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Binary Constrained Deep Hashing Network for
Image Retrieval without Human Intervention

Thanh-Toan Do, Dang-Khoa Le Tan, Trung Pham, Tuan Hoang, Ngai-Man Cheung

Abstract—Learning compact binary codes for image retrieval
problem using deep neural networks has attracted increasing
attention recently. However, training deep hashing networks is
challenging due to the binary constraints on the hash codes, the
similarity preserving properties, and the requirement for a vast
amount of labelled images. To the best of our knowledge, none of
the existing methods has tackled all of these challenges completely
in a unified framework. In this work, we propose a novel end-to-
end deep hashing approach, which is trained to produce binary
codes directly from image pixels without human intervention. In
particular, our main contribution is to propose a novel pairwise
loss function, which simultaneously encodes the distances between
pairs of binary codes, and the binary quantization error. We
propose an efficient parameter learning algorithm for this loss
function. In addition, to provide similar/dissimilar images for
our pairwise loss function, we exploit 3D models reconstructed
from unlabeled images for automatic generation of enormous
similar/dissimilar pairs. Extensive experiments on three image
retrieval benchmark datasets demonstrate the superior perfor-
mance of the proposed method.

I. INTRODUCTION

Content-based image retrieval (CBIR) is an important prob-
lem in computer vision with vary applications as well as
interdisciplinary connections with other subfields. Technically,
given a input image treated as a query, the CBIR searches
for visually similar images in a database. In the state-of-the-
art image retrieval systems, images are represented as high-
dimensional feature vectors which later can be searched via
classical distance such as the Euclidean or Cosin distance [1],
[2], [3], [4], [5], [6], [7].

The deep learning has given great attention to the computer
vision community due to its superiority in many vision tasks
such as classification, detection, segmentation [8], [9], [10],
[11], [12], [13], and image retrieval [14], [15], [16] as well.
Using the real-valued features from off-the-shelf networks
to represent images for image retrieval task has achieved
impressive retrieval results [16], [15]. Few recent researches
show that, fine-tuning deep networks for image retrieval task
further boosts retrieval performance [14]. However, to fine-
tune a deep network, it requires an enormous amount of
labelled images which is sometimes difficult to achieve. It is
because annotating images with labels or tags requires skilled
manpower, and the label of an image is not always well
defined.
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Despite achieving high retrieval accuracy, directly using of
real-valued high dimensional features from deep networks is
not applicable for large scale retrieval problem, due to the
expensive storage and time-consuming searching. In this paper,
we aim to go beyond real-valued representations of images in
a deep learning-based image retrieval system. Specifically, we
are interested in learning very compact image representations,
i.e., mapping images to low-dimensional binary codes.

Due to its fast computation and efficient storage, using
binary hash codes to represent images is an attractive approach
in large scale vision problems [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28]. However, learning binary
codes in deep networks is challenging. This is because one
has to deal with the binary constraint on the hash codes, i.e.,
the final network outputs must be binary. A naive solution is
to adopt the sign activation layer to produce binary codes.
However, due to the non-smoothness of the sign function,
it causes the vanishing gradient problem when training the
network with the standard back propagation [29]. Another
important requirement of hashing is the similarity preservation,
i.e., similar/dissimilar images should have similar/dissimilar
binary codes. To achieve this requirement under deep models,
previous deep hashing methods require vast amounts of man-
ually well-defined labelled datasets to supervise the training
or fine-tuning, i.e., images with the same semantic (e.g.,
category / class) label are encouraged to have similar hash
codes. However, such large labelled datasets are not always
available, especially in some problems which are not directly
based on classification such as image retrieval — which is the
considered problem in this work.

In this paper, we aim to address the above challenges
in learning deep neural networks to produce binary hash
codes directly from images without human annotation. In
particular, we propose to use a pairwise loss function with
binary constraints to model the relative similarities between
pairs of hash codes, and explicitly force the network output to
be binary values. To tackle this binary-constrained optimiza-
tion problem, our work takes a principal approach that uses
penalty method and alternating optimization. Our approach
is fundamentally different from existing works which relax
the binary constraints with the range constraints in a rather
heuristic manner [20], [21], [28], [30], [26].

