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Abstract
Multi-view face synthesis from a single image is
an ill-posed problem and often suffers from serious
appearance distortion. Producing photo-realistic
and identity preserving multi-view results is still a
not well defined synthesis problem. This paper pro-
poses Load Balanced Generative Adversarial Net-
works (LB-GAN) to precisely rotate the yaw angle
of an input face image to any specified angle. LB-
GAN decomposes the challenging synthesis prob-
lem into two well constrained subtasks that corre-
spond to a face normalizer and a face editor respec-
tively. The normalizer first frontalizes an input im-
age, and then the editor rotates the frontalized im-
age to a desired pose guided by a remote code. In
order to generate photo-realistic local details, the
normalizer and the editor are trained in a two-stage
manner and regulated by a conditional self-cycle
loss and an attention based L2 loss. Exhaustive ex-
periments on controlled and uncontrolled environ-
ments demonstrate that the proposed method not
only improves the visual realism of multi-view syn-
thetic images, but also preserves identity informa-
tion well.

1 Introduction
Multi-view face image synthesis has plenty of applications
in various domains including pose-invariant face recogni-
tion, virtual and augmented reality, and computer graphics.
Although humans can easily conceive different views of a
face in mind when seeing it, making the computer have
this conceive (synthesis) ability is an appealing and long-
standing challenge. Traditional methods resort to 3D Mor-
phable Model (3DMM) [Blanz and Vetter, 1999] to address
this challenge. They build 3D face model as reference and
then synthesize face images with new angles through model
fitting. Although these 3D methods can synthesize or rotate
a face image to some extent, their synthesis results are often
not photo-realistic.

Recently, face synthesis models based on convolutional
neural networks (CNNs) have drawn much attentions. These
methods are built on black-box models and do not depend
on 3D facial shape. Without explicitly modeling a face,

Figure 1: Face rotation results by our LB-GAN. According to the
degrees on the top for each column on the right-hand, the inputs are
rotated to a specified pose. GT stands for the ground truth.

they produce the output under the control of remote code
[Ghodrati et al., 2016; Yim et al., 2015]. For instance, if
the remote code of yaw angle is set to 30◦, then the net-
works will automatically rotate an input image with an ar-
bitrary pose to 30◦. Recently, with the application of Gener-
ative Adversarial Networks (GAN) in multi-view face image
synthesis, much progress has been made [Tran et al., 2017;
Zhao et al., 2017]. However, when desired synthesis pose
tends to be larger, it is still easy for humans to distinguish the
synthesized images from the genuine ones.

This paper addresses the challenging multi-view face im-
age synthesis problem by simplifying it into two subtasks, re-
sulting in a new method named Load Balance Generative Ad-
versarial Networks (LB-GAN). Concretely, we employ two
pairs of GAN whose generators cooperate with each other.
The first GAN consists of a generator termed as face normal-
izer and the corresponding discriminator. The face normalizer
only focuses on frontalizing face images. The second GAN
consists of another generator termed as face editor and its dis-
criminator. The face editor takes frontal view face images as
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additional inputs and rotates the input image to a specified
pose according to a given remote code. We combine the nor-
malizer and the editor together to rotate the yaw angle of an
input face to any specified one. Some synthesized samples by
LB-GAN are shown in Fig. 1.

We employ a two-stage strategy to train LB-GAN. In the
first stage, only the face normalizer and its discriminator are
trained through the conventional manner for GAN [Goodfel-
low et al., 2014]. After plausible results have been produced
by the normalizer, we begin training the whole model in the
second stage. Considering that noisy backgrounds of face im-
ages captured in unconstrained environments will degrade vi-
sual realism of the result severely, we propose a novel condi-
tional self-cycle loss and an attention based L2 loss to tackle
this problem. Experimental results on Multi-PIE and IJB-A
show that our method can produce photo-realistic multi-view
face images. Besides, the performance of pose-invariant face
recognition is boosted through our synthetic results. In sum-
mary, the main contributions of our work are:

1) We propose LB-GAN that simplifies the ill-posed multi-
view face synthesis problem into two well constrained
ones.

2) Trained in a novel two-stage method, our model can pre-
serve abundant identity information while rotating a face
to arbitrary poses.

