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INTRODUCTION: The ability to synthesize
complex organic molecules is essential to the
discovery and manufacture of functional com-
pounds, including small-molecule medicines.
Despite advances in laboratory automation, the
identification and development of synthetic
routes remain a manual process and experi-
mental synthesis platforms must be manually
configured to suit the type of chemistry to be
performed, requiring time and effort invest-
ment from expert chemists. The ideal auto-
mated synthesis platform would be capable
of planning its own synthetic routes and exe-
cuting them under conditions that facilitate
scale-up to production goals. Individual ele-
ments of the chemical development process
(design, route development, experimental con-
figuration, and execution) have been stream-
lined in previous studies, but none has presented
a path toward integration of computer-aided
synthesis planning (CASP), expert refined chem-
ical recipe generation, and robotically executed
chemical synthesis.

RATIONALE:Wedescribe an approach toward
automated, scalable synthesis that combines
techniques in artificial intelligence (AI) for plan-
ning and robotics for execution. Millions of
previously published reactions inform the com-
putational design of synthetic routes; expert-
refined chemical recipe files (CRFs) are run
on a robotic flow chemistry platform for scal-
able, reproducible synthesis. This develop-
ment strategy augments a chemist’s ability to
approach target-oriented flow synthesis while
substantially reducing the necessary informa-
tion gathering and manual effort.

RESULTS:We developed an open source soft-
ware suite for CASP trained on millions of re-
actions from the Reaxys database and the
U.S. Patent and Trademark Office. The soft-
ware was designed to generalize known chem-
ical reactions to new substrates by learning
to apply retrosynthetic transformations, to
identify suitable reaction conditions, and to
evaluate whether reactions are likely to be

successful when attempted experimental-
ly. Suggested routes partially populate CRFs,
which require additional details from chemist
users to define residence times, stoichiome-
tries, and concentrations that are compatible
with continuous flow. To execute these syn-
theses, a robotic arm assembles modular pro-
cess units (reactors and separators) into a
continuous flow path according to the desired
process configuration defined in the CRF.
The robot also connects reagent lines and
computer-controlled pumps to reactor inlets

through a fluidic switch-
board. When that is com-
pleted, the system primes
the lines and starts the
synthesis. After a speci-
fied synthesis time, the
system flushes the lines

with a cleaning solvent, and the robotic arm
disconnects reagent lines and removes pro-
cess modules to their appropriate storage
locations.
This paradigm of flow chemistry develop-

ment was demonstrated for a suite of 15 med-
icinally relevant small molecules. In order of
increasing complexity, we investigated the syn-
thesis of aspirin and secnidazole run back to
back; lidocaine and diazepam run back to back
to use a common feedstock; (S)-warfarin and
safinamide to demonstrate the planning pro-
gram’s stereochemical awareness; and two
compound libraries: a family of five ACE in-
hibitors including quinapril and a family of
four nonsteroidal anti-inflammatory drugs in-
cluding celecoxib. These targets required a total
of eight particular retrosynthetic routes and
nine specific process configurations.

CONCLUSION: The software and platform
herein represent a milestone on the path
toward fully autonomous chemical synthesis,

where routes still require human
input and process development.
Over time, the results generated
by this and similar automated ex-
perimental platforms may reduce
our reliance on historical reaction
data, particularly in combination
with smaller-scale flow-screening
platforms. Increased availability
of reaction data will further en-
able robotically realized syntheses
based on AI recommendations,
relieving expert chemists of man-
ual tasks so that they may focus
on new ideas.▪

RESEARCH

Coley et al., Science 365, 557 (2019) 9 August 2019 1 of 1

The list of author affiliations is available in
the full article online.
*These authors contributed equally to this work.
†Corresponding author. Email: tfj@mit.edu
(T.F.J.); kfjensen@mit.edu (K.F.J.)
Cite this article as C. W. Coley et al.,
Science 365, eaax1566 (2019).
DOI: 10.1126/science.aax1566

Route selection
• Retrosynthetic planning
• Condition recommendation
• Pathway evaluation

Target compound

Synthetic route

Published
reactions

Commercially
available

compounds

Process development
• Specification of residence
 times, concentrations
• Module selection

Reaction execution
• Recipe-driven synthesis
• Robotic reconfiguration
• Process monitoring

H
N

O
F

NH2

O

A

reductant, base
F C

D
E AB

Planning and execution. A robotically reconfigurable flow chemistry platform performs multistep chemical
syntheses planned in part by AI.
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The synthesis of complex organic molecules requires several stages, from ideation
to execution, that require time and effort investment from expert chemists. Here,
we report a step toward a paradigm of chemical synthesis that relieves chemists from
routine tasks, combining artificial intelligence–driven synthesis planning and a
robotically controlled experimental platform. Synthetic routes are proposed through
generalization of millions of published chemical reactions and validated in silico
to maximize their likelihood of success. Additional implementation details are
determined by expert chemists and recorded in reusable recipe files, which are
executed by a modular continuous-flow platform that is automatically reconfigured
by a robotic arm to set up the required unit operations and carry out the reaction.
This strategy for computer-augmented chemical synthesis is demonstrated for
15 drug or drug-like substances.

