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Perovskite neural trees
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Trees are used by animals, humans and machines to classify information and make decisions.
Natural tree structures displayed by synapses of the brain involves potentiation and
depression capable of branching and is essential for survival and learning. Demonstration of
such features in synthetic matter is challenging due to the need to host a complex energy
landscape capable of learning, memory and electrical interrogation. We report experimental
realization of tree-like conductance states at room temperature in strongly correlated per-
ovskite nickelates by modulating proton distribution under high speed electric pulses. This
demonstration represents physical realization of ultrametric trees, a concept from number
theory applied to the study of spin glasses in physics that inspired early neural network
theory dating almost forty years ago. We apply the tree-like memory features in spiking
neural networks to demonstrate high fidelity object recognition, and in future can open new
directions for neuromorphic computing and artificial intelligence.
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rtificial intelligence (AI) is poised to impact our society in

a myriad of areas ranging from healthcare, synthesis of

chemicals and fuels, to control systems of self-driving
automobiles. Computers with powerful processors and memory
together help usher this impending revolution. For Al to be sus-
tainable, it is imperative to control the memory and thereby the
intelligence and learning ability of autonomous machines. Creat-
ing new types of memory, including synaptic properties, is
therefore a central goal in physical sciences and engineering
research intersecting materials sciences, electronics, neuromorphic
computers, and Al hardware!~11, In animal brains, evolution has
enabled synapses (that are responsible for memory) to reach self-
limiting weights as well as branching to avoid runaway effects and
prevent catastrophic breakdown of neural circuits while still
retaining the ability to learn throughout their lifespan. This
remarkable synaptic weight update mechanism can be simply
summarized as a tree structure. During a sequence of constant
stimulus, the synaptic strength is modulated so that the weight of
the synapse approaches self-limiting characteristics and maintains
stability of the neural circuits!?!3. At the same time, synapses
preserve their capability to respond to a new stimulus!4-16.
Memory can be considered to be organized in a hierarchical way
that can be represented in a tree structure!”!8. Early neural net-
work theories therefore incorporated tree-like states in their
models to understand and emulate memory!8-23. Low tempera-
ture magnetic states found in spin glasses such as CuMn arising
from heating—cooling cycles in the 1-20 K temperature range have
provided an experimental context?»2>. Exploring the vast poten-
tial of tree-like states in several areas of neuromorphic computing
continues to be an intensively studied topic in neural network
theory26:27,

Here, we show that tree-like structures can be experimentally
realized at room temperature in strongly correlated rare-earth
perovskite nickelates (ReNiOj;, where Re is a rare-earth ion), a class
of quantum materials whose electrical properties are largely
dominated by the strong interactions among electrons in them?28-30,
For example, in NdNiO; and SmNiOs, prior studies have shown
that hydrogen doping results in several orders of magnitude change
in electrical resistance via modifying electron occupancy of the Ni
orbitals31*2. When hydrogen molecules are split by a catalytic
electrode into hydrogen atoms and doped into the rare-earth per-
ovskite nickelate lattice, the electron from the hydrogen atom is
injected to the Ni e, orbital, while the proton resides in interstitial
sites. The electron injection changes the filling state of the Ni d band
and opens up a large transport gap due to a Mott transition.
Synaptic potentiation and depression studies have been reported
with nickelates in the millisecond timescales with this strategy>2.
Proton migration-driven organic systems have also been reported as
artificial synapses suggesting their broad relevance in emerging
memory devices33.

Results

Conceptual description of the neural tree. We demonstrate that
electric pulses, as fast as tens of nano seconds, are effective in
perturbing the proton distribution in the nickelate lattice and can
tune its resistivity in a systematic fashion enabling ultrametric
tree-like conductance states, as schematically shown in Fig. 1a. By
applying electric pulses in consecutive and reversible manner, a
tree structure of memory states can be generated as a function of
number of pulses, as schematically shown in Fig. 1b. The weight
control factors are computed from the tree structure after we
apply an input, as shown in Fig. lc. The tree-structured algo-
rithmic weight changes as a function of time steps are then used
for simulation in a spiking neural network (SNN) as synapses
between the input layer and the excitatory layer to demonstrate

proof-of-concept application in learning using MNIST digits, a
widely used database by the neuromorphic engineering commu-
nity (see Methods section and Supplement Note 1 for details). A
typical learning evolution process with such SNN for handwritten
digit recognition is shown in Fig. 1d.