3) Profiting from the conditional self-cycle loss and attention
based L2 loss, our model is robust to noisy environments.

4) Experimental results show that our model produces photo-
realistic multi-view face images and obtains state-of-the-
art cross-view face recognition performance under both
controlled and uncontrolled environments.

2 Related Work

2.1 Face Frontalization

Face frontalization can be regarded as a single view face im-
age synthesis problem, i.e., producing the frontal face im-
ages is the only consideration. To eliminate the influence
of poses in face recognition or other facial analysis tasks,
face frontalization has been widely studied in recent years.
3D-based models [Dovgard and Basri, 2004; Hassner, 2013;
Hassner et al., 2015; Zhu et al., 2015; Ferrari et al., 2016] are
proposed for frontalization in controlled environments. Be-
sides, deep learning models are also very competitive, e.g.,
CNNs [Zhu et al., 2013; 2014], auto-encoders [Zhang et al.,
2013; Kan et al., 2014] and recurrent neural networks (RNNs)
[Yang et al., 2015]. At present state-of-the-art face frontal-
ization methods in controlled [Huang et al., 2017] and in-the-
wild [Zhao et al., 2017] settings are both based on GAN.

For face frontalization and other face synthesis tasks, the
capacity of identity preservation is mainly evaluated through
face recognition. To this end, [Tran et al., 2017] extract pose-
robust identity representations from the face generator for
recognition, while [Hassner et al., 2015; Huang et al., 2017]
directly use the synthesized face images for recognition.

2.2 Generative Adversarial Networks
GAN is a novel deep framework proposed by [Goodfellow
et al., 2014]. GAN can be regarded as a two-player non-
cooperative game model. The main components of GAN,
generator and discriminator, are rivals of each other. The gen-
erator tries to map some noise distribution to the data distri-
bution. The discriminator tries to distinguish the fake data
produced by the generator from the real data. In practice, the
parameters of the generator and the discriminator are trained
alternately until convergence. The most significant contribu-
tions of GAN is the remarkable improvement on visual real-
ism. Conditional GAN is proposed by [Mirza and Osindero,
2014] to send conditional information to both the generator
and discriminator. To deal with unpaired data, [Zhu et al.,
2017] propose CycleGAN.

3 Proposed Methods
Assume there are nid subjects in the training set and each
face image x has corresponding identity label yid and
pose label yp. yid ∈ {1, 2, · · · , nid − 1, nid}. yp ∈
{−90◦,−75◦, · · · 0◦, · · · 90◦}. So yp has np = 13 discrete
possible values. Remote code c is a np-dimensional one hot
vector. We assign the c∗th element in c to 1 only if we want to
change the pose of input to the c∗th type. Our goal is to train a
model which takes a remote code c and maps the given x to a
new face image x̂. x̂ should meet the following three require-
ments: (1) the visualization of x̂ is realistic, (2) the identity
of x̂ remains the same as x, (3) the pose is altered according
to the specified c.

3.1 Model Structure
As illustrated in Fig. 2, our proposed LB-GAN consists of a
pair of GAN to address the multi-view face synthesis prob-
lem. The first GAN is composed of the face normalizer GN

and the corresponding discriminator DN . Similarly, the sec-
ond GAN is composed of the face editor GE and DE . During
the test phase, GN first takes x and transforms it into frontal
view face image (we denote the pose label of frontal view
face images as yp

∗
below), then GE takes x, the output of

GN and the remote code c to produce the desired x̂.
In the training stage, DN takes fake images produced

by GN or genuine images draw from datasets with pose
label yp

∗
. Similar with [Tran et al., 2017], the goal

of DN is giving explicit identities of input images rather
than simply judging whether they are produced by GN .
DN (x) is the prediction for the identity made by DN .