T
he ability to synthesize organic compounds
on demand has the potential to transform
molecular discovery tasks. Such compounds
with typical molecular weights of 50 to
750 g/mol play a central role in a range of

disciplines, including specialty polymers, organic
photovoltaics, energetics, and medicines. Synthe-
sis is often a bottleneck in small-molecule drug
discovery (1), where design–synthesize–test iter-
ations have cycle times on the order of weeks and
where the scope of a compound library synthe-
sis can determine the accuracy of an empirical
structure–activity relationshipmodel (2). Materials
discovery researchers face similar limitations aris-
ing from their inability to synthesize diverse com-
pounds, e.g., candidate organic photovoltaics, and
to do so rapidly (3).

Many chemists and chemical engineers are
pursuing the promise of a machine capable of
synthesizing large numbers of molecules with
little to no human intervention (4, 5). Although
major advances in laboratory automation have
decreased the manual effort required to perform
some classes of chemical reactions (6–8), the iden-
tification and development of synthetic routes to
novel molecules remain a largely manual process
requiring a time investment from expert chem-
ists. Moreover, current automated synthesis plat-
forms must first be configured to accommodate
the necessary sequence of unit operations or be
constrained to a subset of otherwise-accessible
chemical space. The scope of chemical reactions
compatible with current automated platforms
tends to be limited by reaction type (9), solvent and
temperature (10), or concentration and time (11).
The ideal automated synthesis platformwould

be compatible with reaction conditions that can
be directly translated from small-scale process
development to gram or kilogram manufactur-
ing. Continuous-processing approaches, e.g., syn-
thesis in plug-flow reactors or continuous stirred
tank reactors, can offer such scalability and are
widely recognized as an enabling technology in
many respects, including for process quality im-
provement (12). The smaller length scales rela-
tive to batch synthesis enhance heat and mass
transfer and are amenable to more precise quan-
tification of the rates thereof before scale-up (13).
Moreover, flow platforms offer smaller footprints
compared with their batch counterparts and pro-

vide access to accelerated reaction rates through
process intensification (14, 15). Numerous multi-
step syntheses have been successfully implemented
in flow and offer substantial reductions in total
reaction time (14, 16–18).
The chemical development process for small

molecules can be divided into a number of dis-
tinct stages, including design (literature search,
retrosynthesis, condition selection, feasibility
estimation), route development (recipe formu-
lation), experimental configuration (platform re-
configuration), and execution (process execution,
scalable synthesis) (Fig. 1A). Previous studies
have sought to automate individual aspects of
this process but have not presented a path to full
automation. Retrosynthesis can be streamlined
using Chematica’s expert-encoded reaction rules
(19, 20) or Segler et al.’s algorithmically extracted
rules and learned search strategy (21), but the
former approach is difficult to scale with the
growing body of chemical literature and neither
explicitly proposes reaction conditions or eval-
uates feasibility of the forward reaction. Auto-
mated chemical synthesis using a predefined
instruction set is well proven (6, 8), but has been
restricted to batch and thus does not offer a clear
path to scaled-up synthesis. Whereas flow chem-
istry platforms have been developed for automated
screening, optimization, andproduction (5, 7,22–24),
they require manual reconfiguration to the exact
flow path required for each process.
Our approach toward automated, scalable syn-

thesis combines techniques in artificial intelli-
gence (AI) for planning and robotics for execution.
Specifically,wedescribe aplatform that candesign
synthetic routes by generalizing millions of previ-
ously published reactions (Fig. 1B), including par-
tial specification of reaction conditions and process
variables, and then execute human-refined chem-
ical recipe files (CRFs) using a robotically re-
configurable flow chemistry platform (Fig. 1C).
Adjustments to the AI-proposed synthetic route
required for compatibility with continuous flow
are recorded in these reusable recipes for scalable,
reproducible synthesis.
This development strategy augments a chemist’s

ability to approach target-oriented flow synthesis
while substantially reducing the necessary infor-
mation gathering and manual effort. We illus-
trate this paradigm of chemical development
by predicting and automating the synthesis of
15 drug or drug-like molecules.
In this workflow, we rely on expert input from

chemistusers,minimally including residence times,
equivalence ratios, and concentrations, to translate
recommendations into practice. In particular, anti-
cipating compatibility with flow necessitates solu-
bility predictions at a level of accuracy currently
achievable only empirically; identifying opportu-
nities for telescoped reaction sequences andplace-
ment of interstage separations requires quantitative
prediction of reaction outcomes and of reagent
compatibility. More practically, data describing
concentrations, equivalence ratios, and orders of
addition are not tabulated in any available reaction
databases, precluding data-driven approaches to
full process specification, flow or otherwise. In the
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“Outlook” section, we define challenges that will
have to be overcome to automatically generate
recipes.

