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Abstract
We present an approximation algorithm that
takes a pool of pre-trained models as input and
produces from it a cascaded model with similar
accuracy but lower average-case cost. Applied
to state-of-the-art ImageNet classification mod-
els, this yields up to a 2x reduction in floating
point multiplications, and up to a 6x reduction
in average-case memory I/O. The auto-generated
cascades exhibit intuitive properties, such as us-
ing lower-resolution input for easier images and
requiring higher prediction confidence when us-
ing a computationally cheaper model.

1. Introduction
In any machine learning task, some examples are harder
than others, and intuitively we should be able to get away
with less computation on easier examples. Doing so has
the potential to reduce serving costs in the cloud as well
as energy usage on-device, which is important in a wide
variety of applications (Guan et al., 2017).

Following the tremendous empirical success of deep learn-
ing, much recent work has focused on making deep neu-
ral networks adaptive, typically via an end-to-end training
approach in which the network learns to make example-
dependent decisions as to which computations are per-
formed during inference. At the same time, recent work on
neural architecture search has demonstrated that optimizing
over thousands of candidate model architectures can yield
results that improve upon state-of-the-art architectures de-
signed by humans (Zoph et al., 2017). It is natural to think
that combining these ideas should lead to even better re-
sults, but how best to do so remains an open problem.

One of the motivations for our work is that for many prob-
lems, there are order-of-magnitude differences between the
cost of a reasonably accurate model and that of a model
with state-of-the-art accuracy. For example, the most ac-
curate NasNet model achieves 82.7% accuracy on Ima-
geNet using 23 billion multiplies per example, while a Mo-
bileNet model achieves 70.6% accuracy with only 569 mil-
lion multiplies per example (Howard et al., 2017; Zoph
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et al., 2017). If we could identify the images on which the
smaller model’s prediction is (with high probability) no less
accurate than the larger one’s, we could use fewer multipli-
cations on those images without giving up much accuracy.

In this work, we present a family of algorithms that can be
used to create a cascaded model with the same accuracy as
a specified reference model, but potentially lower average-
case cost, where cost is user-defined. This family is defined
by a meta-algorithm with various pluggable components.
In its most basic instantiation, the algorithm takes a pool of
pre-trained models as input and produces a cascaded model
in two steps:

1. It equips each model with a set of possible rules for re-
turning “don’t know” (denoted⊥) on examples where
it is not confident. Each (model, rule) combination is
called an abstaining model.

2. It selects a sequence of abstaining models to try, in
order, when making a prediction (stopping once we
find a model that does not return ⊥).

We also present instantiations of the meta-algorithm that
generate new prediction models on-the-fly, either using
lightweight training of ensemble models or a full archi-
tecture search. We also discuss a variant that produces an
adaptive policy tree rather than a fixed sequence of models.

An important feature of our algorithms is that they scale
efficiently to a large number of models and (model, rule)
combinations. They also allow for computations performed
by one stage of the cascade to be re-used in later stages
when possible (e.g., if two successive stages of the cascade
are neural networks that share the same first k layers).

2. Abstaining models
Our cascade-generation algorithm requires as input a set of
abstaining models, which are prediction models that return
“don’t know” (denoted ⊥) on certain examples. For clas-
sification problems, such models are known as classifiers
with a reject option, and methods for training them have
been widely studied (Yuan & Wegkamp, 2010). In this sec-
tion we present a simple post-processing approach that can
be used to convert a pre-trained model from any domain
into an abstaining model.
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We assume our prediction model is a function p : X → Y ,
and that its performance is judged by taking the expected
value of an accuracy metric q : Y × Y → R, where q(ŷ, y)
is the accuracy of prediction ŷ when the true label is y. Our
goal is to create an abstaining model m : X → Y ∪ {⊥}
that returns ⊥ on examples where p has low accuracy, and
returns p(x) otherwise.

Toward this end, we create a model q̂ to predict q(p(x), y)
given x. Typically, this model is based on the values of in-
termediate computations performed when evaluating p(x).
We train the model to estimate the value of the accuracy
metric, seeking to achieve q̂(x) ≈ q(p(x), y). We then re-
turn⊥ if the predicted accuracy falls below some threshold.