Experimental ultrametric memory trees. The experimentally
measured electrical properties of the hydrogen-doped nickelate
devices and their tree-like synaptic behaviors are summarized in
Fig. 2. Positive voltage sweeps were first applied, and gradual
decrease of device resistance was observed, while the resistance
increased when negative sweeps were applied (see Supplementary
Fig. 3). The response to electrical pulses of different pulse field
and pulse width are shown in Fig. 2a. The increase in resistance
was found to be proportional to both magnitude of the pulse field
and pulse width consistent with the expectation for proton
migration under a driving force. The memory state is non-volatile
as shown in Supplementary Fig. 4. As expected, no response was
observed if identical electrical pulses (or even stronger pulses)
were applied to control samples of undoped pristine nickelate
devices, see Supplementary Fig. 5. By solving a set of electro-
thermal equations self-consistently (see Methods section for
details), we simulate the proton drift under electrical pulses. Since
the resistance of the nickelate device is exponentially related to
the local proton concentration®4, a positive electric pulse will
dilute the proton concentration near the Pd electrode and thus
decrease the device resistance and vice versa. The simulated total
device resistance under different pulse fields and pulse widths is
plotted in Fig. 2b, ¢, which is consistent with the experimentally
measured data.

We then demonstrate the weight modulation of the nickelate
device by applying consecutive electric pulses (Fig. 2d). The
resistance of the nickelate device can be modulated by an electric
pulse of magnitude as low as 0.02 V/nm, 60-ns duration (black
curve), and the device resistance increases under consecutive
constant inputs. During this process, a weight control mechanism
was observed that inherently decreases the slope of synaptic
strength change with increasing number of pulses. Applying a
larger stimulus, however, can reactivate the updating process and
generate a distinct resistance branch, e.g., see the red curve in
Fig. 2d and Supplementary Fig. 6 for details in generating a new
branch. This trend is akin to synaptic strength updates in animal
brains, which maintains the stability of the neural circuits to
avoid hyper-activity!>!13. Controlled synaptic weight updating
mechanism was observed for multiple pulse widths, as shown in
Supplementary Fig. 7 and is an inherent feature of our proton
migration-driven devices. Natural synapses also preserve the
ability to respond to larger stimulus'4-16. Similarly here, new
branches can be generated by further increasing the pulse width
(blue and green curve in Fig. 2d) or the pulse field (see Fig. 2e). By
applying positive or negative electrical pulses, a tree structure
with different memory states can be generated, as shown in Fig. 2f
and Supplementary Fig. 8 for more sophisticated neural tree
structures. A unique combination of atomic-level control over
proton migration in nickelates under high speed e-fields coupled
with their ultra-sensitivity to Ni-site orbital occupancy is
responsible for generation of the tree-like memory. Our
experimentally measured trees can be classified according to
number theory as ultrametric (see Supplement Note 2 for a
mathematical description) and represent physical realization of a
mathematical concept considered critical for solving a myriad of
problems in neural computing26.

Application of the tree-like conductance in spiking neural
networks. As proof of principle, we utilize the tree-like synaptic
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Fig. 1 Perovskite neural trees and their use in neuromorphic learning. a Schematic figure of the perovskite nickelate NdNiO3 device with Pd as top
electrode and fluorine-doped tin oxide (FTO) as bottom electrode. The top electrode serves also to catalytically dope hydrogen into the near-surface region
of the perovskite. Applying electric field pulses can move the protons in the lattice which also changes the local Ni valence state and electron-electron
correlation, thus modulating the device resistance in a systematic manner. b Schematic of the tree structure showing synaptic strength (resistance) as
function of number of stimulus (electric pulses). The electrical resistance of the perovskite devices can be modulated with consecutive electric pulses. The
snapshots schematically show the movement of protons in the lattice, which leads to different resistivity values. ¢ Architecture of spiking neural network
for handwritten digit recognition. Each input image pixel is assigned to one input neuron. Input layer generates Poisson’s distributed spike train depending
on the pixel intensity values, which potentiates the membrane potential (Vem) of excitatory layer neuron. These spikes are propagated from input to
excitatory layer through synapses which learns using spike time dependent plasticity (STDP) learning rule. Once membrane potential reaches a threshold
(Vinresh), the neuron generates a spike and synapse weights are updated. The tree structure graph represents how synaptic weight changes with input
strength. Different curves correspond to different constant inputs. d Evolution of digit learning using the tree-like synapses. Step (1) shows the synapse
weights at initial stages of learning, (I1) and (III) show weights after learning from 10,000 and 30,000 training images, and (IV) is the final learned weights

after training on 60,000 images.