Synthesis-planning module

Computer-aided synthesis planning (CASP) origi-
nated as a tool to help chemists identify pathways
before executing them in the laboratory (25, 26).
Reaction databases (e.g., Reaxys, SciFinder) have
streamlined the process of searching for known
compounds to find known syntheses and are
now routinely used. However, programs that gen-
eralize synthesis planning to novel compounds
have not achieved widespread adoption, perhaps
an indication of their as-yet limited capabilities
and costs.
There has been little explicit verification of

computer-suggested synthesis plans; one excep-
tion is a recent demonstration using the program
Chematica to discover new routes based on expert-
encoded transformation rules (19). A renewed in-
terest in CASPbrought about by recent advances in
data science and machine learning has led to sev-
eral recent studies (27, 28–30), including Segler
et al.’s application of a Monte Carlo tree search
to expedite the recommendation process (21).
This section describes the development of our

synthesis-planning program (Fig. 1B). It integrates
our previous efforts to generalize known chemis-
try to new substrates by learning to apply retro-
synthetic transformations, to identify suitable
reaction conditions, and to evaluate whether re-
actions are likely to be successful when attempted
experimentally into a single open source software
framework that we call ASKCOS. This software
was trained directly on millions of reactions ex-

tracted from the U.S. Patent and Trademark
Office (USPTO) (31) or tabulated in Reaxys.
We see CASP as a recommendation problem.

For a specified targetmolecule, the programmust
propose a sequence of chemically viable reaction
steps starting from available chemical reactants.
If the objective were to identify only known syn-
theses for known molecules, then this could be
treated as a graph search problem. To identify new
syntheses, however, candidate reaction stepsmust
be generated on the fly to define the search space.
Reaction templates are subgraph-matching

rules that can be algorithmically extracted from
literature-precedent reactions and applied to
new substrates to recognize structural motifs that
lend themselves to retrosynthetic disconnection.
From 12.5million published single-step reactions
tabulated in the Reaxys database, we prepared a
library of all rules observed ≥10 times and all
rules with specified stereochemistry observed ≥5
times, totaling 163,723 rules. Transformations with
stereochemistry are inherently more specific and
are expected to appear less frequently yet are
essential to include to allow the program to pre-
dict syntheses of chiral molecules. The program
uses RDKit and RDChiral to apply transforma-
tions and enforce consistency in handling stereo-
chemistry (32, 33).
We trained a feedforward neural network

model to predict which of the 163,723 transform
rules are most applicable to a target molecule
based on its molecular structure [ECFP4 (34)]
(28). Applying only the templates perceived to
be most relevant serves two roles: (i) reducing
computational cost of exhaustive template sub-
graphmatching and (ii) increasing the likelihood

of proposing a chemically feasible reaction. We
have focused much of our effort on this latter
point: ensuring that reaction suggestions are
not false-positives (i.e., recommendations that
would not work in the laboratory). This is es-
sential for maximizing the probability of exper-
imental success.
Two modules assess the quality of a single

retrosynthetic suggestion. The first is a binary
classifier meant to remove only the lowest-quality
recommendations based on Segler et al.’s “in-scope
filter” (21). This neural network model is trained
on 15 million published positive reaction exam-
ples and 115 million artificial negative reaction
examples generated by application of algorithmi-
cally extracted forward reaction templates, exactly
following the protocol in (27). The binary classi-
fier is meant to answer the question: Is there any
set of conditions for which these reactants will
form this product? Reactions passing this filter
with a user-tunable threshold are added to the
growing search tree.
Retrosynthetic expansion occurs recursively

for a predetermined amount of time (no longer
than 30 s for all examples described below) or up
to a specified depth before all pathways using
suitable startingmaterials are returned. The pro-
gram uses a root-parallelized Monte Carlo tree
search (specifically, an upper confidence–bound
method) to balance exploitation of branches thought
to be promising and exploration of less frequently
visited branches (35, 36,). Our database of buyable
chemicals consists of roughly 107,000 compounds
available for less than $100/g from eMolecules
and Sigma-Aldrich, though the maximum price is
a user-tunable parameter in each expansion and
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Fig. 1. Overview of the robotically
configurable reaction planning
and execution platform in the
context of the chemical develop-
ment pipeline. (A) Workflow for
on-demand synthesis of a targeted
organic compound and representative
work from Grzybowski (19, 20),
Waller (21), Jensen (27, 37, 39),
Schwaller (44), Godfrey (6), Cronin
(8), Jamison and Jensen (7, 22, 23),
and Ley (24) that have streamlined
parts of this process; thick gray
lines indicate automated steps.
(B) Software modules combining
cheminformatics and machine
learning to design and validate
synthetic pathways. (C) Photograph
of the robotic flow chemistry
platform, projected floorplan of
the 6-foot × 4-foot working table
(gray background), and ventilated
enclosure (green background).
CASP, computer-aided synthesis
planning; ML, machine learning.
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additional stop criteria are available (see section
1.5 in the supplementary text).
Pathways that consist of reaction steps con-