As an example, for a multi-class classification problem, we
might use the entropy of the vector of predicted class prob-
abilities as a feature, and q̂ might be a one-dimensional
isotonic regression that predicts top-1 accuracy as a func-
tion of entropy. The rule would then return ⊥ on examples
where entropy is too high.

Pseudo-code for the abstaining model is given in Algo-
rithm 1. Here and elsewhere, we distinguish between an
algorithm’s parameters and its input variables. Specifying
values for the parameters defines a function of the input
variables, for example ConfidentModel(·; p, q̂, t) denotes
the abstaining model based on prediction model p, accu-
racy model q̂, and threshold t.

The accuracy model q̂ used in this approach is similar to
the binary event forecaster used in the calibration scheme
of Kuleshov and Liang (2015), and is interchangeable with
it in the case where q(ŷ, y) ∈ {0, 1}.

Algorithm 1 ConfidentModel(x; p, q̂, t)
Parameters: prediction model p : X → Y , accuracy
model q̂ : X → R, threshold t ∈ R
Input: example x ∈ X
return p(x) if q̂(x) ≥ t, else ⊥

3. Cascade generation algorithm
Having created a set of abstaining models, we must next se-
lect a sequence of abstaining models to use in our cascade.
Our goal is to generate a cascade that minimizes average
cost as measured on a validation set, subject to an accuracy
constraint (e.g., requiring that overall accuracy match that
of some existing reference model).

We accomplish this using a greedy algorithm presented in
§3.1. To make clear the flexibility of our approach, we
present it as a meta-algorithm parameterized by several
functions:

1. An accuracy constraint a(p,R) determines whether

a prediction model p is sufficiently accurate on a set
R ⊆ X × Y of labeled examples.

2. A cost function c(m,S) determines the cost of eval-
uating m(x), possibly making use of intermediate re-
sults computed when evaluating each model in S.

3. An abstaining model generator g(R,S) returns a set
of abstaining models, given the set S of models that
have already been added to the cascade by the greedy
algorithm as well as the set R of labeled examples re-
maining (those on which every model in S abstains).

Possible choices for these functions are discussed in sec-
tions 3.2, 3.3, and 3.4, respectively. §3.5 presents theoreti-
cal results about the performance of the greedy algorithm.
§3.6 discusses how to modify the greedy algorithm to re-
turn an adaptive policy tree rather than a linear cascade,
and §3.7 discusses integrating the algorithm with model ar-
chitecture search.

3.1. The greedy algorithm

We now present the greedy cascade-generation algorithm.
As already mentioned, the goal of the algorithm is to pro-
duce a cascade that minimizes cost, subject to an accuracy
constraint. The high-level idea of the algorithm is to find
the abstaining model that maximizes the number of non-⊥
predictions per unit cost, considering only those abstain-
ing models that satisfy the accuracy constraint on the sub-
set of examples for which they return a prediction. We
then remove from the validation set the examples on which
this model returns a prediction, and apply the same greedy
rule to choose the next abstaining model, continuing in this
manner until no examples remain.

Algorithm 2 GreedyCascade(R; a, c, g)
Parameters: accuracy constraint a, cost function c, ab-
staining model generator g
Input: validation set R
Initialize i = 1, R1 = R,
while |Ri| > 0 do
Mi = g(Ri,m1:i−1)
M useful

i = {m ∈Mi : A(m,Ri) 6= ∅}
M accurate

i =
{
m ∈M useful

i : a(m,A(m,Ri))
}

If M accurate
i = ∅, return ⊥.

Define ri(m) ≡ |A(m,Ri)|
c(m,m1:i−1)

mi = argmaxm∈M accurate
i

{ri(m)}
Ri+1 = Ri \ A(mi, Ri)
i = i+ 1

return m1:i−1

To define the algorithm precisely, we denote the set of ex-
amples on which an abstaining model m returns a predic-
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tion by

A(m,R) = {(x, y) ∈ R : m(x) 6= ⊥} .

Here and elsewhere, we use the shorthand mj:k to denote
the sequence {mi}ki=j . Algorithm 2 gives pseudo-code for
the algorithm using this notation.

Our greedy algorithm builds on earlier approximation algo-
rithms for min-sum set cover and related problems (Feige
et al., 2004; Munagala et al., 2005; Streeter et al., 2007).
The primary difference is that our algorithm must worry
about maintaining accuracy in addition to minimizing cost.
We also consider a more general notion of cost, reflecting
the possibility of reusing intermediate computations.

