
enhanced. Although the target of HSI can be highlighted relative to the intensity image, the
problem of uneven illumination, pupil cutting and high concentration in the image cannot be
solved. Our method breaks the pixel correspondence between I//(x, y) and I⊥(x, y), and expands
the range of A∞ and Pscat. Thus the shadow caused by uneven illumination and pupil cutting
can be eliminated to some extent, and from the results, it can be seen that our method is more
competent for high concentrations. We select three parts in the high concentration image to
enlarge or convert into a 3D view. For a fair comparison, the spans of ordinate are all set to
120. As can be seen from the enlarged 3D view of the letter ‘optic’ in Fig. 5, it cannot be
distinguished in the intensity image without backgrounds. HSI causes the image background
trend to be obvious, and the target can be vaguely distinguished. CLAHE can distinguish the
target, but the contrast is low. However, our method can clearly distinguish the five letters of
‘optic’, and the contrast and SNR are significantly higher than that of CLAHE from the height
and color of the letters in the enlarged 3D view.
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Fig. 5. The comparison results and their enlarged views of different methods for the scene
without background under the conditions of low and high concentration scattering media.

Fig. 5. The comparison results and their enlarged views of different methods for the scene
without background under the conditions of low and high concentration scattering media.

In order to verify the adaptability of our method, we selected a Rubik’s Cube with handwriting
words “Tianjin University” as the target and enlarge parts of the details. The results are shown
in Fig. 6. As can be seen, the backscattered light intensity in the left background part of the
intensity image at different concentrations is significantly different, so it can be used to estimate
the backscattered light parameter in the traditional physical scattering model. However, the
backscattered light cannot be accurately estimated in the image without backgrounds. Therefore,
most of the image recovery methods that need to recognize the background will fail. By comparing
the results at different concentrations and the details of the enlarged view in Fig. 6, it can be
found that our method has an obvious scattering suppression effect and can lead to clear image
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details, and our method has less noise after image recovery. The recovered image by our method
looks more ‘clean’, and the processing effect at low concentration is even close to the visual
effect of the scene in clean water.
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Fig. 6. The comparison results and their enlarged views of different methods for the scene
(Rubik’s Cube) without background under the conditions of low and high concentration
scattering media.

Fig. 6. The comparison results and their enlarged views of different methods for the scene
(Rubik’s Cube) without background under the conditions of low and high concentration
scattering media.

In order to compare the details more clearly and verify the universality of our method, we
image the standard resolution plate without background as the target to prove the superiority
of our method in the three aspects of fully automatic, background free and high concentration
scattering suppression. Different methods at different concentrations and their enlarged views
are shown in Fig. 7. From the enlarged view and 3D view, it can be seen that our method can
clearly see the details in the bottom right corner which is most difficult to be distinguished, and
the grayscale span range of our method is as high as 160, while the grayscale span range of other
methods is only 20 to 60.

To quantify and compare the image quality for different methods in the absence of references,
we calculate various evaluation criteria of image quality for the enlarged view in Fig. 7, including
standard deviation (STD) [15], RMS contrast (RMSC) [3,26,27], contrast gradient (CG) [28],
entropy [29], EME [23], blind-referenceless image spatial quality evaluator (BRISQUE) [30] and
natural image quality evaluator (NIQE) [31]. STD, RMSC and CG describe the fluctuation and
contrast of the image, respectively. Entropy reflects the amount of information contained in an
image. EME describes the severity of changes in local grayscales of an image. BRISQUE and
NIQE are two general evaluation criteria that describe the degree of image distortion based on
the statistical law of the image spatial domain. Higher values of STD, RMSC, CG, entropy and
EME reflect better image quality, while lower values of BRISQUE and NIQUE indicate better
image quality. As can be seen in Table 1, most evaluation criteria demonstrate that our method
has better image quality, which further proves the effectiveness and superiority of the proposed
method.
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Fig. 7. The comparison and amplification results of different methods for the scene (standard
resolution plate) without background under the conditions of low and high concentration
scattering media.

Fig. 7. The comparison and amplification results of different methods for the scene (standard
resolution plate) without background under the conditions of low and high concentration
scattering media.

Table 1. Quantitative comparison for enlarged view in Fig. 7.

Different methods
Evaluation Criteria

STD RMSC CG Entropy EME BRISQUE NIQE

Intensity Image 1.19×10−2 4.11×10−2 5.09×10−6 3.46 0.44 43.64 42.70

HSI 9.03×10−2 1.08×10−1 1.56×10−4 6.36 1.34 32.32a 18.10

CLAHE 4.70×10−2 1.15×10−1 7.73×10−4 5.60 5.09 43.48 42.46

Our 1.63×10−1 2.69×10−1 2.02×10−3 7.27 7.37 36.40 16.39a

aLower values of BRISQUE and NIQE indicate better image quality.

4. Conclusion

In this paper, an automatic underwater image recovery method without background or any prior is
realized. We improve the underwater imaging model based on degenerating intermediate variables
and achieve a better scattering suppression effect by analyzing and optimizing the physically
feasible region of backscattered light intensity information at two orthogonal polarization
orientations. The proposed method can restrain the non-uniformity of the image to a certain
extent and does not need to estimate intermediate variables, which could avoid the impact of
inaccurate estimation of intermediate parameters on image recovery results. Meanwhile, it can
get rid of the limitation of the image background to realize the scattering suppression for the
image without background and the image whose backscattered light parameters can hardly be
accurately estimated for both low and high concentration scattering mediums. This method does
not require human-machine interaction, and it also avoids the problem that traditional methods
need to manually select the background and adjust the parameters which lead to a significant



Research Article Vol. 29, No. 20 / 27 Sep 2021 / Optics Express 31294

variation of the recovered image quality. The real-world experimental results show that our
method has distinct advantages in scattering suppression, detail recovery and noise introduction
in both low and high concentrations of turbid water.

Because of the characteristic of requiring no estimation of the intermediate variables or human-
computer interaction for our method, an interesting perspective is to combine the proposed model
with deep learning methods which have more computational power to enhance the generalization
ability of deep learning scattering suppression imaging when the data set is not enough. We
are expected to see the potential application of the proposed method in the field of scattering
suppression imaging, such as underwater image recovery, image dehazing and medical tissue
imaging.
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