Since our loss function is pairwise, it only requires relative
relationship for pairs of images, i.e., matching and non-
matching images. Clearly such relationship can be obtained
without resorting semantic labels. Inspired by the recent
works that mine match and non-match images without human
intervention [14], [31], our work exploits 3D models built
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Fig. 1. The overview of the proposed deep hashing. Training data is generated automatically by exploiting 3D reconstructed models. The network architecture
for learning binary codes comprises of four components: (i) convolutional layers which is followed by a MAC layer (black layer) for extracting image
representations; (ii) a fully connected layer for Dimensional Reduction (blue layer); (iii) a Hash Code mapping layer (red layer); (iv) a novel pairwise loss
function with binary constraints.

from unlabelled images using SfM. For example, images
capturing the same scene are considered matched, otherwise
non-matched. As a result, the training of our hashing network
can be done completely and automatically by using unlabelled
image as input. Our deep hashing architecture is illustrated in
Figure 1.

In summary, we make the following contributions. 1) We
propose a novel end-to-end deep learning framework for
learning compact binary codes in which the input for training
the framework is only unlabelled images. We leverage the
3D reconstructed models to automatically create the training
data. 2) We propose a novel pairwise loss function for training
deep hashing networks. We reformulate the problem to simul-
taneously encode distances between hash codes, and binary
quantization error. We also develop an alternating optimisation
strategy to optimize these variables along with the network
parameters. 3) We perform extensive experiments on image
retrieval task to demonstrate the superior improvement of our
hash codes over the binary codes obtained from the state-of-
the-art methods.

II. RELATED WORK

In this section, we review previous works related to the
context of our work. Those include (i) end-to-end deep hashing
and (ii) end-to-end image retrieval with unsupervised fine-
tuning.

End-to-end deep hashing: Joint learning image represen-
tations and binary hash codes in an end-to-end deep learning-
based supervised hashing framework has shown considerable
improvements in various computer vision tasks [20], [21], [28],
[26], [22], [32]. By joint optimization, the produced hash codes
are more sufficient to preserve the semantic similarity between
images. In those works, the network architectures often consist
of a feature extraction sub-network and a subsequent hashing
layer to produce hash codes. Ideally, the hashing layer should
adopt a sign activation function to output exactly binary codes.
However, due to the vanishing gradient difficulty of the sign
function, an approximation procedure must be employed. For
example, sign can be approximated by a tanh-like function
y = tanh(βx), where β is a free parameter controlling the
trade off between the smoothness and the binary quantization
loss [28]. However, it is non-trivial to determine an optimal

β. A small β causes large binary quantization loss while a big
β makes the output of the function close to the binary values,
but the gradient of the function almost vanishes, making
back-propagation infeasible. The problem still remains when
the logistic-like functions [20], [21], [26], [32] are used. In
[22], the absolute function and l1 regularization are used for
dealing with the binary constraint on the codes. However, both
absolute function and l1 regularization are non-differentiable.
The authors worked around this difficulty by assuming that
both of them are differentiable everywhere, but there may be
some performance degradation. Another drawback of above
mentioned supervised deep hashing networks is the require-
ment for a large amount of semantic annotated data which
will be used for encoding the semantic similarities in the
loss function. However, such large annotated data is usually
unavailable in large scale vision problems such as visual
search.

Recently, in [27], the authors proposed DeepBit which is
an unsupervised end-to-end hashing, i.e., no semantic (class
/ category) label information is required. Starting with a pre-
trained network (i.e., VGG [9]), the softmax layer of VGG is
replaced by a hash layer. Their loss function enforces several
criteria on the codes produced by the hash layer, i.e., the output
codes should: minimize the quantization loss; be distributed
evenly; be invariant to rotation. The authors assumed that the
fully connected features produced by the pre-trained network
are already discriminative enough for image retrieval task.
Hence, no similarity preserving criterion is considered on
the hash codes. However, this assumption may not hold. As
showed in [15], [31], [14], because the pre-trained models, e.g.
VGG [9], AlexNet [8], are specialized for image classification,
for new tasks such as image retrieval, fine-tuning for those pre-
trained networks is necessary to enhance the discrimination of
deep features and so improve the performance.