3.2. Accuracy constraints

We first consider the circumstances under which Algo-
rithm 2 returns a cascade that satisfies the accuracy con-
straint.

Let S = m1:k be a cascade returned by the greedy algo-
rithm, and let Ai = A(mi, Ri), where Ri is the set of ex-
amples remaining at the start of iteration i. Observe that
Ri+1 = Ri \Ai, which implies that Ai and Aj are disjoint
for j 6= i. Also, because R1 = R and Rk = ∅,

⋃
iAi = R.

By construction, a(mi, Ai) holds for all i. Because S
uses mi to make predictions on examples in Ai, this im-
plies a(S,Ai) holds as well. Thus, the accuracy constraint
a(S,R) will be satisfied so long as a(S,Ai) ∀i implies
a(S,

⋃
iAi). A sufficient condition is that the accuracy

constraint is decomposable, as captured in the following
definition.

Definition 1. An accuracy constraint a is decomposable
if, for any two disjoint sets A,B ⊆ X × Y , a(m,A) ∧
a(m,B) =⇒ a(m,A ∪B).

An example of a decomposable accuracy constraint is the
MinRelativeAccuracy constraint shown in Algorithm 3,
which requires that average accuracy according to some
metric is at least α times that of a fixed reference model.
When using this constraint, any cascade returned by the
greedy algorithm is guaranteed to have overall accuracy at
least α times that of the reference model pref.

We now consider the circumstances under which the greedy
algorithm terminates successfully (i.e., does not return ⊥).
This happens so long as M accurate

i is always non-empty. A
sufficient condition is that the accuracy constraint is satis-
fiable, defined as follows.

Definition 2. An accuracy constraint a is satisfiable with
respect to an abstaining model generator g and validation
set R if there exists a model m∗ that (a) never abstains, (b)
is always returned by g, and (c) satisfies a(m∗, R0) ∀R0 ⊆
R.

Algorithm 3 MinRelativeAccuracy(p,R0;α, q, pref)
Parameters: α ∈ (0, 1], accuracy metric q, prediction
model pref
Input: prediction model p, validation set R0

Define Q(p′) =
∑

(x,y)∈R0
q(p′(x), y)

return I [Q(p) ≥ α ·Q(pref)]

The MinRelativeAccuracy constraint is satisfiable provided
the reference model pref is always among the models re-
turned by the model generator g.

Note that MinRelativeAccuracy is not the same as simply
requiring a fixed minimum average accuracy (e.g., 80%
top-1 accuracy). Rather, the accuracy required depends on
the reference model’s performance on the provided subset
R0, which takes on many different values when running
Algorithm 2. A constraint that requires accuracy ≥ qmin on
R0 is generally not satisfiable, because R0 might contain
only examples that all models misclassify.

3.3. Cost functions

We now consider possible choices for the cost function c.
In the simplest case, there is no reuse of computations and
c(m,S) depends only on m, in which case we say the cost
function is linear.

To allow for computation reuse, we define a weighted, di-
rected graph with a vertex v(m) for each model m, plus a
special vertex v∅. For each m, there is an edge (v∅, v(m))
whose weight is the cost of computing m(x) from scratch.
An edge (v(m1), v(m2)) with weight w indicates that
m2(x) can be computed at cost w if m1(x) has already
been computed. The cost function is then:

c(m,S) = min
v∈V (S)

{shortest path(v, v(m))} (1)

where V (S) = {v(m) : m ∈ S} ∪ {v∅}.

As an example, suppose we have a set of models
{mi : 1 ≤ i ≤ D}, where mi makes predictions by com-
puting the output of the first i layers of a fixed neural net-
work (e.g., a ResNet-like image classifier). In this case, the
graph is a linear chain whose ith edge has weight equal to
the cost of computing the output of layer i given its input.

Equation (1) can also be generalized in terms of hyper-
graphs to allow reuse of multiple intermediate results. This
is useful in the case of ensemble models, which take a
weighted average of other models’ predictions.

3.4. Abstaining model generators

We now discuss choices for the abstaining model generator
g used in Algorithm 2. Given a set Ri of examples remain-
ing in the validation set, and a sequence m1:i−1 of models
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that are already in the cascade, g returns a set of models to
consider for the ith stage of the cascade.

