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Abstract

This paper introduces an information theoretic co-training objective
for unsupervised learning. We consider the problem of predicting the fu-
ture. Rather than predict future sensations (image pixels or sound waves)
we predict “hypotheses” to be confirmed by future sensations. More for-
mally, we assume a population distribution on pairs (x, y) where we can
think of x as a past sensation and y as a future sensation. We train both
a predictor model PΦ(z|x) and a confirmation model PΨ(z|y) where we
view z as hypotheses (when predicted) or facts (when confirmed). For a
population distribution on pairs (x, y) we focus on the problem of mea-
suring the mutual information between x and y. By the data processing
inequality this mutual information is at least as large as the mutual infor-
mation between x and z under the distribution on triples (x, z, y) defined
by the confirmation model PΨ(z|y). The information theoretic training
objective for PΦ(z|x) and PΨ(z|y) can be viewed as a form of co-training
where we want the prediction from x to match the confirmation from y.

1 Intuition and Formulation

We Consider the problem of predicting the future from the past. Intuitively
we are not interested in predicting raw future sense data such as image pixels.
Rather we are interested in predicting facts about the future as will be inferred
from future sensations. Here we consider the joint problem of (1) learning to
convert sensation to facts, and (2) learning to predict future facts. Information
theoretic co-training aims to measure the mutual information between past sen-
sation and the future sensation by demonstrating the ability to predict future
facts.

We formulate information theoretic co-training by letting X be a space of
possible past sensations, Y be a space of possible future sensations, and Z be
a space of facts. We assume a population distribution P on sensation pairs
(x, y) ∈ X × Y. We assume models PΦ(z|x) and PΨ(z|x) to predict future
facts from past and future sensations respectively. Here Φ and Ψ are parameter
vectors and we assume that the probabilities are differentiable in the parameters.
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We assume that z is most accurately estimated from y. We then define
a distribution on triples (x, z, y) where (x, y) is drawn from the population
distribution P and z is drawn from PΨ(z|y). We note that by the data processing
inequality we have

I(x, y) ≥ IΨ(x, z) = HΨ(z)−HΨ(z|x).

Here HΨ(z) and HΨ(z|x) are determined by the distribution on triples which is
itself determined by Ψ.

The information theoretic co-training object takes into account the difficulty
of empirically measuring the entropies HΨ(z) and HΨ(z|x). In the phonetics
experiment we have that z has only 64 possible values which implies that the en-
tropy HΨ(z) is at most six bits. In this case HΨ(z) can be approximated directly
by the empirical marginal over z in a large minibatch. The entropy HΨ(z|x)
cannot in general be measured directly. We assume that we can sample (x, y)
from the population, and sample z from PΨ(z|y), but have no way computing
PΨ(z|x). However, following standard practice we can upper bound the entropy
HΨ(z|x) by the cross-entropy H+

Ψ,Φ(z|x) where the model probability PΦ(z|x)
is computable.

IΨ(x, y) ≥ HΨ(z)−H+
Ψ,Φ(z|x)

H+
Ψ,Φ(z|x) = E(x,y)∼P, z∼PΨ(z|y) − lnPΦ(z|x)

= HΨ(z|x) +KL(PΨ(z|y), PΦ(z|x))

≥ HΨ(z|x)

A first information theoretic co-training objective is then defined by

Ψ∗Φ∗ = argmax
Ψ,Φ

HΨ(z)−H+
Ψ,Φ(z|x). (1)

It is perhaps useful to rewrite (1) as

Ψ∗ = argmax
Ψ

HΨ(z)−
(

min
Φ

H+
Ψ,Φ(z|x)

)
Φ∗ = argmin

Φ
H+

Ψ∗,Φ(z|x)

= argmin
Φ

E(x,y)∼P, z∼PΨ∗ (z|y) − lnPΦ(z|x). (2)

It should be noted that the objective (2) is the standard objective for training
on labeled data. In (2) z replaces y as a label for x. The term HΨ(z) in
objective (1) encourages Ψ to extract as much factual information from the
future sensation as possible while still making the extracted factual information
predictable from the past. Here Φ and Ψ cooperate to find agreement on a
“language” (a semantics for symbols) grounded in sensation.

If z is allowed to be a structured object, such as a sequence of symbols,
then HΨ(z) becomes difficult to measure. However, again following stadanrd
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practice, we can bound HΨ(z) by a cross-entropy H+
Ψ,Θ(z). We then have the

information theoretic co-training objective

Ψ∗ = argmax
Ψ

(
min

Θ
H+

Ψ,Θ(z)
)
−
(

min
Φ

H+
Ψ,Φ(z|x)

)
(3)

H+
Ψ,Θ(z) = E(x,y)∼P Ez∼PΨ(z|y) − lnPΘ(z).

Here Θ is adversarial to Ψ and Φ. Even in the case where z is a structured object
such as a string, it may be useful in practice to bound the amount of information
in z by, for example, bounding the size of the alphabet and the length of the
string. This will make HΨ(z) and HΨ(z|x) smaller which should improve the
numerical stability of the measured difference H+

Ψ,Θ∗(z)−H+
Ψ,Φ∗(z|x).

2 Related Learning Models

Co-Training. Information theoretic co-training is closely related to classical co-
training (Blum & Mitchell (1998); Dasgupta et al. (2002)). Classical co-training
assumes the same three spaces X , Y and Z but takes the population P to be a
distribution on triples (x, z, y) where z is not observed in the training data. The
goal is to learn rules for predicting z by training on the pairs (x, y). For this to
be possible we need additional assumptions such as that x and y are independent
given z (in the population) and that HP(z) is large. In information theoretic
co-training, on the other hand, the population is assumed to be a distribution
on (x, y) only and the goal is to measure the mutual information between x and
y.