Unsupervised fine-tuning: In the last few years, image
retrieval has witnessed an increasing of performance due to
better image representations, i.e., features obtained from pre-
trained CNN models, which are trained on image classification
task, are recently adopted. For example, [33], [16] used
convolutional activations, [34] used fully connected activa-
tions. Fine-tuning the networks has also shown further im-
provements [15]. However, fine-tuning the networks requires
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the availability of annotated data. This causes difficulty for
unsupervised fine-tuning. Recently, in [14], in order to prepare
the data to fine-tune the network for the place recognition
task, the authors used a weakly supervised approach, in which
they used Google Street View Time Machine for getting GPS-
tagged panoramic images taken at nearby spatial locations on
the map. Two images taken far from each other are considered
as non-matching, while the matching images are selected by
the most similar nearby images.

In [31], the authors made further improvements over [14]
showing how matching and non-matching pairs can be dis-
covered in a totally unsupervised way. Using a large amount
of images downloaded from Flickr with keywords of popular
landmarks and cities, they applied Structure from Motion [35]
for building multiple 3D models. Images belonging to the same
3D model and sharing enough 3D points are considered as
matching, while images belonging to different 3D models are
considered as non-matching.

III. BINARY CONSTRAINED DEEP NETWORK WITHOUT
HUMAN INTERVENTION

Figure 1 presents the overall proposed pipeline which trains
a deep network for learning binary codes without human inter-
vention. In the following, we describe the proposed framework
including: the network architecture, the automation of training
data generation, the pairwise loss function, and finally the
optimization process for learning the network parameters.

A. Network architecture

The proposed network (Figure 1) comprises of four com-
ponents: (i) a feature extraction component for extracting
image representations; (ii) a fully connected layer for reducing
dimension of the image features (Dimensionality Reduction –
DR layer). The number of units of this layer equals to the
code length required to represent each input image; (iii) a fully
connected layer mapping the reduced real-valued features to
binary values (Hash Code – HC layer); (iv) a pairwise loss
function which acts on the output of HC layer.

Note that the choice of the feature extraction component is
flexible in our framework. It can be the standard convolutional
neural network architectures such as AlexNet [8] or VGG [9],
in which outputs of their last fully connected layer are used as
inputs of DR layer. Alternatively, the recent architecture which
replaces the fully layers of VGG or AlexNet by a Maximum
Activations of Convolutions (MAC) layer [33] can also be
used. In this case, the MAC feature will be used as the input for
DR layer. For the image retrieval task focused in this paper, we
adopt the VGG network with a MAC layer as we empirically
find that using MAC layer gives better performance than fully
connected layer. The MAC layer can be profiled as follows:
Given an input image, the output of convolutional layers is a
3D tensor W × H × K, where K is the number of output
feature maps which equals to 512, and W ×H is spatial size
of the last convolutional layer. Let Xk be kth feature map. The
MAC image representation is constructed by

u = [u1, . . . , uk, . . . , uK ]
T
,where uk = max

x∈Xk

x (1)

It is worth noting that although the unsupervised fine-tuning
and pairwise loss for learning deep network have been used
in [31], our work differs from [31] at following important
aspects: Firstly, while their target is to learn mid-dimensional
feature vectors (i.e., 512 dimensions), our work aims to learn
compact binary codes. To this end, we have two additional
layers, dimensionality reduction (DR) and hash code (HC),
which play the role for producing compact binary codes.
Secondly, our pairwise loss (detailed in Section III-C) has
binary constraints, unlike constraint-free loss as [31]. The new
layers and binary constrained loss function are crucial for
hashing, i.e., it ensures the model to produce compact binary
codes. Thirdly, we propose a parameter learning scheme to
cope with a loss function with binary constraints (detailed
in Section III-D). This contrasts to [31] which simply uses
standard back-propagation to train the network.