A simple approach to defining g is to take a fixed set P of
prediction models, and for each one to return a Confident-
Model with the threshold set just high enough to satisfy the
accuracy constraint, as illustrated in Algorithm 4.

Algorithm 4 ConfidentModelSet(R;P, Q̂, a)

Parameters: set P of prediction models, set Q̂ of accu-
racy models, accuracy constraint a
Input: validation set R
Define a>(m) = a(m,A(m,R))
Define m(p, q̂, t) = ConfidentModel(·; p, q̂, t)
Define tmin(p, q̂) = min

{
t ∈ R : a>(m(p, q̂, t))

}
return

{
m(p, q̂, tmin(p, q̂)) : p ∈ P, q̂ ∈ Q̂

}
Another lightweight approach is to fit an ensemble model
that makes use of the already-computed predictions of the
first i − 1 models. Assume that each abstaining model mj

has a backing prediction model pj that never returns⊥. For
each p in a fixed set P of prediction models, we fit an en-
semble model p̄(x) = β0p(x) +

∑i−1
j=1 βjpj(x), where β

is optimized to maximize accuracy on the remaining exam-
plesRi. Each p̄ can then be converted to a ConfidentModel
in the same manner as above.

The most thorough (but also most expensive) approach is
to perform a search to find a model architecture that yields
the best benefit/cost ratio, as discussed further in §3.7.

3.5. Theoretical results

In this section we provide performance guarantees for Al-
gorithm 2, showing that under reasonable assumptions it
produces a cascade that satisfies the accuracy constraint
and has cost within a factor of 4 of optimal. We also show
that even in very special cases, the problem of finding a
cascade whose cost is within a factor 4 − ε of optimal is
NP-hard for any ε > 0.

As shown in §3.2, the greedy algorithm will return a cas-
cade that satisfies the accuracy constraint provided the con-
straint is decomposable and satisfiable. This is a fairly
weak assumption, and is satisfied by the MinRelativeAc-
curacy constraint given in Algorithm 3.

We now consider the conditions the cost function must sat-
isfy, which are more subtle. Our guarantees hold for all
linear cost functions, as well as a certain class of functions
that allow for a limited form of computation reuse. To make
this precise, we will use the following definitions.

Definition 3. A set M∗ of abstaining models dominates a
sequence {mi}ki=1 of abstaining models with respect to a
cost function c if two conditions hold:

1.
∑

m∈M∗ c(m, ∅) ≤
∑k

i=1 c(mi,m1:i−1), and

2. for any x ∈ X , ifmi(x) 6= ⊥ for some i, thenm(x) 6=
⊥ for some m ∈M∗.

If the cost function is linear, c(m,S) = c(m, ∅) ∀m,S,
and any sequence of abstaining models is dominated by the
corresponding set.

Definition 4. A cost function c is admissible with respect to
a set of abstaining modelsM if, for any sequence of models
in M , there exists a set M∗ ⊆M that dominates it.

A linear cost function is always admissible. Cost functions
of the form (1) are admissible under certain conditions. A
sufficient condition is that the graph defining the cost func-
tion is a linear chain, and for each edge (v(mi), v(mi+1)),
mi(x) 6= ⊥ =⇒ mi+1(x) 6= ⊥. If the graph is a lin-
ear chain but does not have this property, we can make
the cost function admissible by including additional mod-
els. Specifically, for each k, we add a model m∗k that
computes the output of models m1,m2, . . . ,mk in order
(at cost c(m∗k, ∅) =

∑k
i=1 c(mi,m1:i−1) = c(mk, ∅)),

and then returns the prediction (if any) returned by the
model with maximum index. The singleton set {m∗k}
will then dominate any sequence composed of models in
{m1,m2, . . . ,mk}. Similar arguments apply to graphs
comprised of multiple linear chains. (Such graphs arise if
we have multiple deep neural networks, each of which can
return a prediction after evaluating only its first k layers.)

We also assume c(m,S) ≤ c(m, ∅) ∀m,S (i.e., reusing
intermediate computations does not hurt).

To state our performance guarantees, we now introduce
some additional notation. For any cascade S = m1:k and
cost function c, let

cΣ(S) ≡
k∑

i=1

c(mi,m1:i−1) (2)

be the cost of computing the output of all stages. For any
example x and cascade S = m1:k, let τ(x, S) be the cost
of computing the output of S, that is

τ(x, S) =
∑

i:mj(x)=⊥∀j<i

c(mi,m1:i−1) . (3)

Finally, for any set M of models, we define A(M,R) =
∪m∈MA(m,R).