sidered plausible by the binary classifier can be
evaluated by themore rigorous forward predic-
tion model, which explicitly generates product
molecules based on the provided reactants and
reaction conditions (37, 38); the exact model used
is described in detail in (37). Reaction conditions
are provided by a neural network model trained
to propose a prioritized list of reagents, solvents,
catalysts, and temperature most suitable for that
transformation as previously reported (39). If the
likely outcome according to the forward predic-
tor matches the intended outcome, then we can
bemore confident that the reaction is chemically
viable. The forward predictor model also pro-
vides predictions of side products, which assist
in impurity identification during process devel-
opment. Explicit validation of stereoselective re-
actions is not yet possible because of limitations

in three-dimensional molecular representations
and inconsistent data reporting.
Even after these stages of validation and fil-

tering, pathway-level concerns might remain. In
addition to the flow chemistry considerations
stated above, users could also bias pathways
toward those with reaction types frequently
implemented at large scale (e.g., for process ap-
plications), or toward pathways that enable di-
versification of intermediates (e.g., for discovery
applications). Our code framework enables exten-
sion to such considerations. A detailed illustra-
tion of the code output is shown for an example
target in Fig. 2.
The complexity of synthetic routes that we can

plan computationally exceeds what makes sense
to implement in a telescoped flow synthesis. More-
over, the CASP program can predict routes to
targets it has never seen before, such as recently
reported modern active pharmaceutical ingre-
dients (APIs) and de novo molecular optimiza-

tion targets (see section 1.10 in the supplemen-
tary text).

Robotic flow chemistry platform

We considered several concepts for designing a
self-configurable system, based on previous work
on manual plug-and-play unit operations (e.g.,
reactors and separators) for continuous synthe-
sis (22, 40). As a flexible and process-module–
efficient design, we chose to implement a six-axis
robotic manipulator to select process modules
from storage locations, and then arrange the
modules in the sequence required for a particu-
lar synthesis (Fig. 1C and figs. S12 to S14). This
arrangement also enabled straightforward upgrad-
ing of existing process modules as well as the ad-
dition of newmodules, all using a common fluidic
interface. Alternatively, we considered implement-
ing banks of unit operations with two-way valves;
however, this arrangement would have created re-
dundancy and greater complexity of the flow path,
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Fig. 2. Typical outputs provided by the software using safinamide
as an illustrative target. (A) Query format, in which users can
specify compounds by common name, drawing, or SMILES string;
(B) one of many synthetic routes shown to the user, with additional
information about commercial availability and number of precedents
visible on hover; (C) top 10 reaction conditions proposed for the
etherification step; (D) prediction of the major product under the top

recommended conditions, which shows high confidence in the ether
product; (E) link to summary of literature precedents supporting
each reaction template, including the option of exporting a Reaxys
query. Website printouts S1 to S34 in the supplementary materials
contain the exact display format of results. FF, fast filter used for
binary classification of reaction feasibility; DMF, dimethylformamide;
ACN, acetonitrile.
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especially with an integrated capability to add
fluids ( reactants, reagents, or solvents) before
each operation. For instance, equipping this alter-
native design to perform two reactions (with the
option of five different reactor types and sizes),
one separation with three different configura-
tions, and seven different fluids would require
77 valves, each presenting potential failure points
due to leaks and clogging (fig. S11)
In our approach, the robotic manipulator con-

figures the synthesis apparatus by assembling
the required unit operations and reagent lines on
demand. The process stack is robotically loaded
with process modules (e.g., reactor, separator, or
packed bed) and then process bays and connec-
tions arepneumatically clamped, sealing the fluidic
interfaces and forming a continuous flow path.
The reagents are plumbed to the process stack
through a robotically manipulated “switchboard,”
analogous to a telephone switchboard yet with
flexible tubes rather than wires. In this way, we
connect the fluidpumps, outlets, andwaste streams
to each process module as required by the syn-
thetic schemes (Fig. 3B and fig. S28), thus not

requiring complex banks of valves (for demon-
strations, see movies S1 to S3).
The ends of each fluid line are reversibly

coupled to the process modules by the robot using
magnetically preloaded kinematic couplings, and
mechanically controlled actuators seal the flow
path, allowing high-pressure operation [up to
250 pounds per square inch gauge (psig)]. To avoid
tangling, a constant tension is exerted on each
tube using a power-spring–preloaded tubing reel
installed on the reagent tree (Fig. 3B and fig. S16).
For fluid delivery, the system automatically con-
trols a combination of continuous flow piston
pumps. To carry out library syntheses, two pumps
are equipped with selector valves to enable selec-
tion from up to 24 preloaded feedstocks each.
To support a variety of chemical transforma-

tions, we developed a library of process modules,
including laminar flow reactors with different
volumes (100 ml to 3 ml, Fig. 3D), packed bed re-
actors (1 to 2 ml, Fig. 3E) capable of operating at
temperatures from ambient to 200°C and pres-
sure up to 250 psig, and a membrane separator
unit for liquid–liquid extraction (41) (Fig. 3H).