behavior of nickelates into spiking neural networks using spike
time dependent plasticity (STDP) as an unsupervised learning
rule. We track the spiking activity of neurons by maintaining
spike trace of pre-synaptic neuron (xp.). The trace value is
updated by 1 whenever the neuron spikes and decays exponen-
tially along the time steps. As shown in Eq. (1), depending on the
threshold trace value (x,.), we determine whether we potentiate
or depress the synapse strength (weight). If (xpre — Xiar) is positive,
Aw is positive hence potentiation occurs and when (xpre - Xear) is
negative, Aw is negative hence depression of synaptic strength
(weight).

Xtar) (Omax—) (1)

Wmayx is the maximum weight the synapse can attain, w is the
current weight of the synapse and y controls the rate of change.
Figure 2g represents algorithmic weight change curve which
mimics the experimental tree structure of the nickelate device.
Each curve shows weight change as an input that is applied over
time (different colors represent different input magnitude). 400,

Aw = I](xpre -

1000, and 6400 neurons were trained and tested (see Fig. 2h). The
network achieves accuracy of 82.9%, 86.5%, and 87.4% for the
network with 400, 1000, and 6400 neurons for y =3 that most
closely fits the controlled weight updating mechanism of our
nickelate devices, see Supplementary Fig. 9. The digit recognition
accuracy is robust to changes in gy and only changes within an
average margin of £0.5%. Hence the performance of the network
is robust to small variations in g that could arise from any fab-
rication process variations. Figure 2i shows synapse strength
(weight) evolution during learning for y = 3 of a device abstracted
to the algorithm. The graph shows synaptic weights of nine
neurons. Each excitatory neuron is fully connected to input layer
neurons; therefore, the learned synaptic weights imitates the digit
learned by that neuron for instance, 1st neuron has learned a
particular variation of digit 1, 2nd neuron has learned digit 9, 3rd
and 4th has learned 6.