The following lemma shows that, if the cost function is ad-
missible, the number of examples that a cascade can answer
per unit cost is bounded by the maximum number of exam-
ples any single model can answer per unit cost. Theorem 1
then uses this inequality to bound the approximation ratio
of the greedy algorithm.
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Lemma 1. For any setR ⊂ X×Y , any setM of abstaining
models, any cost function c that is admissible with respect
to M , and any sequence S of models in M ,

|A (S,R)| ≤ r∗cΣ(S)

where

r∗ = max
m∈M

{
|A (m,R)|
c(m, ∅)

}
and cΣ is defined in Equation (2).

Proof. For any m ∈ M , |A (m,R)| ≤ r∗ · c(m, ∅) by
definition of r∗. Thus, for any set M∗ ⊆M ,

|A (M∗, R)| ≤
∑

m∈M∗
|A (m,R)|

≤ r∗
∑

m∈M∗
c(m, ∅) .

Because c is admissible with respect to M , there
exists an M∗ with |A (S,R)| ≤ |A (M∗, R)| and∑

m∈M∗ c(m, ∅) ≤ cΣ(S). Combining this with the above
inequality proves the lemma.

The proof of Theorem 1 (specifically the proof of claim 2)
is along the same lines as the analysis of a related greedy al-
gorithm for generating a task-switching schedule (Streeter
et al., 2007), which in turn built on an elegant geometric
proof technique developed by Feige et al. (2004).

Theorem 1. Let SG = GreedyCascade(R; a, c, g). LetM
be a set of models such thatM ⊆M accurate

i for all i, and c is
admissible with respect to M , where M accurate

i is defined as
in Algorithm 2. Define T(S) ≡

∑
(x,y)∈R τ(x, S), where

τ is defined in Equation (3). Then,

GREEDY ≤ 4 · OPT

where GREEDY = T(SG), OPT = minS∈M∞ {T(S)}.

Proof. We first introduce some notation. Let SG = m1:k,
let ni = |Ri| denote the number of examples remaining at
the start of the ith iteration of the greedy algorithm, and let
Ci = c(mi,m1:i−1) be the cost of the abstaining model
selected in the ith iteration. Let r∗i = ni−ni+1

Ci
be the max-

imum benefit/cost ratio on iteration i. Let S∗ be an optimal
cascade.

Claim 1: For any i, there are at least ni

2 examples with
τ(x, S∗) ≥ ni

2r∗i
.

Proof of claim 1: Let t = ni

2r∗i
, and let S0 be the maxi-

mal prefix of S∗ satisfying cΣ(S0) ≤ t. Any example
x ∈ Ri \ A(S0, Ri) must have τ(x, S∗) ≥ t. Thus,
it suffices to show |A (S0, Ri)| ≤ ni

2 . By Lemma 1,

|A (S0, Ri)| ≤ r∗t, where r∗ = maxm∈M

{
|A(m,Ri)|
c(m,∅)

}
.

By assumption, c(m, ∅) ≥ c(m,m1:i−1) for all m ∈ M ,
which implies r∗ ≤ maxm∈M

{
|A(m,Ri)|

c(m,m1:i−1)

}
≤ r∗i , where

the last inequality uses the fact that M ⊆ M accurate
i . Thus,

|A (S0, Ri)| ≤ tr∗ ≤ tr∗i = ni

2 .

Claim 2: GREEDY ≤ 4 · OPT.

Proof of claim 2: The total cost of the cascade SG is the
sum of the costs associated with each stage, that is

GREEDY =
∑
x∈R

τ(x, SG) =

k∑
i=1

niCi .

To relate OPT to this expression, let {tj}nj=1 be
the sequence that results from sorting the costs
{τ(x, S∗) : x ∈ R} in descending order. Assum-
ing for the moment that ni is even for all i, let
J(i) =

{
j : ni+1

2 < j ≤ ni

2

}
. Because {tj} is non-

increasing, and n1 = n while nk = 0,

OPT =

n∑
j=1

tj ≥
n
2∑

j=1

tj =

k∑
i=1

∑
j∈J(i)

tj .