The process units are placed in one of two pro-
cess stacks composed of universal process bays
(UPBs) (Fig. 3I). UPBs provide sealing and align-
ment mechanisms for the fluidic, electrical, and
pneumatic process connections. Fluid connections
needed between adjacent units in the synthesis
are achieved by vertically stacking the units in
the towers in the required order and, when all
units are in place, pneumatically sliding them
together to seal the linear fluid path. The two stacks
were designed to allow up to either an eight-step
linear or a five-step convergent synthesis.
To create versatile, disposable, and chemically

compatible fluidic paths, we developed a blow-
forming process that integrated millifluidic valves
and channels inperfluoroalkoxy alkane (PFA) films
with PFA tubes (Fig. 3F and figs. S22 and S23).
The inset allows up to four process streams to be
connected to each unit. The reactors also have an
optional auxiliary port that can be used in the
packed bed module to introduce a gas or in the
liquid–liquid separator module as a secondary
outlet. To enable elevated temperature and pres-
sure operation, the film reactor is enclosed by an

Coley et al., Science 365, eaax1566 (2019) 9 August 2019 4 of 9

Fig. 3. Process and submodules implemented on robotic flow chemistry platform. (A) Process stack where modules interface with UPBs to form a
continuous flow path (left) and thermal image showing heated reactors (right); (B) front view of the reagent tree and reagent manifold; (C) image of
front view of reactor body; (D) 1.0-ml reactor process module; (E) two-column packed bed reactor process module; (F) disposable PFA reactor insert;
(G) integrated electronics on back side of 1.0-ml reactor; (H) in-line membrane separator; (I) close-up of a UPB holding a 1.0-ml reactor.
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aluminum shell (Fig. 3C). The process modules
each have integrated electronics allowing for
temperature control (Fig. 3G), as well as the ad-
dition of newprocessmodules, without changing
or wiring new components to the central control
system.
Translation of a chemical synthesis onto the

robotic platform occurs through the creation of
a CRF. Each CRF specifies the fluidic path that
must be constructed; the location of stock solu-
tions; the sequence of processmodules thatmust
be moved from storage to the process stack; and
the start-up, steady-state, and shutdown flow
rates. These files are manipulated and optimized
before being run on the automated system based
on input from chemist operators. To run a CRF,
the platform is loaded with the reagents at their
specified locations for synthesis. The user then
presses the process start button for the execution
of the recipe. The program carries out all of the
path planning between the module storage and
process stack, and reagent tree and reagent mani-
fold to assemble the flow path of interest. The
system then follows the CRF to prime, set flow
rates, set pressure and temperature, andwash and
disassemble the process.

Predicting and automating the synthesis
of 15 small molecules

The primary application of this platform is the
on-demand synthesis of target small-molecule
organic compounds. An important class of com-
pounds within this context is APIs, which vary
greatly in structural and synthetic complexity.
We therefore chose a suite of 15 medicinally rel-
evant small molecules, which ultimately required
eight particular retrosynthetic routes and nine
specific process configurations. Although literature
precedents exist for all 15 targets, the synthesis-
planning program is prevented from merely re-
calling any synthetic route frommemory as exact
matches; all pathways are required to be discov-
ered de novo through abstracted transformation
rules and learned patterns of chemical reactivity.
A discussion of software capabilities and exam-
ples of more complex targets can be found in
section 1.10 of the supplementary text. Raw pro-
gram outputs for the examples shown below are
also available in the supplementary materials
(website printouts S1 to S34). CRFs for each
molecule include additional specification of con-
centrations, flow rates, and process stack con-
figurations required to achieve the proposed
transformations. This information could be pre-
dicted in a data-driven manner given a sufficiently
detailed database of precedent reactions, or de-
fined by expert-crafted heuristics, but given the
insufficient information in current databases, it
has been preserved as a manual task in this work.
In order of increasing complexity, we inves-

tigated the synthesis of aspirin (1) and racemic
secnidazole (4) run back to back; lidocaine (7)
and diazepam (12) run back to back to use a
common feedstock; and (S)-warfarin (15) and
safinamide (18) to demonstrate the planning
program’s stereochemical awareness (Fig. 4). We
also include in the supplementary materials a

representative example of bezafibrate as a syn-
thesis that was planned by the software, but after
expert evaluation and screening was found to
be a poor candidate for translation into conti-
nuous flow (see section 2.13.1 in the supplemen-
tary text).
We additionally planned and executed the

synthesis of two compound libraries: one repre-
senting a family of angiotensin-converting-enzyme
(ACE) inhibitors including quinapril (24a), moex-
ipril (24b), enalapril (24c), ramipril (24d), and
indolapril (24e), and one representing a family
of nonsteroidal anti-inflammatory drugs (NSAIDs)
including celecoxib (28aa) and three analogs
(28ab, 28ba, and 28bb) (Fig. 5). The following
sections describe these targets in the context
of the platform capabilities that they illustrate.
Detailed operator instructions, CRFs, photos, in-
frared photos, and schematics of each process
configuration can be found in the supplementary
materials.