Microscopic origins of tree-like memory states. To understand
the microscopic origins of tree-like memory in the hydrogen-doped
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Fig. 2 Experimental data of electrical behavior and simulation in neural networks. a Change in electrical resistance of the nickelate device after voltage
pulses were applied with different pulse field and pulse width. The change in resistance is proportional to both the pulse field and pulse width. b, € Modeling
and experimental results of the change in resistance after application of various voltage pulses, b 200 ns pulse, and ¢ 400 ns pulse widths. d, e The
electrical response of the nickelate device to consecutive electrical pulses. The different colors in (d) represent different pulse widths, while the different
colors in (e) represent different pulse field. The structure was generated following the method shown in Supplementary Fig. 6. f By applying consecutive
positive or negative pulses, tree structure comprising different resistance states can be generated, with characteristics similar to synaptic behavior in the
central nervous system!214-16, The same colored data points correspond to a fixed input that is applied to the device. g Algorithmic weight change as a
function of learning time steps. The synaptic weight update mechanism has a tree structure that is inherently possessed by the nickelate devices (for y =
3). h Object recognition testing accuracy of a spiking neural network on Modified National Institute of Standards and Technology database (MNIST)
dataset when trained with different u values on 400, 1000, and 6400 excitatory neurons. Testing accuracy change of about +0.5% is observed, which does
not significantly hamper the network’s digit recognition performance, hence the network is sufficiently immune to variations in u. i Weight evolution of nine
neurons when the spiking neural network is trained using spike time dependent plasticity (STDP) learning rule. The learning evolves such that the weights
associated with each neuron approximates one of the variations of the digit learned by that neuron since each neuron in excitatory layer is connected to all
neurons of the input layer.
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nickelates, we performed in operando X-ray studies of a repre-
sentative in-plane nickelate device. For this experiment, a perovskite
nickelate SmNiOj; in-plane device is catalytically doped with pro-
tons using a Pd electrode on top of the film through annealing in
forming gas. We then apply electrical stimuli to the nickelate device
and track the changes in the electronic structure by measuring X-
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ray absorption spectra (XAS) maps, and a schematic of the setup is
shown in Fig. 3a. The incident X-ray beam focused by a Fresnel
zone plate to ~30 nm is used to perform the raster scan of the
device between the electrodes with steps of 200 nm. The XAS at K-
edge of Ni (E ~ 8347 V) collected at different positions between the
Pd and Au electrodes are shown in Fig. 3b. The Ni K-edge position
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Fig. 3 Microscopic mechanism leading to the tree-like synaptic memory. a Scheme of the nanoprobe X-ray absorption imaging experiment. The incoming
X-ray beam is focused by the Fresnel zone plate, and diffraction orders are filtered out by the order-sorting aperture (OSA). The fluorescence signal at the
K-edge of Ni from the 30-nm spot illuminated by the X-rays is recorded by the detector positioned perpendicular to the beam. A scanning electron
microscope (SEM) image of the nickelate device is shown at the bottom. The red rectangle shows the scanned area of the X-ray absorption imaging.
b Changes in the XAS spectrum at Ni K-edge as the probe is rastered across the device channel. The spectra were measured at different positions between
the electrodes and averaged along the electrode edge, starting from the Pd electrode (the lowest spectrum) to the Au electrode (the upper spectrum). The
distance between two successive spectra is Ay = 200 nm. The dashed line is shown for better visualization of the peak shift. From the Au electrode to the
Pd electrode, the Ni K-edge peak shifts to lower energy, indicating the change in Ni valence and proton doping near the Pd electrode. ¢ The fitted energy
value of the Ni K-edge peak plotted as function of sample position. The fitting error is ~0.15 eV which was calculated by using different fitting procedures
and evaluating the distribution of the obtained values of E.... d, e, f Changes in Ni K-edge fluorescence intensity of the hydrogenated nickelate device after
electrical stimuli. The color corresponds to the intensity of the normalized fluorescence signal at the fixed energy of E = 8345 eV (where the slope of the
XAS curve is highest and thus most sensitive to the energy shift) and therefore characterizes the hydrogen doping of the channel. Dashed lines denote
the positions of the Au and Pd electrodes. The map of the initial sample is shown in panel (d), the map after applying several 2 mV pulses of 5 -s duration
time is shown in (e), and after several 1 V pulses of 100- ns duration in (f). g Atomic-scale pathway, and the associated energy barriers for various applied
e-fields for surface proton doping into the nickelate lattice. The potential energy along the most preferred migration pathway (as obtained from nudged-
elastic band (NEB) DFT calculations) is shown on the left, while selected configurations along this pathway labeled ;-5 are depicted on the right. A barrier
of 0.9 eV was obtained for this depicted proton intercalation pathway with no field. Electric fields reduce the barrier—a 50% reduction in barrier is seen for
an applied e-field of 0.055 V/nm. Two different pathways for proton diffusion in the bulk are shown. Panel (h) represents a lower (preferred) pathway,
whereas (i) represents a high energy barrier for bulk diffusion in the presence of the e-field. For all the depicted configurations, only two NiOg octahedra

are shown for clarity; the Ni, O, and H ions are represented by gray, red, and green spheres, respectively.

proximal to the Au electrode is similar to previous reports on
SmNi033%39, and the shift of the Ni K-edge energy by ~0.6 €V is
clearly visible on the XAS spectra measured next to Pd as compared
with the regions away from the electrode (see Fig. 3c). This shift can
be attributed to the formal decrease of the Ni valence by a small
amount & due to the additional electrons introduced by hydrogen
doping®738, which agrees with the calibration experiment per-
formed on a 10mm x 10 mm nickelate film (Supplementary
Fig. 10). The decrease of the Ni-ion valence is noticeable directly
underneath the Pd electrode and it spans up to a distance of several
hundred nanometers away from the electrode determined by
hydrogen diffusion during doping.