Thus, to show OPT ≥ 1
4GREEDY, it suffices to show that

for any i, ∑
j∈J(i)

tj ≥
1

4
niCi . (4)

To see this, first note that for any i,∑
j∈J(i)

tj ≥ |J(i)| · t(ni
2 ) =

r∗i · Ci

2
· t(ni

2 )

By claim 1, t(ni
2 ) ≥

ni

2r∗i
. Combining this with the above

inequality proves (4).

Finally, if ni is odd for some i, we can apply the above
argument to a set R′ which contains two copies of each
example in R, in order to prove the equivalent inequality
2GREEDY ≤ 4 · 2OPT.

Finally, we consider the computational complexity of the
optimization problem Algorithm 2 solves. Given a valida-
tion set R, set of abstaining models M , and accuracy con-
straint a, we refer to the problem of finding a minimum-
cost cascade S that satisfies the accuracy constraint as
MINIMUM COST CASCADE. This problem is NP-hard to
approximate even in very special cases, as summarized in
Theorem 2.

Theorem 2. For any ε > 0, it is NP-hard to obtain an ap-
proximation ratio of 4− ε for MINIMUM COST CASCADE.
This is true even in the special case where: (1) the cost
function always returns 1, and (2) the accuracy constraint
is always satisfied.
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Proof (sketch). The theorem can be proved using a reduc-
tion from MIN-SUM SET COVER (Feige et al., 2004).
In the reduction, each element e in the MIN-SUM SET
COVER instance becomes an example xe in the validation
set, and each set Z becomes a prediction model mZ where
mZ(xe) = ⊥ iff. e /∈ Z. The cost function in the MINI-
MUM COST CASCADE instance always returns 1, and the
accuracy constraint is always satisfied.

3.6. Adaptive policies

In this section we discuss how to modify Algorithm 2 to
return an adaptive policy tree rather than a linear cascade.

The greedy algorithm for set covering can be modified to
produce an adaptive policy (Golovin & Krause, 2011), and
a similar approach can be applied Algorithm 2. The re-
sulting algorithm is similar to Algorithm 2, but instead
of building up a list of abstaining models it builds a tree,
where each node of the tree is labeled with an abstaining
model and each edge is labeled with some feature of the
parent node’s output (e.g., a discretized confidence score).

If theA function satisfies a technical condition called adap-
tive monotone submodularity, the resulting algorithm has
an approximation guarantee analogous to the one stated in
Theorem 1, but with respect to the best adaptive policy
rather than merely the best linear sequence. This can be
shown by combining the proof technique of Golovin and
Krause (2011) with the proof of Theorem 1. Unfortunately,
the A function is not guaranteed to have this property in
general. However, it can be shown that the adaptive ver-
sion of Algorithm 2 still has the guarantees described in
Theorem 1 (i.e., adaptivity does not hurt).

3.7. Greedy architecture search

The GreedyCascade algorithm can be integrated with
model architecture search in multiple ways. One way
would be to simply take all the models evaluated by an ar-
chitecture search as input to the greedy algorithm. A poten-
tially much more powerful approach is to use architecture
search as the model generator g used in the greedy algo-
rithm’s inner loop.

With this approach, there is one architecture search for each
stage of the generated cascade. The goal of the ith search is
to maximize the benefit/cost ratio criterion used on the ith
iteration of the greedy algorithm (subject to the accuracy
constraint). Because the ith search only needs to consider
examples not already classified by the first i−1 stages, later
searches have potentially lower training cost. Furthermore,
the ith model can make use of the intermediate layers of the
first i− 1 models as input features, allowing computations
to be reused across stages of the cascade.

4. Experiments
In this section we evaluate our cascade generation algo-
rithm by applying it to state-of-the-art pre-trained models
for the ImageNet classification task. We first examine the
efficacy of the abstention rules described in §2, then we
evaluate the full cascade-generation algorithm.

4.1. Accuracy versus abstention rate

As discussed in §2, we decide whether a model should ab-
stain from making a prediction by training a second model
to predict its accuracy on a given example, and checking
whether predicted accuracy falls below some threshold.