Back-to-back synthesis of aspirin
and secnidazole

The platform’s self-reconfigurability makes it
particularly attractive for back-to-back syntheses,
which we first demonstrated using aspirin (1)
and secnidazole (4).
The program proposed the well-precedented

one-step synthesis of aspirin (1) through acetyla-
tion of salicylic acid (2) with acetic anhydride (3),
acetyl chloride, or acetic acid. The program is
biased toward acetic anhydride because of the
template relevance neural network (i.e., because
it is more commonly used for similar substrates)
and the forward predictor’s greater confidence
that the anhydride will yield the desired product.
The top-recommended reaction conditions used
neat reactants (no solvent) at 108°C without ad-
ditional reagents or catalysts, or with sulfuric acid
at a milder temperature. Although the reaction
can be and is often run neat in batch, for pro-
cessability and to mitigate clogging risk, we pre-
pared 2 in ethyl acetate (EtOAc), which also
enabled downstream separation to produce aspi-
rin in 91% yield (1.72 g/h).
After several residence times of steady-state

operation, the feed streams were rerouted to pure
solvent, the temperature set points were lowered
for the reactor, and the flow path was depressur-
ized by purging the back-pressure regulator. The
robotic arm then replaced the process modules
for aspirin with those required for secnidazole,
reprimed the system, and began the run.
The proposed one-step synthesis of secnidazole

(4)was theNaOH-catalyzed opening of propylene
oxide (6) by 2-methyl-5-nitroimidazole (5) at 47°C;
lower-ranked suggestions included N-alkylation
by 1-bromo-2-propanol or the chloro equivalent
under similar conditions. The epoxide opening
proceeded readily in flow at 140°C [selected to be
just under the atmospheric boiling point of di-
methylformamide (DMF)] and excess epoxide (at
an unoptimizedmolar ratio of 3:1 to increase the
reaction rate) with triethylamine (TEA), as a
standard replacement for NaOH in continu-
ous synthesis, to afford secnidazole in 95% yield

(792 mg/h) using one 3.0-ml reactor and one
separator module.

Back-to-back synthesis of lidocaine and
diazepam with a common feedstock

We continued our exploration of back-to-back
syntheses, taking advantage of the robotic re-
configurability, with lidocaine (7) and diazepam
(12). Among the proposed routes were two with
precedented reaction steps, shown in Fig. 4A.
Whereas the program had a very slight prefer-
ence for chloroacetyl chloride in the first step
toward lidocaine, we chose the pathway using
bromoacetyl chloride (11) to exploit a common
reagent stream (aj, corresponding to neat 11) and
because the forward predictor is more confident
in bromo substrate’s likelihood of completing the
ring-closing step. The program proposed suit-
able conditions (ammonia) for the ring-closing
amination from 13 to 12 when using the chloro
equivalent of 13, but proposed a less plausible
option of sodium or lithium azide for 13 itself,
which might require an additional reduction step.
Commercially available compounds 10 and

11 readily reacted to form intermediate 9, which
in the presence of base, heat, and diethylamine
(8) afforded 7 in 77% yield (1.09 g/h). After 6 hours
of operation, all reagent streams were switched
to pureN-methylpyrrolidone (NMP) and temper-
ature set points were set to zero. The reaction
solvent of NMP was selected as a compromise
between suggestions ofMeOH, dichloromethane
(DCM), and acetonitrile (ACN) for various reac-
tion steps as a multipurpose high-boiling polar
aprotic solvent. The system was depressurized
and deconstructed by the robot before recon-
structing the process stack, exchanging the second
reactor from the 3.0- to the 1.0-ml size. Using the
same fluid streams aj and ak, the flow path for
diazepam was configured. Diazepam was recov-
ered after the separator in 75%yield (638mg/hour).

Stereoselective and stereoretentive
syntheses of (S)-warfarin and safinamide

To increase the complexity of our targets, we
then looked toward (S)-warfarin (15), which can
be produced in a single step from acetocinna-
mone (16) and 4-hydroxycoumarin (17) through
an asymmetric Michael addition. The program
successfully identified this disconnection, re-
cognizing that this Michael addition can be per-
formed stereoselectively. The context recommender
proposed the chiral amine catalyst (8S,9S)-6′-
methoxycinchonan-9-amine. Although this cata-
lyst could have been suitable based on prior
literature, we substituted themore readily avail-
able (1S,2S)-(+)-1,2-diphenylethylenediamine
[(S,S)-DPEN)] as its cost exceeded $500/g; whereas
the costs of startingmaterials are consideredduring
planning, the costs of catalysts are not because
they are often used in substoichiometric quanti-
ties. Translation to flowbenefited frompremixing
16 and (S,S)-DPEN in the presence of acetone be-
fore theMichael addition, whichwas determined
only empirically after manually screening; both
stepswere run at higher temperatures than recom-
mended (50°C versus 20 to 30°C) to reduce the
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residence time at the expense of enantioselectivity.
The final route achieved 78% yield for a through-
put of 730 mg/hour, 4.1:1 enantiomeric ratio.
A stereoretentive route to the chiral drug

substance safinamide (18) was identified by the
synthesis-planning program using L-alaninamide
(20). The reductive amination of aldehyde 21
with 20was proposed as a single-step reaction or

the equivalent two-step reactionwith correspond-
ing imine 19 as an explicit intermediate. Although
21 is in our database of buyable compounds for
$33/g, we imposed a maximum price of $10/g
to force the recursive expansion further back to
chloride 23 and phenol 22 as simpler, cheaper
starting materials. The suggested conditions for
this etherification and subsequent reductive ami-

nationweremodified for flow compatibility [DBU
(1,8-diazabicyclo{5.4.0}undec-7-ene) is a common
organic, soluble replacement for K2CO3 that does
not produce gaseous by-products]. The imine re-
duction was completed in methanol with H2 in
a heated Pt/C packed-bed reactor module (the
sixth-ranked set of conditions, rather than using
sodium borohydride or cyanoborohydride as they