To reveal the spatial distribution of the hydrogen-doped areas,
we fixed the energy of incoming X-ray photons at E=8345¢V,
which corresponds to the maximum of the Ni absorption
spectrum derivative and where the shift of the absorption edge is
most visible. In this case, the areas of the nickelate device doped
by hydrogen are distinguishable by a more intense fluorescence
signal due to the shift of the Ni K-edge toward lower energies.
The normalized fluorescence map of the as-hydrogenated device
is shown in Fig. 3d. The yellow areas next to the Pd electrode
indicate the regions with a reduced valence of Ni, while the
purple areas farther away from the Pd electrode correspond to
the unchanged electronic structure of pristine SmNiO;, see
Supplementary Fig. 11 for the calibration of electrode position.
To check whether the electric pulses lead to the changes in the
nickelate electronic structure, we tested two different types of
electrical stimuli and collected similar fluorescence maps. First,
we applied several long-duration pulses (5s) with 2mV
magnitude. The fluorescence map after this type of stimulus
(Fig. 3e) reveals only little changes compared with the initial state
of the device. Subsequently, shorter 100-ns pulses of 1V
magnitude were applied to the device, which caused significant
changes in the fluorescence map (Fig. 3f). The non-uniform
distribution of the fluorescence intensity with typical length scale
of 1 pum appears next to the Pd electrode—the region initially
doped with hydrogen. Although it is extremely challenging to
detect protons directly in nanoscale regions in a solid matrix, the
electronic structure spatial maps presented here demonstrates
that voltage pulses can cause migration of protons in the
nickelate device from tracking the reconfiguration of Ni charge
states.

The effect of electric field on activation barrier associated with
proton migration was derived using nudged-elastic band (NEB)
calculations based on density functional theory (DFT) with
Hubbard corrections. The H diffusion pathways (left panel) and
associated barriers (right panel) are shown in Fig. 3g-i. Figure 3g
shows the e-field effect on surface insertion of proton into the
SmNiOj; (110) lattice. Proton labeled as H is initially attached to
the surface oxygen Ol (image I;) that is shared by two NiOg
octahedra centered at nickel atoms Nil and Ni2. The distance
between Ol and the two nickel ions (Nil and Ni2) are 1.99 and
2.15A, respectively. The proton H rotates enters into the
subsurface layer of SmNiO; via rotation of O1-H bond (refer
to image 1), causing the O2-H separation to reduce from 3.72 to
2.12 A. Further rotation (of O1-H) and consequent displacement
of H toward O2 eventually results in the formation of O2-H
bond; thereby causing H to hop from surface O1 and subsurface
0O2. The energy barrier associated with this H-hopping pathway is
~0.9 eV with no field. With electric field, this barrier reduces by
22% for E=0.04 V/nm and by 50% for E = 0.055 V/nm.

We investigated the e-field effect on two different bulk
diffusion pathways (see Fig. 3h, i). At first, proton hopping
occurs perpendicular to [110] with the field applied along [110]
direction. Here, the proton (H2) is initially bonded to the oxygen
(0O3) (image I). The oxygen O3 is also shared by two NiOg
octahedra centered at Ni3 and Ni4. O3 is located deep inside
SmNiQO; lattice (i.e., not at surface or subsurface of SmNiO;
lattice). In this diffusion pathway, the proton H2 moves toward
oxygen O4 and creates a bond O4-H2 (image Is); note in Is,
O4-H bond is ~18% longer than typical O-H bonds. Further
motion of H along the pathway brings it closer to O4 with
concomitant reduction of Ni3-0O3-Ni4 bond angle 156° to 146°.
The barrier of this pathway is 0.3 eV in absence of electric field.
For an applied electric field (E=0.055V/nm) normal to the
hopping direction, we observe a lowering in the barrier (by
~80 meV). Next, we choose a bulk diffusion pathway where the
hopping is aligned with the direction of the applied e-field. Here,
the hydrogen H3 is initially connected to oxygen O5 as shown in
image I;. H3 moves into a transition state such that it maintains
approximately equal distance of 1.5A from three different
oxygens O5, 06, and O7 (refer to image Ig). Subsequently, it
moves further upward resulting in a slight rotation of the O6-H3
bond. This pathway is associated with a barrier of 1.7 eV when no
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e-field is applied, which is much higher compared with that for
the aforementioned pathways. Similar to other pathways, e-field
reduces the barrier for this path (by ~130meV). Our NEB
calculations suggest that the application of e-field lowers the
activation barrier for H diffusion in SmNiO; lattice in all
scenarios. However, the extent of barrier-reduction and therefore
the proton migration characteristics are influenced by the
magnitude of the applied field similar to our experiments. In
the main article (Fig. 3g, h, i), we have described effect of electric
field on proton diffusion by calculating the activation barrier
associated with the proton migration. The detailed pathways of
proton migration for Fig. 3g, h, and i are described in
Supplementary Fig. 12.