B. Training data

The training input for our network is pairs of matching /
non-matching images. One way to achieve training pairs is to
access to semantic (class) labelled images so that we could
train a hash function which returns similar hash codes for
images with the same label, or vice versa. Unfortunately, such
labelled dataset is not always available, especially for some
problems which are not directly based on classification such
as visual search.

Inspired by [31], we generate a training set of matching
and non-matching image pairs automatically by exploiting 3D
reconstructed models. In particular, we make use of the 3D
models given by [31], in which there are 713 3D models
reconstructed from images downloaded from Flickr. Most
of reconstructed models are popular landmarks and cities.
The authors released 3D models and 30K images which are
subset of images they used to build models. 5, 974 and 1, 691
images are selected as training queries and validation queries,
respectively.

We sample matching images as follows. Given a query
image and its 3D model membership, we extract images that
belong to the same 3D model and co-observe enough 3D
points (i.e., P(i)∩P(q)P(q) ≥ τ , where P(i) is the set of 3D points
observed by image i; τ is a threshold). Among these, one
image is randomly sampled and used as the matching image
for the query. The value of τ is set to 0.2 in our experiments.
The set of matching pairs is kept during the training. This
matching pair generation is similar to [31].

For non-matching training pairs, we perform two stages of
generation. The offline stage generates pairs for training the
network at first iterations. After a certain iterations, we use
the current network to perform the online non-matching pair
generation (i.e., regenerating non-matching pairs) and using
new pairs to continue the training. In particular, the offline
generation is performed as follows: Given a query image, we
select top k “nearest” images from 3D models different than
the model containing the query. The distance between images
is computed by using feature vectors extracted from the pre-
trained network [31]. Among these k non-matching images,
we randomly sample m images (with at most one image per
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model) as the non-matching ones for the query. Note that
our non-matching mining strategy is different from [31], in
which the authors selected m top nearest ones (i.e., hardest
negative). We empirically find that randomly selecting hard
negative images gives better results than selecting the hardest
ones. This is consistent with the observation in [10], [36], i.e.,
selecting the hardest negative can in practice lead to bad local
minima in training. After a certain of iterations, we perform
the online non-matching pair generation. The online generation
is similar to the offline ones, except that the distance between
images is computed by using the binary codes generated by
the hash code layer of the current network. The values of k
and m are empirically set to 70 and 6 in our experiments.

C. Pairwise loss

Given the training image pairs, we aim to learn the network
which not only produces binary codes but also ensures the
discrimination of the codes, i.e., matching images should likely
have similar binary codes, or vice versa. As the Hamming
distance between two vectors of binary codes is one-to-one
corresponding to Euclidean distance, we propose to minimize
the following binary constrained loss function which acts on
the pairs

min
W
L(i, j) = yij ‖fi − fj‖2 + (1− yij)max

(
0, c− ‖fi − fj‖2

)
(2)

s.t. fi, fj ∈ {−1, 1}L (3)

where W is the network parameters; fi and fj are output hash
codes for input images i and j; label yij ∈ {0, 1} indicates
that the image pair i, j is matching (yij = 1) or non-matching
(yij = 0); L is the code length; c is a constant.

It is worth noting that without the binary constraint, the loss
function becomes a hinge embedding loss [37]. Technically,
the loss function will encourage matching pairs to have close
hash codes, and non-matching pairs to have distant hash codes.
When a non-matching pair has a large enough distance, i.e.
≥ c, it is not be taken into account in the loss. The constraint
(3) is to ensure the network output is binary.

Optimizing the loss function (2) with the binary constraint
(3) using stochastic gradient method is difficult since the
constraints are not differentiable. In order to overcome this
challenge, we utilize the idea of the penalty method [38].
As will be discussed, this leads to a formulation which
avoids solving the exact binary constraint but instead mini-
mizes the binary quantization loss. This makes sense because
when the binary quantization loss approaches zero, the bi-
nary constraints are automatically (approximately) satisfied.
Specifically, we introduce a new auxiliary binary variables
B = {bi}Ni=1 ∈ {−1, 1}L×N where N is number of current
training images, and minimize the following loss function

min
W,B
L(i, j) =yij ‖fi − fj‖2 + (1− yij)max

(
0, c− ‖fi − fj‖2

)
+ α

(
‖fi − bi‖2 + ‖fj − bj‖2

)
(4)

s.t. bi,bj ∈ {−1, 1}L (5)

where α is a weighting parameter. The third term of (4) forces
the output of Hash Code layer (i.e., fi, fj) as close to binary

values as possible, i.e., it minimizes the binary quantization
loss. Although the new loss function still contains constraints,
variables B and W are decoupled. This allows us to apply
alternative optimization over these variables. We will show
shortly that W now can be optimised using the stochastic
gradient decent method and B has a closed-form solution.