DN (x) = [D1
N (x), D2

N (x), · · · , Dnid

N (x), Dyid∗

N (x)], where
Di

N (x) stands for the probability that the identity label of x
equals to i. The identity labels of produced images are all
yid

∗
. Fed by x with yid, GN aims to fool DN into believing

the produced image having identity label yid. The objective
functions of DN and GN can be formulated as:

max
ΘDN

V (ΘDN
) = Ex,yid∼pm

[logDyid

N (x)]

+ Ex,yp,yid

∼pdata

[logDyid∗

N (GN (x)]
(1)
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Figure 2: The framework of our LB-GAN for multi-view face image synthesis.

max
ΘGN

V (ΘGN
) = Ex,yp,yid

∼pdata

[logDyid

N (GN (x))] (2)

where ΘDN
and ΘGN

denote the parameter sets of DN

and GN respectively, pdata = px,yp,yid(x, yp, yid), pm =

px,yid|yp=yp∗ (x, yid). The first item in Eq. (1) pushes DN to
recognize the identities of the subjects in the training set, and
the second one pushes DN to find the images produced by
GN . In the meantime, to maximize Eq. (2), GN has to keep
the identity information of the input well preserved. Although
DN does not directly discriminates the pose label, GN has to
transform the pose of its input into yp

∗
to be in accordance

with genuine data. In such an adversarial training procedure,
DN will be able to distinguish the real and the fake, and GN

will be able to produce photo-realistic images.
DE , which can be regarded as a multi-task classifier, pre-

dicts poses as well as identities. The predictions of the
identity and the pose made by DE are denoted as DE(x)
and DEp

(x) respectively. Their definitions are similar with
DN (x). Guided by the remote code c, the goal of GE is to
alter the pose of input to the c∗th type without being discov-
ered by DE . c is added to GE through the way proposed by
[Salimans et al., 2016]. Formally, GE and DE are optimized
as follows:

max
ΘDE

V (ΘDE
) = Ex,yp,yid

∼pdata

[logDyid

E (x) + logDyp

Ep
(x)

+ logDyid∗

E (GE(x, GN (x), c)]

(3)

max
ΘGE

V (ΘGE
) = Ex,yp,yid

∼pdata

[logDc∗

Ep
(G(x, GN (x), c))

+ logDyid

E (GE(x, GN (x), c))]

(4)

where ΘDE
and ΘGE

denote the parameter sets of DE and
GE respectively. Since DE is trained to discriminate poses
as well, GE need to change the pose of its input but keep the
visual realism and the identity information well-preserved.
Note that GE takes both x and the face frontalized by GN

as input. Different from previous approaches that synthesize
multi-view face images by a single generator, our GE get

more information from GN to obtain robustness of dealing
with variant poses. The frontalized face will be helpful for
rotating face with extreme poses, and the original input face
will contribute more for identical and symmetric conditions
(e.g., rotate 60◦ to 60◦ and rotate −30◦ to 30◦).

3.2 Two-stage Training Method
The training process of our LB-GAN is two-staged. In the
first stage, we only train the face normalizer and its discrim-
inator in the alternative and adversarial manner [Goodfellow
et al., 2014]. We stop the process when visually appealing re-
sults have been generated by GN . Then in the second stage,
we train the whole model. We find making the parameters of
GN near-optimal first will stabilize the second training pro-
cedure and guarantee better final performance. Specifically,
we optimize the parameters by Adam optimizer [Kingma and
Ba, 2015] with a learning rate of 2e-4 and momentum of 0.5.
The first training stage lasts for 20,000 iterations. In the sec-
ond stage, the learning rate for GN and DN is reduced to a
quarter. We train 4 iterations for optimizing GN and GE , and
then 1 iteration for DN and DE . The batch size is set to 24.
Note that extra regularization items, which will be discussed
in section 3.3, are added in the second stage.

3.3 Regularization Items
Attention based L2 Loss. L2 loss is a common choice for
measuring the difference of two images, and every pixel is
treated equally. However, to make synthesized face images
realistic and characteristic, some key facial parts should be
emphasized, like eyes, mouth, nose, etc. Further, for those
images captured in real life condition, the styles of clothes
and hair of subjects and the background tend to change fre-
quently. So minimizing L2 loss will make those regions
blurry. To this end, attention based L2 loss denoted as L2′

is proposed:

L2′(x, x̂) = ‖(x− x̂) ◦M‖2 (5)

where the operator ◦ denotes the Hadamard product, and M
is a mask whose entries are set to 1 for the region of interest
and 0 otherwise. Through adding M , our model is guided
to concentrate on synthesizing convincing facial images and



avoid putting too much attention on unnecessary details in the
background.