Discussion

In Supplementary Fig. 13, we demonstrate tree-like synaptic
states measured from nickelate devices fabricated on silicon
substrate to illustrate proof-of-concept compatibility with exist-
ing semiconductor platforms. In-plane nickelate devices with
100 nm gap size were also fabricated and studied to examine
scalability, as shown in Supplementary Fig. 14. The modulation
of the nickelate resistivity is found to be reproducible which
enables tracing resistance paths to create multiple branches upon
application of voltage pulses. We can also estimate the energy
consumption during weight update by Energy = V?t/R, where V
is the pulse voltage, ¢ is the pulse width and R is the device
resistance. The energy cost is ~2.7x 10~!1]/pulse which is
comparable to other types of oxide resistive switching devices
reported in literature3-41,

In conclusion, we have demonstrated ultrametric tree-like
memory states in hydrogen-doped perovskite nickelates con-
trolled by pulsed electric fields at room temperature. Controlled
ion migration that can synergistically mediate highly tunable
electronic structures in correlated perovskite crystals enable rea-
lization of a set of properties previously used in description of
spin glasses. The results should motivate new avenues to explore
use of complex synaptic behavior found in correlated semi-
conductors for neuromorphic learning.

Methods

NdNiO; and SmNiO; thin film synthesis. NdNiO; and SmNiO; films (150 and
100 nm calibrated by profilometer, respectively) were deposited with a high
vacuum sputtering system from AJA International, Inc. The NdNiO; films were
grown by sputtering a NdNiO; ceramic target with radio frequency (RF) power at
150 W at room temperature. During deposition, the background pressure was set at
10 mTorr of Ar/O, mixture at 4:1 ratio. The film was then annealed at 500 °C for
24h in ambient atmosphere. For the NdNiOj; film grown on silicon, 100 nm
indium tin oxide (ITO) was first deposited using e-beam evaporation on the silicon
substrate as bottom electrode before the NdNiOj; film was deposited. The SmNiO;
films were grown in the system with co-depositing Sm and Ni targets at room
temperature, with a RF power at 170 W for Sm and a direct current (DC) power at
70 W for Ni. The growth condition was calibrated by energy-dispersive X-ray
spectroscopy to ensure the cation stoichiometry. The growth background pressure
was 5 mTorr of Ar/O, mixture at 4:1 ratio, and then high oxygen pressure
annealing (100 atmosphere) was performed at 500 °C for 24 h in a tube furnace.

Vertical and in-plane device fabrication. For the vertical devices, the annealed
films were first rinsed with Isopropyl alcohol (IPA) and then covered with shadow
mask for the Pd electrode deposition. The Pd electrodes were 150 um in radius and
50-nm thick, which were deposited at room temperature using sputtering under
100 W DC power and 5 mTorr Ar background pressure. Before fabrication of the
in-plane device, the sample was ultrasonic cleaned by toluene, acetone and IPA for
5 min each. To avoid shorting between two terminals, the SmNiO; film was etched
by ion mill, with photo resist SPR-220-3.5 as a mask layer. The photo resist was
removed by acetone and PG-remover at 80 °C. The first lithography (150 nm Au)
was carried out, followed by the e-beam evaporation and lift-off in PG-Remover at
80 °C. To maintain the high resolution of patterns as well as the accuracy of the
small gap distance in between Au and Pd electrodes, e-beam lithography was
utilized. Based on the alignment marks in the pattern, the first aligned e-beam
lithography was able to expose the Au electrodes. After 50 nm Au deposition and
lift-off by acetone at room temperature, the second aligned e-beam lithography

exposed for small Pd electrodes and a 50 nm Pd layer was deposited by e-beam
evaporation. After lift-off as well as cleaning, the left-connection electrodes