Coley et al., Science 365, eaax1566 (2019) 9 August 2019 6 of 9

Fig. 4. Synthesis planning and execution for six example drug
substances: aspirin 4, secnidazole 4, lidocaine 7, diazepam 12,
(S)-warfarin 15, and safinamide 18. (A) Synthetic routes proposed
by the synthesis-planning program including conditions for the
forward reaction (blue); (B) continuous flow implementations of
the proposed routes; (C) robotically configured flow path and unit
operations used to execute each of these six syntheses on the modular
flow chemistry platform. Secnidazole and aspirin were run back to

back. Lidocaine and diazepam were similarly run back to back,
taking additional advantage of the common precursor 11 and the
corresponding reagent stream aj. (S)-Warfarin and safinamide were
run to demonstrate the successful identification of stereoselective
and stereoretentive routes. Specific fluid streams are labeled
alphabetically (green). DMF,dimethylformamide; TEA, triethylamine; NMP,
N-methylpyrrolidone; (S,S)-DPEN, (1S,2S)-(+)-1,2-diphenylethylenediamine;
DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene.
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are highly hygroscopic and prone to quenching)
to produce 18 in 32% yield (265 mg/h).

Synthesis planning and execution of an
ACE inhibitor library

Automatic rerouting of fluidic connections and
two 24-way selector valves enables the use of
dozens of different feedstocks. To showcase this
capability, we prepared a library of five ACE inhi-
bitors based around quinapril (24a) and deriv-
atives accessible by variation of the secondary
amine reactant 26.
Quinapril (24a) features three tetrahedral cen-

ters that the program identified in purchasable
precursors. Activationwith 1,1′-carbonyldiimidazole
(CDI) enabled the coupling of amino acid deri-
vative 27 with 26a to produce tBu-protected
quinapril (25a); diethyl cyanophosphonate and
N,N′-dicyclohexylcarbodiimide (DCC) were rec-
ommended as coupling reagents butwere avoided
because of concerns over acute toxicity. As re-
commended by the program, the ester was readily
cleaved in the presence of trifluoroacetic acid

(TFA). The program also proposed a single-step
amide coupling with the carboxylic acid equiva-
lent of 26a; however, this pathway was flagged
as potentially problematic by the forward predic-
tor because of the competing amidation at the
secondary amine in 27, although the desired
product was predicted to be dominant.
Initial screening revealed that quinapril and

moexipril (24b) benefited from longer residence
times to achieve the initial coupling between 26
and 27 before the deprotection; preparation of
enalapril (24c), ramipril (24d), and indolapril
(24e) proceeded more rapidly, enabling the use
of a smaller reactor.
We prepared two CRFs encompassing routes

to this pair and trio of targets. A small 1.0-ml
reactor at room temperature was installed to
allow sufficient time for activation of 27 with
CDI before introducing 26 into the subsequent
1.0- or 4.0-ml heated reactionmodule. Fluidic lines
were switched between precursors via 24-port
selector valves. Crudequinapril,moexipril, enalapril,
ramipril, and indolapril were collected as their

TFA salts and isolated offline in 70%, 50%, 58%,
59%, and 66% yield (459, 369, 342, 390, and 420
mg/h, respectively). The full library was run for a
total of 68 hours.

Synthesis planning and execution of an
NSAID library

We next prepared a two-dimensional compound
library of NSAIDs based around celecoxib (28aa).
Celecoxib features an indole core that the software
proposed to synthesize through a condensation of
hydrazine29a and diketone 30a, prepared from
acetophenone 32a and ethyl trifluoroacetate (31).
The suggested use of a base followed by acid and
heating in the forward direction is consistentwith
literature precedents. By exchanging the hydra-
zine with phenylhydrazine (29b) and/or 4-methyl-
acetophenonewith 4-bromoacetophenone (32b),
three additional celecoxib analogs (28ab, 28bb,
28ba) were prepared.
The CRF for celecoxib was written to use two

room-temperature reactors (each 1.0 ml) to achieve
the proper order of addition (i.e., generation of the
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Fig. 5. Synthesis planning and execution for two compound libraries based around quinapril (24a) and celecoxib (28aa). (A) Synthetic routes
proposed by the synthesis-planning program including conditions for the forward reaction (blue); (B) continuous flow implementations of the
proposed routes using selector valves for on-the-fly changing of reagent streams; (C) robotically configured flow path and unit operations used to
execute these syntheses on the modular flow chemistry platform. Specific fluid streams are labeled alphabetically (green). DCM, dichloromethane;
CDI, 1,1′-carbonyldiimidazole; TFA, trifluoroacetic acid; THF, tetrahydrofuran.