Obviously, the optimal M should exactly cover the facial
part of x and exclude the other parts. But choosing the opti-
mal M for calculating L2′ loss is very expensive. Laborious
manual annotation or face parsing algorithm with high accu-
racy is required. We sidestep this demand by loosening the
restriction of M . Concretely, M only covers a few image
patches that contain key parts of face. The location of the
patches can be determined by the landmarks, which are also
used for face image preprocessing. Since the input face im-
age will be scaled and aligned, the proper patch sizes and lo-
cations for one image also works well for the others, we keep
the the patch sizes and locations fixed for all images. The
specify choice of L2′ will be given in the experiment section.

Conditional self-cycle loss (Lcsc). Lcsc is come up with
such an observation: if c exactly matches the pose label yp,
e.g., the input x is a frontal view image and the remote code
c sets the output to be frontal view as well, then x itself is the
optimal result, so x̂ should be the same with x in such a case
(the case is denoted as “x is the optimal output below”). Our
Lcsc is formulated as:

Lcsc =

{
L′2(x, x̂), if x is the optimal output

0, otherwise
(6)

We use L2′ to measure the difference between x and x̂.
The name of Lcsc is similar with cycle consistency loss (Lcyc)
proposed by [Zhu et al., 2017]. However, Lcyc is designed to
enforce the networks to find the corresponding relationship
when training with unpaired data and is originally proposed
for domain transfer problem, such as image-to-image transla-
tion. In contrast, Lcsc enforces the networks to avoid redun-
dant operation on the input, i.e., the networks are encouraged
to keep the input identical in some circumstance. Besides, the
input and the output are in the same semantic domain in the
face image synthesis problem.

4 Experiments and Analysis
4.1 Experimental Settings

Datasets. Three datasets are involved in our experiments:
Multi-PIE [Gross et al., 2010], IJB-A [Klare et al., 2015]
and CASIA-WebFace [Yi et al., 2014]. Multi-PIE is estab-
lished for studying on PIE (pose, illumination and expres-
sion) invariant face recognition. 20 illumination conditions,
13 poses within ±90◦ yaw angles and 6 expressions of 337
subjects were captured in controlled environments. IJB-A is
another database with large pose variations. It has 5, 396
images and 20, 412 video frames of 500 subjects. CASIA-
WebFace is a large-scale dataset containing 10,575 subjects
and 494,414 images. The collection process started from the
well-structured information in IMDB and then continued by
using web crawler.

For experiments on Multi-PIE, we use the first 200 subjects
for training and the rest 137 for testing. Each testing identity
has one gallery image from his/her first appearance. Hence,
there are 72,000 and 137 images in the probe and gallery sets

Table 1: Benchmark comparison of identification rate (%) across
poses on Multi-PIE. Methods marked with † can only produce
frontal view face images. Methods marked with ∗ are ordinary face
recognition ones that are not designed for pose invariant recognition.

Method ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

DR-GAN 94.9 91.1 87.2 84.6 - -
FF-GAN† 94.6 92.5 89.7 85.2 77.2 61.2
TP-GAN† 98.7 98.1 95.4 87.7 77.4 64.6

LightCNN∗ 98.6 97.4 92.1 62.1 24.2 5.5
LB-GAN(Ours) 99.1 98.9 96.7 91.0 80.3 65.4

Table 2: Mean head pose estimation errors (in degree) on Multi-PIE
predicted by THPE.

±30◦ ±22.5◦ ±15◦ ±7.5◦ 0◦

Genuine data 3.0 - 3.2 - 2.1
Synthesized data 4.6 5.7 4.0 5.1 2.9

respectively. There are no overlap subjects between the train-
ing and testing sets. To test the performance on IJB-A, we
train our model on Multi-PIE and CASIA-WebFace. We fol-
low the testing protocol in [Tran et al., 2017].

Data Preprocessing. Face images in those datasets are
normalized to 96 × 96 before fed into our model. Image in-
tensities are linearly scaled to the range of [−1, 1]. We use
the landmarks of the centers of eyes and mouth to normalize
images by the method proposed by [He et al., 2017]. Note
that the normalization in this step is apparently different from
the function of GN . The mask M consists of three parts: two
15 × 15 patches centered at the eyes and a 20 × 20 patch
centered at the mouth center.