D. Parameter learning

In order to minimize the loss function (4) under the con-
straint (5), we propose an alternating optimization approach,
i.e., we learn each variable (network parameter W or B) at a
time while holding the other fixed.

Fix W, solve B: Let F = {fi}Ni=1, if W is fixed, the optimal
solution for B is sgn(F).

Fix B, solve W: When B is fixed, the binary constraint
(5) can be ignored, thus, the network parameters W can be
optimized by minimizing the loss (4) using the standard back-
propagation. A number of epochs is run until W converges to
local minima before switching to B.

The whole learning process is summarized in the Algorithm
1. In that Algorithm, W(t), F(t), B(t) are values of W,F,B
at tth iteration. We implement the proposed approach using the
MatConvNet toolbox [39]. At begining (line 2 in Algorithm
1), we initialize our feature extraction component with the pre-
trained MAC network [31] in which its loss layer is removed.
The DR layer is initialized by using PCA weights on the
training dataset (with pre-trained MAC features). The HC layer
is initialized by a random orthogonal matrix.

During an iteration k, we fix the training pairs and alterna-
tive solving B and W. When fixing B and learning W (line
7 in Algorithm 1), we train the network with a fix number
of epochs np. The values of K, T and np are set to 3, 5
and 10, respectively. The values of c and α in (4) are set to
L
2 and 1, respectively. In an iteration k, for each query, we
generate m = 6 non-matching pairs (line 9 in Algorithm 1).
The mini-batch size when learning W is 28 pairs (i.e. 4 query
images, each provides 1 matching pair and 6 non-matching
pairs). The best network is selected based on mean Average
Precision (mAP) on the validation set.

IV. EXPERIMENTS

In order to evaluate the proposed method, named P2B
(Pixels to Binary codes), we conduct extensive image retrieval
experiments on standard image retrieval benchmarks.

A. Dataset and evaluation protocol

We conduct experiments on Holidays [3], Oxford5k [40]
and Oxford105k [40] datasets which are widely used in
evaluating image retrieval systems [6], [1], [5].

Holidays The Holidays dataset consists of 1,491 images
of different locations and objects, 500 of them being used as
queries. Although the dataset includes a variety of scene types,
most of images in dataset are natural scenes.

Oxford5k The Oxford5k dataset consists of 5,063 images
of buildings and 55 query images corresponding to 11 distinct
buildings in Oxford.
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Algorithm 1 P2B Deep Hashing Learning
Input:

reconstructed 3D models and their images; L: code length; K:
number of online non-matching pairs generation; T : number of
iterations for training network, given a fixed set of matching /
non-matching pairs.

Output:
Set of network parameters W.

1: Offline generate matching and non-matching pairs using pre-
trained MAC network

2: Initialize the network W(0)

3: for k = 1→ K do
4: for t = 1→ T do
5: Compute F(t−1) using W(t−1)

6: Compute B(t) = sgn(F(t−1))
7: Fix B(t), optimize W(t) (using W(t−1) as initialization)

using back-propagation. Save W(t).
8: end for
9: Regenerate non-matching pairs using W(T )

10: Reinitialize W(0) = W(T )

11: end for

Oxford105k In order to evaluate the proposed method at
larger scale, we merge Oxford5k dataset with 100k distracted
images downloaded from Flickr [40], forming the Oxford105k
dataset.

The ground truth of queries have been provided with the
datasets. Following [17], [27], we evaluate the performance of
methods at compact code lengths, i.e. 8, 16, and 32 bits, with
mAP.