For our ImageNet experiments, we take top-1 accuracy as
the accuracy metric, and predict its value based on a vector
of features derived from the model’s predicted class prob-
abilities. We use as features (1) the entropy of the vector,
(2) the maximum predicted class probability, and (3) the
gap between the first and second highest predictions in logit
space. Our accuracy model q̂ is fit using logistic regression
on a validation set of 25,000 images.

Figure 1. Accuracy vs. abstention rate for Inception v3.

Figure 1 illustrates the tradeoffs between accuracy and re-
sponse rate that can be achieved by applying this rule to
Inception-v3, measured on a second disjoint validation set
of 25,000 images. The horizontal axis is the fraction of
examples on which Inception-v3 returns ⊥, and the ver-
tical axis is top-1 accuracy on the remaining examples.
For comparison, we also show for each feature the trade-
off curve obtained by simply thresholding the raw feature
value. We also show the theoretically optimal tradeoff
curve that would be achieved using an accuracy model that
predicts top-1 accuracy perfectly (in which case we only
return ⊥ on examples Inception-v3 misclassifies).

Overall, Inception-v3 achieves 77% top-1 accuracy. How-
ever, if we set the logit gap cutoff threshold appropriately,
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Table 1. Cascade of pre-trained MobileNet (Howard et al., 2017) models.
STAGE IMAGE SIZE # MULTS CONFIDENCE

THRESHOLD
(LOGIT GAP)

%(EXAMPLES
CLASSIFIED)

ACCURACY
(ON EXAMPLES CLAS-
SIFIED BY STAGE)

1 128 X 128 49M 1.98 40% 88%
2 160 X 160 77M 1.67 16% 73%
3 160 X 160 162M 1.23 18% 62%
4 224 X 224 150M 1.24 7% 45%
5 224 X 224 569M −∞ 19% 45%

we can achieve over 95% accuracy on the 44% of exam-
ples on which the model is most confident (while returning
⊥ on the remaining 56%). Perhaps surprisingly, using the
learned accuracy model gives a tradeoff curve almost iden-
tical to that obtained by simply thresholding the logit gap.

4.2. Cascades

Having shown the effectiveness of our abstention rules, we
now evaluate our cascade-generation algorithm on a pool of
state-of-the-art ImageNet classification models. Our pool
consists of 23 models released as part of the TF-Slim li-
brary (Silberman & Guadarrama, 2016). The pool contains
two recent NasNet models produced by neural architecture
search (Zoph et al., 2017), five models based on the In-
ception architecture (Szegedy et al., 2016), and all 16 Mo-
bileNet models (Howard et al., 2017). We generate abstain-
ing models by thresholding the logit gap value.

For each model p, and each α ∈
{

1− i
100 : 0 ≤ i ≤ 5

}
,

we used Algorithm 2 to generate a cascade with low cost,
subject to the constraint that accuracy was at least α times
that of p. We use number of multiplications as the cost.

When using Algorithm 2 it is important to use examples not
seen during training, because statistics such as logit gap are
distributed very differently for them. We used 25,000 im-
ages from the ILSVRC 2012 validation set (Russakovsky
et al., 2015) to run the algorithm, and report results on the
remaining 25,000 validation images.1

Figure 2 shows the tradeoffs we achieve between accuracy
and average cost. Relative to the large (server-sized) Nas-
Net model, we obtain a 1.5x reduction with no loss in accu-
racy. Relative to Inception-v4, one of the cascades obtains
a 1.8x cost reduction with a no loss in accuracy, while an-
other obtains a 1.2x cost reduction with a 1.2% increase
in accuracy. Relative to the largest MobileNet model, we
achieve a 2x cost reduction with a 0.5% accuracy gain.

We now examine the structure of an auto-generated cas-
cade. Table 1 shows a cascade generated using a pool of

1The cascade returned by the greedy algorithm always returns
a non-⊥ prediction on unseen test images, because the final stage
of the cascade always uses a confidence threshold of −∞.

Figure 2. Cascades of pre-trained ImageNet models.

16 MobileNet models, with the most accurate MobileNet
model as the reference model. The ith row of the table de-
scribes the (model, rule) pair used in the ith stage of the
cascade. The cascade has several intuitive properties:

1. Earlier stages use cheaper models. Model used in ear-
lier stages of the cascade have fewer parameters, use
fewer multiplies, and have lower input image resolu-
tion.