Implementation Details. We employ the improved ver-
sion [Tran et al., 2017] of CASIA-Net [Yi et al., 2014] to see
if our novel structure can push the limit set by them. The
CASIA-Net, which can be regarded as an encoder, is able to
transform an input image into an identity representation. To
map the representation back to image, we build the decoder
through replacing the convolution layer with transposed con-
volution layers. GN and GE have the encoder-decoder struc-
ture, DN and DE only have the encoder structure. Fully con-
nected layers are added for discriminators to predict the iden-
tities and the poses. The remote code c is injected into the
bottleneck layer of GE .

4.2 Comparison Results
To demonstrate the effectiveness of our method, we make
comparisons with several state-of-the-art ones. The perfor-
mances are evaluated both qualitatively and quantitatively.
Specifically, three aspects are considered: the visual quality,
the performances on pose-invariant face recognition and head
pose estimation.

Visual Quality. The results in Fig. 3 show how our LB-
GAN rotates the face images in Multi-PIE to specific poses.
The poses are not limited to the 13 discrete values because
we can produce any continuous value through interpolation
[Radford et al., 2016]. For instance, we average the remote



Figure 3: Face rotation results on Multi-PIE. Each input is rotated to the specified yaw angle which is indicated by the degree above the
output.

Figure 4: Synthesizing new samples through interpolating identity representations. For each row, the samples in the middle are synthesized
by the interpolation of the identity representations of the far left and the far right faces.

codes for 15◦ and 0◦ to get the one for 7.5◦. It will be hard
for human observers to find the evidence of forgery on our
results. Samples synthesized by interpolating identity repre-
sentations [Tran et al., 2017] are reported in Fig. 4. Given
two images of different subjects, we extract identity repre-
sentations from the bottleneck layer of GE and then generate
new representations through interpolation. Fed by those new
representation, GE will synthesize new images with “fused”
identities. We can see that the semantic changes in those im-
ages are very smooth and the visual realism is also very de-
sirable. Frontalization results on IJB-A are shown in Fig. 5.
We compare with results produced by DR-GAN [Tran et al.,
2017]. The background of the input and the produced im-
ages looks different. We argue that for face frontalization in
such challenging unconstrained environments, the concentra-
tion should be put on the facial parts. Despite that yaw an-
gles are very large, our model still produces plausible results.
DR-GAN produces comparable results, but the identities of
some produced samples look very different from the original
inputs.

Pose-invariant Face Recognition. To evaluate the capac-
ity of identity preservation, we first use our model to frontal-
ize profile face images in Multi-PIE and then evaluate face
recognition performances through those produced images.
We employ LightCNN [He et al., 2017] as our feature extrac-
tor. We make comparisons with DR-GAN, TP-GAN [Huang
et al., 2017] and FF-GAN [Yin et al., 2017]. The results are

Figure 5: Synthesis results on the IJB-A dataset.

reported in Table 1. Note that TP-GAN and FF-GAN can
only produce frontal view images. It can be observed that our
results outperform them, especially for extreme poses, which
indicates that our LB-GAN is able to preserve better identity
information.

Head Pose Estimation. To test whether our model is
able to give correct responses to the remote code, we make
head pose estimations on Multi-PIE. A third-party head pose
estimator (THPE) 1 is employed. We simply call the high-

1https://github.com/guozhongluo/



Figure 6: Qualitative comparisons on synthesis results between LB-
GAN and its variants. The degrees on the left side are the yaw angles
of the inputs, and those on the right side are set by the remote codes.

Table 3: Identification rate (%) comparison of model variations of
our LB-GAN on Multi-PIE.