Although the assumptions and theoretical analyses are different, the learn-
ing algorithms of information theoretic co-training and classical co-training are
very similar. The goal in classical co-training is to find hard (non-stochastic)
classifiers f : X → Z and g : Y → Z so as to maximize the probability over
the draw of (x, y) that f(x) = h(y) and, at the same time, to require that the
values of f(x) and g(x) are diverse. Information theoretic co-training makes the
classifiers soft and makes the training objective information theoretic.

The Information Bottleneck. Like information theoretic co-training,
Tishby’s information bottleneck Tishby et al. (1999) assumes the spaces X , Y
and Z and assumes a population distribution on the pairs (x, y). The objective
is to train a model PΨ(z|y) defining a distribution on triples (x, z, y) using the
training objective

Ψ∗ = argmax
Ψ

IΨ(z, x)− βIΨ(z, y). (4)

In information theoretic co-training the second term is dropped and we retain
only IΨ(z, x). One might immediately object that the choice of z = y maxi-
mizes IΨ(z, x) so the objective is trivial if we drop the second term. But the
goal of information theoretic co-training is not to maximize mutual information
but rather to measure it. Note that setting z = y eliminates Ψ from the infor-
mation theoretic co-training objective and we are left with setting Φ so as to
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minimize H+
P,Φ(y|x). This is the standard training objective for labeled data

where we treat y as a label. This can also be viewed as conditional density
estimation. Conditional density estimation must be addressed to measure mu-
tual information. Setting z = y is expected to yield a poor measurement of
mutual information for two somewhat related reasons. First, the probabilistic
modeling of raw sense data is difficult. Second H+

P,Θ(y) and H+
P,Φ(y|x) are both

typically much larger than H+
Ψ,Θ(z) and H+

Ψ,Φ(z|x). So taking z = y exposes

one to numerical instability in taking the difference H+
P,Θ(y)−H+

P,Φ(y|x).
Density Estimation. Many approaches to unsupervised learning can be

viewed as some form of density estimation. Density estimation is the problem
of modeling a probability distribution given the ability to draw samples. A
paradigmatic example is language modeling. In general we assume a population
distribution P over some set Y and a model PΨ(y) assigning a probability to
each y ∈ Y. The density estimation objective is

Ψ∗ = argmin
Ψ

H+
P,Ψ(y) (5)

H+
P,Ψ(y) = Ey∼P − lnPΨ(y)

The cross-entropy H+
P,Ψ(y) is an upper bound on the unknown, and typically

unknowable, true entropy HP(y).
Expectation maximization (EM) (Dempster et al. (1977)) and variational

autoecoders (VAEs) (Kingma & Welling (2014)) optimize (5) for the case where
PΨ(y) is a marginal distribution over a latent variable z.

PΨ(y) =
∑
z

PΨ(z, y) (6)

Here PΨ(z, y) is typically a generative model where y is generatively derived
from z.

Data compression algorithms also implicity optimize (5). By Shannon’s
source coding theorem the most efficient code for instances drawn from a given
population uses a number of bits equal to the entropy of the population distribu-
tion. The training objective (5) can be interpreted as optimizing the compressed
bits per sample when drawing from the population but coding for the model.

Information theoretic co-training as defined by (1) and (3) differs from den-
sity estimation as defined by (5) in that information theoretic co-training uses
only probability models for the “facts” z — in information theoretic co-training
there is no attempt to model distributions on the sensations.

GANs. Generative adversarial networks (GANs) (Schmidhuber (1992);
Goodfellow et al. (2014)) are similar to variational autoencoders in that they
define a generative model PΨ(z, y) where y is generated from z and where we
are interested in the marginal distribution (6). However, in GANs there is no
attempt to optimize, or even measure, a cross-entropy (5). Instead one define a
distribution QΨ on pairs (y, `) by drawing y with equal probability either from
the population distribution P or the model distribution PΨ and setting ` = 1 is
y is drawn from P and ` = −1 if y is drawn from PΨ. A discriminator model
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PΦ(`|y) must predict which distribution y was drawn from. The GAN objective
is

Ψ∗ = argmax
Ψ

min
Θ

H+
Ψ,Θ(`|y) (7)

H+
Ψ,Θ(`|y) = E(y,`)∼QΨ

− lnPΘ(`|y)

In (7) the generator Ψ is trying to generate values such that discriminator
Θ cannot distinguish values generated from PΨ from values drawn from P.
InfoGANS (Chen et al. (2016)) add a term to the GAN objective to increase
the mutual information between certain components of the latent variable z
and the generated variable y. This encourages the model to use independent
components of the information in z.

A major issue with GANs is the lack of an objective measure of performance.
The ability to fool a particular discriminator architecture does not imply low
cross-entropy as defined by (5). It is quite plausible that large modes of the
population density are omitted from the generator distribution (the problem
of mode dropping). In contrast, information theoretic co-training provides a
quantitative performance measure.

3 Summary

Information theory already plays a central role in the training objectives typi-
cally used in deep learning. Information theoretic co-training introduces a novel
information theoretic objective for unsupervised learning in which one can avoid
any attempt to measure the entropy, or conditional entropy, of raw sense data.
Information theoretic co-training can also be viewed as a way of measuring
mutual information by developing a “language” for carrying that information
where the entropy of the facts stated in that language is small compared to the
entropy of raw sense data.
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