RESEARCH | RESEARCH ARTICLE
on A

ugust 22, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


acetal from32a before reactionwith31). The four
targets were synthesized sequentially by switch-
ing the reagent line from 32a to 32b, then from
29a to 29b, and 32b back to 32a. Celecoxib
and 28ab, 28bb, and 28ba were obtained in
91%, 59%, 79%, and 86% yield (572, 417 478, and
432 mg/h, respectively). The full library was run
for a total of 28 hours.

Outlook

By integrating CASP and a robotic flow chemis-
try platform, we have enabled the streamlined
execution of AI-planned synthetic routes to small-
molecule targets. CRFs serve as an intermediate
between the two to record the full process details
as specified by expert chemists.
Approximate conditions for batch synthesis

can be generated based on the literature, as we
have done in this study, but their direct imple-
mentation in flow is challenging. The desire for
process intensification (e.g., to decrease reaction
times), the need to mitigate solids formation to
avoid clogging, and the importance of telescop-
ing multiple unit operations requires deviation
from batch conditions and a level of confidence
of predictions that flow chemistry has not yet
achieved. Computational prediction of solubil-
ities to within even a factor of 2 in nonaqueous
solvents and at nonambient temperatures remains
elusive. Predicting suitable purification procedures
is a general challenge, not just for flow chemistry,
particularly when using nonchromatographicme-
thods. To develop routes to new target molecules,
the identification and quantification of species
in the crude product will need to be automated
as well. Coupling the platform to automated op-
timization routines would be straightforward for
single- and dual-step reactions given a reasonable
set of starting conditions as demonstrated previ-
ously using other flow chemistry platforms (7, 23).
However, optimization of multistep reactions will
bemore complex owing to the propagation of para-
meter changes from early steps to later reactions.
Although the routes currently benefit from

offline process development, this is largely a
limitation of the data that exist in the public do-
main and our interest in leveraging the benefits
of flow chemistry. Over time, the results generated
by this and similar automated experimental plat-
forms may obviate our reliance on historical re-
action data, particularly in combination with
smaller-scale flow-screening platforms (11, 42).
Increasedavailability of reactiondatawould further
enable the robotically realized syntheses based on
AI recommendations, relieving expert chemists of
manual tasks so that theymay focus on new ideas.

Methods summary

A more detailed description of the synthesis-
planning software, the robotic platform, stock
solution preparation, and chemical analysis are
provided in the supplementarymaterials. A sum-
mary of the user workflow follows.

Recipe generation

Suggested synthetic routes and reaction condi-
tions were obtained from the web-based graph-

ical user interface of the ASKCOS program for
each target molecule. A preference was set for
shorter synthetic routes, as requiring many re-
action steps complicates implementation in flow.
Reaction conditionswere adapted from the batch-
generated recommendations through noncodified
flow chemistry intuition. Changes are described
in the text for each target and typically included
the use of soluble organic bases rather than in-
organic bases, common solvents, and elevated tem-
peratures to increase reaction rates. Conditions
weremanually screened to determine appropriate
concentrations and approximate residence times;
future work should aim to automate this step. A
spreadsheet file was populated (“Recipe Planning
File S1” in the supplementary materials) and
programmatically expanded into the full CRF
(“Recipe Planning Script S1” in the supplemen-
tary materials) for each target (“Recipes S1 to S7”
in the supplementary materials).

Platform operation

Stock solutions were prepared by operators ac-
cording toCRF-defined concentrations and loaded
onto the platform at the specified reagent line
numbers. Reagent solutions and pure solvent
duplicates (as rinse solutions) were placed under
a 5 psig argon atmosphere. The CRF was loaded
into the platform control graphical user interface
and executed. The robotic arm placed the re-
quired unit operations in the process stack and
made the necessary fluidic connections in the
reagent tree.During automatedpriming andpres-
surization with rinse solutions, the system was
inspected for leaks as a safety measure. Fraction
collection was started when fluidic lines were
automatically changed from rinse solutions to
reagent solutions and temperature set points were
reached. After operating for a duration specified in
the CRF or after an aliquot of the product stream
showed reasonable conversion and/or yield, fluidic
lineswere changed back to rinse solutions for the
system to begin cleaning and depressurization.
After a cleaning cycle, the robot armautomatically
returned modules to storage and disconnected
fluidic lines at the reagent tree.
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precise stoichiometry, although predictions should improve as accessible data accumulate for training.
intervention was still required to supplement the predictor with practical considerations such as solvent choice and
protocols. They paired a retrosynthesis prediction algorithm with a robotically reconfigurable flow apparatus. Human 

 now report preliminary integration of these twoet al.on a platform that needs little to no human intervention. Coley 
algorithmic prediction of viable routes to a desired compound; the other is implementation of a known reaction sequence 

Progress in automated synthesis of organic compounds has been proceeding along parallel tracks. One goal is
Pairing prediction and robotic synthesis
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