2. Cheaper models require higher confidence. The mini-
mum logit gap required to make a prediction is higher
for earlier stages, reflecting the fact that cheaper mod-
els must be more confident in order to achieve suffi-
ciently high accuracy.

3. Cheaper models handle easier images. Although
overall model accuracy increases in later stages, ac-
curacy on the subset of images actually classified by
each stage is strictly decreasing (last column). This
supports the idea that easier images are allocated to
cheaper models.

4.3. Cascades of approximations

A large number of techniques have been developed for
reducing the cost of deep neural networks via postpro-
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cessing. Such techniques include quantization, pruning of
weights or channels, and tensor factorizations (see (Han
et al., 2015) and references therein for further discussion).
In this section, we show how these techniques can be used
to generate a larger pool of approximated models, which
can then be used as input to our cascade-generation algo-
rithm in order to achieve further cost reductions. This also
provides a way to make use of the cascade-generation al-
gorithm in the case where only a single pre-trained model
is available.

For these experiments, we focus on quantization of model
parameters as the compression technique. For each model
m, and each number of bits b ∈ {1, 2, . . . , 16}, we generate
a new model mb by quantizing all of m’s parameters to b
bits. This yields a pool of 23 · 16 = 368 quantized models,
which we use as input to the cascade-generation algorithm.
Cost is the number of bits read from memory when clas-
sifying an example. Aside from these two changes, our
experiments are identical to those in §4.2.

Figure 3. Cascades of quantized ImageNet models.

Figure 3 shows accuracy as a function of the average num-
ber of bits that must be fetched from memory in order to
classify an example. Though the cascades generated in
§4.2 (which were optimized for number of multiplications)
do not consistently improve on average memory I/O, the
cascades of approximations reduce it by up to a factor of 6
with no loss in accuracy. Perhaps surprisingly, the cascades
of approximations also offer improvements in average-case
number of multiplications similar to those shown in Fig-
ure 2, despite this not being an explicit component of the
cost function.

5. Related work
The high-level goal of our work is to reduce average-case
inference cost by spending less computation time on easier
examples. This subject is the topic of a vast literature, with

many distinct problem formulations spread across many
domains.

Within the realm of computer vision, cascaded models re-
ceived much attention following the seminal work of Viola
and Jones (2001), who used a cascade of increasingly more
expensive features to create a fast and accurate face detec-
tor. In problems such as speech recognition and machine
translation, inference typically involves a heuristic search
through the large space of possible outputs, and the cascade
idea can be used to progressively filter the set of outputs
under consideration (Weiss & Taskar, 2010).

Recent work has sought to apply the cascade idea to deep
networks. Most research involves training an adaptive
model end-to-end (Graves, 2016; Guan et al., 2017; Hu
et al., 2017; Huang et al., 2017). Though end-to-end train-
ing is appealing, it is sensitive to the choice of model ar-
chitecture. Current approaches for image classification are
based on ResNet architectures, and do not achieve results
competitive with the latest NasNet models on ImageNet.

Another way to produce adaptive deep networks is to ap-
ply postprocessing to a pool of pre-trained models, as we
have done. To our knowledge, the only previous work that
has taken this route is that of Bolukbasi et al. (2017), who
also present results for ImageNet. In contrast to the greedy
approximation algorithm presented in this work, their ap-
proach does not have good performance in the worst case,
and also requires the pre-trained input models to be ar-
ranged into a directed acyclic graph a priori as opposed to
learning this structure as part of the optimization process.

Finally, as already mentioned, our greedy approximation
algorithm builds on previous greedy algorithms for min-
sum set cover and related problems (Feige et al., 2004; Mu-
nagala et al., 2005; Streeter et al., 2007).

6. Conclusions
We presented a greedy meta-algorithm that can generate a
cascaded model given a pool of pre-trained models as in-
put, and proved that the algorithm has near-optimal worst-
case performance under suitable assumptions. Experimen-
tally, we showed that cascades generated using this algo-
rithm significantly improve upon state-of-the-art ImageNet
models in terms of both average-case number of multipli-
cations and average-case memory I/O.

Our work leaves open several promising directions for fu-
ture research. On the theoretical side, it remains an open
problem to come up with more compelling theoretical guar-
antees for adaptive policies as opposed to linear cascades.
Empirically, it would be very interesting to incorporate ar-
chitecture search into the inner loop of the greedy algo-
rithm, as discussed in §3.7.
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