(150 nm Pd) was deposited, in the same way as the right-connection electrode
deposition. Finally, wire-bonding pads (5 nm Ti/150 nm Au) were deposited by
photo lithography and e-beam evaporation. The photo resists used in electrode
deposition process were LOR-3A and S1813. The e-beam resists used in e-beam
lithography were 495 PMMA A4 and 950 PMMA A4. The fabrication process of
the vertical device and in-plane device are shown in Extended Fig. 1 and Extended
Fig. 2, respectively. For hydrogen incorporation, Pd electrodes served as catalysts to
split hydrogen molecules. The vertical devices were annealed in 50 SCCM H,/N,
(5%/95%) gas at 300 °C for 5 min, and the in-plane devices were annealed in 50
SCCM H,/N, (5%/95%) gas at 120 °C for 5 min.

Electrical measurements. Electrical measurements of the devices were performed
at room temperature and a Micromanipulator probe station was used to probe the
devices. The probe station was located on a 63-2405X vibration isolation table to
minimize noise due to vibration. A Keithley 4200A-SCS Ultra-fast pulse measure
units (4225-PMU) and remote preamplifier/switch modules (4225-RPM) were
used to provide nano-second pulses and ultra-low noised triax cables were used to
minimize noise during the measurement. The device resistance was obtained by
fitting the voltage—current curve in the linear region (from —0.01 to 0.01 V). The
measurements were controlled through the Clarius program designed by Tek-
tronix. All the electric fields applied are referenced to the Pd electrode.

Simulation methodology for SNN. An open-source spiking neural network
simulator (BRIAN) was used*2. We used the framework provided by Diehl et al. for
MNIST digit recognition application in python3 since the original framework was
in python2%344, Neuron model was updated from a conductance based model
(complete description can be found in the Supplement file) which has direct
control over the potential of neuron when a spike arrives at a post-synaptic neuron
from one or more pre-synaptic neurons. The synapse weight update equation was
modified to a STDP learning rule which only updates weight when a post-synaptic
neuron fires and spiking activity trace of a pre-synaptic neuron is compared against
a pre-synaptic threshold to determine the amount of potentiation or depression of
synaptic weight.

Ab initio molecular dynamics (AIMD) simulations. The first principles calcu-
lations were performed within DFT + U approximation using VASP#° at the level
of generalized gradient approximation using the Perdew-Burke-Ernzenhof
exchange-correlation functional®. We have used projector-augmented pseudopo-
tentials?”, Sm_3 (valence 5 5p2 6s 4f), Ni_pv (valence 3p6 4s 3d), O (valence 2s2
2p4), and H (valence 1s1), and the rotationally invariant form of DFT + U from
ref. 48 with U= 4.6 eV and J= 0.6 eV, where U is the on-site Coulomb parameter
and ] is the on-site exchange parameter. The Brillouin zone was sampled at the I'-
point only and the planewave cutoff energy was set to 540 eV in all calculations.
The energy tolerance stopping criteria were 107> and 10~ for the electronic and
ionic convergence, respectively. For the crystal structure prediction of pure
SmNiOj, we started with the structure collected from Materials Project database®’.
We added a small monoclinic distortion (8 = 90.75) and allowed the cell and ionic
positions to relax until we met the electronic and ionic convergence criterion. The
H SmNiOjs structures were adopted by AIMD simulations from literature®%->!. To
compute the barrier associated with H migration on SmNiO; [110] slab, we used
climbing image nudged-elastic band method. A 35-A-thick vacuum region is
introduced to separate the periodic slabs along the z-direction. Simulations were
performed with and without e-field. The external electric field, with magnitudes up
to 0.055 V/nm, were applied perpendicular to the plane of the HSmNiOj; layer
(along the z-direction of the cell). Spin-polarization was introduced, as well as a
mixing scheme (AMIX = 0.1, BMIX = 0.001) was used in order to facilitate the
convergence of electronic states.