Method ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

LB-GAN 99.1 98.9 96.7 91.0 80.3 65.4
LB-GAN-ST 93.7 92.1 85.3 83.2 72.0 59.9

LB-GAN-NOREG 96.8 93.9 91.2 87.6 77.6 63.5

level interface to train the model and then get the predicted
yaw angles. The output of THPE is continuous angle value.
Note that THPE is trained on the 300W dataset [Sagonas
et al., 2013] which consists only face images with yaw an-
gles within ±30◦. So only the images whose yaw angles are
within this range are tested. The mean pose estimation errors
are reported in Tabel 2. Those images with yaw angles of
±7.5◦ and ±22.5◦ are produced through interpolation. We
can see that the mean errors made by THPE on the genuine
and the synthesized data across all poses are very similar,
which indicates that LB-GAN has the ability to control the
pose of the output. The error of the images produced by in-
terpolation is higher but still within an acceptable range.

4.3 Ablation Study
In this section, we demonstrate the effectiveness of our pro-
posed two-stage training method and regularization items
through an ablation study. Both qualitative and quantitative
results are compared to make a comprehensive understand-
ing. Specifically, we investigate the following model varia-
tions:

• LB-GAN-ST: All the components of the networks are
trained jointly in a single stage through the conventional
manner [Goodfellow et al., 2014].

• LB-GAN-NOREG: The network is trained in the same
way as LB-GAN. Lcsc is removed. L2′ loss is replaced
by L2 loss.

A visual comparison is shown in Fig. 6. The face recogni-
tion performances on Multi-PIE are reported in Table 3. It
can be observed that LB-GAN produces the most visually

head-pose-estimation-and-face-landmark

appealing results as well as achieve the best verification per-
formance. The inferior performance of LB-GAN-ST indi-
cates that two-stage training method is very important for our
model. The effectiveness of regularization items is validated
by the comparison between LB-GAN-NOREG and LB-GAN.
As shown by the top row of images, the model tends to make
superfluous manipulations and changes the contour of the in-
put face obviously without those regularization items. Those
observations prove that the regularization items can guide our
model to put more attention on optimizing the facial part of
its output.

5 Conclusion
This paper has proposed LB-GAN for multi-view face image
synthesis by decomposing the synthesis process into two sub-
tasks. Input face images are first transformed into a frontal
view by the face normalizer and then rotated to a specified
angle by the face editor. A novel two-stage training method
has also been accordingly proposed to help accomplish the
two subtasks smoothly. To further improve the performance,
conditional self-cycle loss and improved L2 loss have been
integrated into LB-GAN. Experimental results have shown
that our method is able to alter the pose of an input face
image and keep the visual appearance photo-realistic simul-
taneously. Besides, our method obtains state-of-the-art face
recognition results on publicly available datasets. In the fu-
ture, we will investigate on the method to control more facial
attributes, e.g., expression, race and gender.

References
[Blanz and Vetter, 1999] Volker Blanz and Thomas Vetter. A

morphable model for the synthesis of 3d faces. In SIG-
GRAPH, pages 187–194, 1999.

[Dovgard and Basri, 2004] Roman Dovgard and Ronen
Basri. Statistical symmetric shape from shading for 3d
structure recovery of faces. In ECCV, pages 99–113,
2004.

[Ferrari et al., 2016] Claudio Ferrari, Giuseppe Lisanti, Ste-
fano Berretti, and Alberto Del Bimbo. Effective 3d based
frontalization for unconstrained face recognition. In ICPR,
pages 1047–1052, 2016.

[Ghodrati et al., 2016] Amir Ghodrati, Xu Jia, Marco Ped-
ersoli, and Tinne Tuytelaars. Towards automatic image
editing: Learning to see another you. In BMVC, 2016.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In NIPS, pages 2672–2680, 2014.

[Gross et al., 2010] Ralph Gross, Iain Matthews, Jeffrey
Cohn, Takeo Kanade, and Simon Baker. Multi-pie. IVC,
28(5):807–813, 2010.

[Hassner et al., 2015] Tal Hassner, Shai Harel, Eran Paz, and
Roee Enbar. Effective face frontalization in unconstrained
images. In CVPR, pages 4295–4304, 2015.

[Hassner, 2013] Tal Hassner. Viewing real-world faces in 3d.
In ICCV, pages 3607–3614, 2013.



[He et al., 2017] Ran He, Xiang Wu, Zhenan Sun, and Tieniu
Tan. Learning invariant deep representation for nir-vis face
recognition. In AAAI, pages 2000–2006, 2017.