B. Compared methods

We compare the proposed approach P2B against several
state-of-the-art unsupervised hashing methods, i.e. Iterative
Quantization (ITQ) [19], Binary Autoencoder (BA) [17],
Spherical Hashing (SPH) [41], K-means Hashing (KMH) [24],
DeepBit [27].

As we focus on image retrieval, our primary comparisons
are unsupervised hashing methods. Nevertheless, for the sake
of completeness and demonstration of the performance, we
also conduct comparisons with supervised hashing methods.
However, it is important to note that supervised hashing meth-
ods are not suitable for the image retrieval task. The reason is
that image retrieval task is different from the classification, i.e.,
the label information in the CBIR system is not well-defined
in general. In fact, as pointed out by recent work [42], if the
label is well-defined for a specific retrieval, a simple classifier
can achieve better performance than state-of-the-art supervised
hashing methods, even with shorter code lengths. To the best of
our knowledge, none of supervised hashing methods has been
thoroughly evaluated on standard image retrieval datasets (i.e.
Holidays, Oxford5K, and Oxford105K).

Different from supervised hashing, unsupervised hashing is
much more appropriate for image retrieval problem because
they do not require any manually labelled images for training.
However, in this section, we also give comparisons with super-
vised hashing methods (Seciton IV-D) for reference purposes.
We compare P2B with Kernel-based Supervised Hashing
(KSH) [43], Binary Reconstructive Embedding (BRE) [44],

Holidays Oxford5k
L 16 32 16 32

DeepBit (pretrained) 12.0 21.4 10.4 13.7
DeepBit (fine-tuned) 14.1 23.2 13.2 17.4

P2B 18.7 31.0 25.5 41.2
TABLE I

MAP RESULTS OF P2B AND DEEPBIT [27] ON HOLIDAYS AND OXFORD5K
DATASETS.

ITQ-CCA [19], Supervised Semantics-preserving Deep Hash-
ing (SSDH) [26].

C. Comparison with unsupervised hashing methods

All compared unsupervised methods (except DeepBit) re-
quire image features as input, instead of raw images. To make a
fair comparison, we use the pre-trained network [31] to extract
the MAC features of 30K images used to create 3D models
and use them as input for non deep-based compared methods.

Figure 2 shows the comparative retrieval results in term of
mAP. On the Oxford5k and Oxford105k datasets, the results
clearly show that the proposed P2B significantly outperforms
other methods, i.e., P2B outperforms the most competitive
ITQ [19] ≥ 4.5% mAP at all code lengths. The improvements
are clearer at the lower code lengths, i.e., at L = 8, P2B
outperforms ITQ 5.6% and 6.7% mAP on Oxford5k and
Oxford105k, respectively. The superior results of P2B on
Oxford5k and Oxford105k may be because the Oxford5k
building dataset may share similar visual characteristic with
the training dataset which is mostly created from 3D models
of landmarks.

On the Holidays dataset which mostly contains natural
images, the proposed P2B also outperforms ITQ [19]. Note
that the proposed P2B and ITQ have same complexity when
computing binary codes. Given the image representation, ITQ
first applies PCA for dimensionality reduction and then a
rotation to rotate real-valued codes to binary codes. These two
operations correspond to our DR and HC layers.

Comparison with DeepBit [27]:
Here we compare P2B with DeepBit [27], which is a deep

learning-based unsupervised hashing method. We report the
results of DeepBit with two settings. In the first setting, we
use their released pre-trained models. In the second setting,
we fine-tune these released models using 30K images used
to construct 3D models. The comparative results between
two methods are presented in Table I. The results show that
although the fine-tuning helps DeepBit to boost its perfor-
mance, the proposed P2B significantly outperforms fine-tuned
DeepBit on both datasets.

Figure 3 shows top 10 retrieved images of P2B and DeepBit
in response to example queries from Oxford5k and Holidays
datasets. As can be seen, P2B returns much more relevant
results than DeepBit. Interestingly, the misretrieved images re-
turned by P2B are still visually similar to the queries although
they are from different scenes. For example, in the Oxford5k
case, both the query and the misretrieved image have repetitive
small windows. In the Holidays case, the misretrieved images
and the query capture a small lake surrounded by mountains.