Simulation of proton migration under electric fields. The resistance of the
nickelate devices is modulated by the spatial concentration of hydrogen ions.
Hydrogen donates an electron to the nickel site changing its valence to 2+ and
forming a proton in the interstitial site. The 24 Ni-site is heavily insulating and
thereby localizes charge carriers. The distribution of the protons in the channel
therefore controls the overall resistance. The resistivity of the nickelate device can
be defined as follows*

ey ®

where 7 is the concentration of Ni2™, Po> 1o» and ny are fitting parameters. The
exponential relation between concentration of Ni2+ and resistivity reflects that the
channel resistance is limited by the high proton-concentration region near the
upper electrode. In the case of positive gate voltage, the hydrogen atoms migrate
from the high-concentration region near the upper electrode toward the dilute
regions near the bottom electrode. The peak proton-concentration decreases and
the dilute region concentration increases. Consequently, the resistance of the high-
concentration region decreases and dilute region resistance increases according to
Eq. (2).
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The proton motion induced by the external potential is formulated by the drift-
diffusion equation as follows>2:

on

i —V.n, (3)

where D is the diffusion coefficient, and v is the drift velocity that is defined as>3
_E E

v = awyfe WTsinh <Z:—T>, (4)

where E is the electric field, g is the electron charge, a is the hopping distance, kg is
the Boltzmann’s constant, T is the temperature, wq is the window function, f is the
attempt frequency, and E, is the diffusion barrier. The temperature of the channel
has a strong influence on the drift velocity as descried by the exponential factor in
Eq. (4). The channel temperature could be calculated by solving the boundary value
problem defined by the Fourier equation.

v
—V.ky VT = Q, (5)
th P

2
I % is the
Joule heating term. The ambient temperature is assumed as a boundary condition
at the two electrodes. The window function wy is defined as follows:

wy=1— <(% - 0.5)2+0.75>2P (6)

where L is the length of the channel, and the exponent p defines the steepness of
the window function at the electrodes. The window function emulates the non-
linear drift effect at the boundaries of the channel. Finally, the electric potential and
the electric field are calculated by solving the current continuity equation

where ky, is the thermal conductivity, and ¥ is the electric potential

v%w:o. )

The parameters used in the simulation are f=0.7815x 1012571, a=
0.43478 nm, E, = 0.26 eV, kg,= 3 Wm~1 K—1,54 py = 8.9578 x 104 Q. cm, ny = 0.73,
nq=0.12, and p = 3.

In situ nanoprobe X-ray absorption spectroscopy measurements (Brookhaven
National Laboratory, Argonne National Laboratory). In operando X-ray studies
of the in-plane nickelate device at the 3-ID Hard X-ray Nanoprobe (HXN)
Beamline of the National Synchrotron Light Source II and the 26-ID Hard X-ray
Nanoprobe Beamline of the Advanced Photon Source>>->7. The device for the X-
ray experiment consisted of 100-nm-thick SmNiO; film on (111)-oriented LaAlO;
substrate. On top of the film we deposited two rectangular 5-pum-wide electrodes of
Au and Pd with the 2 pum gap between them to dope the film with hydrogen and
apply electrical pulses. The XAS spectra were collected with 0.5 eV resolution near
the Ni K-edge. At each energy, the device was scanned by the focused X-ray beam
with 200 nm step in the area 4 x 7 um? (vert. x hor.) around the gap. The footprint
of the X-ray beam on the sample was ~30 nm x 170 nm (vert. X hor.). The fluor-
escence signal from Au and Pd electrodes was used to align the device before each
scan. The position of the Ni K-edge absorption peak E,. Was determined by
fitting the experimental data at E = 8340-8350 eV with a sum of the Gaussian and
linear functions. Each XAS spectra used to reconstruct the maps was initially
normalized to its maximum value in order to exclude the possible effects of the film
thickness on intensity of the fluorescence signal.

X-ray absorption spectroscopy measurements (Argonne National Labora-
tory). Additional XAS measurements were carried out at the station 33-ID-D at
Advanced Photon Source. The sample was mounted at the center of a 6-circle
diffractometer with a PilatusII-100K detector collecting the scattered X-ray
intensity and a Vortex detector collecting the fluorescence signal simultaneously.
X-ray energy was scanned through Ni K-edge between 8.31 and 8.56 keV. The
incidence-angle of the measurement is around 5.2° with penetration depth of beam
>100 nm. The measurement area is around 0.5 mm x 0.5 mm. All spectra were
measured at room temperature.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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