[Huang et al., 2017] Rui Huang, Shu Zhang, Tianyu Li, and
Ran He. Beyond face rotation: Global and local perception
gan for photorealistic and identity preserving frontal view
synthesis. In ICCV, 2017.

[Kan et al., 2014] Meina Kan, Shiguang Shan, Hong Chang,
and Xilin Chen. Stacked progressive auto-encoders (spae)
for face recognition across poses. In CVPR, pages 1883–
1890, 2014.

[Kingma and Ba, 2015] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In ICLR,
2015.

[Klare et al., 2015] Brendan F. Klare, Anil K. Jain, Ben
Klein, Emma Taborsky, Austin Blanton, Jordan Cheney,
Kristen Allen, Patrick Grother, Alan Mah, and Mark
Burge. Pushing the frontiers of unconstrained face de-
tection and recognition: Iarpa janus benchmark a. pages
1931–1939, 2015.

[Mirza and Osindero, 2014] Mehdi Mirza and Simon Osin-
dero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[Radford et al., 2016] Alec Radford, Luke Metz, and
Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks.
In ICLR, 2016.

[Sagonas et al., 2013] Christos Sagonas, Georgios Tz-
imiropoulos, Stefanos Zafeiriou, and Maja Pantic. 300
faces in-the-wild challenge: The first facial landmark
localization challenge. In ICCVW, pages 397–403, 2013.

[Salimans et al., 2016] Tim Salimans, Ian Goodfellow, Woj-
ciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NIPS, pages
2234–2242, 2016.

[Tran et al., 2017] Luan Tran, Xi Yin, and Xiaoming
Liu. Disentangled representation learning gan for pose-
invariant face recognition. In CVPR, volume 4, page 7,
2017.

[Yang et al., 2015] Jimei Yang, Scott E Reed, Ming-Hsuan
Yang, and Honglak Lee. Weakly-supervised disentangling
with recurrent transformations for 3d view synthesis. In
NIPS, pages 1099–1107, 2015.

[Yi et al., 2014] Dong Yi, Zhen Lei, Shengcai Liao, and
Stan Z Li. Learning face representation from scratch.
arXiv preprint arXiv:1411.7923, 2014.

[Yim et al., 2015] Junho Yim, Heechul Jung, ByungIn Yoo,
Changkyu Choi, Dusik Park, and Junmo Kim. Rotating
your face using multi-task deep neural network. In CVPR,
pages 676–684, 2015.

[Yin et al., 2017] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming
Liu, and Manmohan Chandraker. Towards large-pose face
frontalization in the wild. In ICCV, 2017.

[Zhang et al., 2013] Yizhe Zhang, Ming Shao, Edward K
Wong, and Yun Fu. Random faces guided sparse many-to-
one encoder for pose-invariant face recognition. In ICCV,
pages 2416–2423. IEEE, 2013.

[Zhao et al., 2017] Jian Zhao, Lin Xiong, Panasonic Kar-
lekar Jayashree, Jianshu Li, Fang Zhao, Zhecan Wang,
Panasonic Sugiri Pranata, Panasonic Shengmei Shen,
Shuicheng Yan, and Jiashi Feng. Dual-agent gans for pho-
torealistic and identity preserving profile face synthesis. In
NIPS, pages 65–75, 2017.

[Zhu et al., 2013] Zhenyao Zhu, Ping Luo, Xiaogang Wang,
and Xiaoou Tang. Deep learning identity-preserving face
space. In ICCV, pages 113–120, 2013.

[Zhu et al., 2014] Zhenyao Zhu, Ping Luo, Xiaogang Wang,
and Xiaoou Tang. Multi-view perceptron: a deep model
for learning face identity and view representations. In
NIPS, pages 217–225, 2014.

[Zhu et al., 2015] Xiangyu Zhu, Zhen Lei, Junjie Yan, Dong
Yi, and Stan Z Li. High-fidelity pose and expression nor-
malization for face recognition in the wild. In CVPR,
pages 787–796, 2015.

[Zhu et al., 2017] Jun-Yan Zhu, Taesung Park, Phillip Isola,
and Alexei A Efros. Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. In ICCV,
2017.