Visualization of hash codes of P2B and DeepBit:
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Fig. 2. mAP comparison between the proposed P2B and the state-of-the-art unsupervised hashing methods on Oxford5k, Oxford105k, and Holidays datasets.

Query Top 10 Retrieved Images

P2B

DeepBit

P2B

DeepBit

Oxford5k

Holidays

Fig. 3. Top 10 retrieved images of the proposed P2B and DeepBit[27] in response to example queries on Oxford5k and Holidays datasets.

(a) DeepBit (b) P2B

Fig. 4. t-SNE visualization of hash codes generated by the proposed P2B and
DeepBit [27] on 5 classes of Oxford5k dataset. The points with same color
are same class. The code length is L = 16.

We utilize t-SNE [45] to visualize the hash codes generated
by P2B and DeepBit on the Oxford5k dataset (only 5 classes
with largest numbers of samples are picked). Figure 4 clearly
shows that the hash codes generated by P2B are more sepa-
rated than the ones generated by DeepBit. This suggests that
the proposed method can learn more discriminative hash codes
than DeepBit.

D. Comparison with supervised hashing methods

To create the training data for supervised hashing methods
from the automatically-created 3D models, we follow the
following steps. As the number of images for each 3D model
varies, i.e., the largest model contains 80 images, while the
smallest model contains only 23 images, we select top 100
biggest 3D models and randomly select 60 images per model
for training. Note that as KSH and BRE use the full similarity
matrix (let be S) when training, it is difficult for these methods
to handle larger training data. We try two approaches to define
the similarity for each image pair in the similarity matrix
S. In the first approach, we check every pair in the matrix
S and use the same matching pair generation strategy in
Section III-B for determining matching pair. A pair (i, j)
is matched, i.e. S(i, j) = 1, if both images belong to the
same 3D model and co-observe enough 3D points, otherwise
S(i, j) = 0. By using this first approach, we find that on the
average, each image has only ∼ 1 matching image. In the other
words, the matrix S is very sparse. In the second approach,
images belonged to same model are considered as matching,
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Fig. 5. mAP comparison between the proposed P2B and the state-of-the-art supervised hashing methods on Oxford5k, Oxford105k, and Holidays datasets.

L 128 256 512
SSDH 46.23 50.47 59.17
P2B 60.53 69.20 74.84

TABLE II
MAP RESULTS OF SSDH [26] AND P2B ON OXFORD5K WHEN BOTH ARE

FINE-TUNED ON OUR DATASET (SECTION III-B).

otherwise, non matching. In the other words, each 3D model
is considered as a class. Our empirical results finds that for
KSH and BRE, the similarity matrix constructed by the second
approach gives better results than the first approach, e.g., for
KSH on Oxford5k dataset, the mAP at L = 32 is 19.11%
and 32.28% for the first and the second approach, respectively.
This is understandable. Although the first approach uses better
strategy for creating matching pairs, the matrix S is very
sparse. Hence the non-matching pairs strongly dominate the
matching pairs during training, leading to poor results. In
the following, we consistently use the second approach (i.e.,
considering each 3D model as a class) for building the training
data for compared methods.

Figure 5 shows the comparative results between methods.
It clearly shows that P2B outperforms compared methods,
especially on Oxford5k and Oxford105k datasets. The poor
accuracy of compared methods may be because the “labels”
(i.e., the 3D model indexes) which are used to supervise their
training are much weaker than true semantic label used in their
original works.

Compare with SSDH [26]:
Here we compare our P2B to the state-of-the art deep

supervised hashing method SSDH [26]. It is worth noting that
in [26], the authors mainly evaluate their work on manually-
labeled datasets, e.g., CIFAR10, MNIST, SUN397, etc. They
do not present a fully evaluation on image retrieval bench-
marks such as Holidays, Oxford5k, Oxford105k.

To make a fair comparison with SSDH, we fine-tune the
SSDH model on our training dataset, in which each 3D
model is considered as a class. Follow SSDH setting, we
present comparative results at high code lengths, i.e., 128, 256,
and 512. As shown in Table II, P2B improves over SSDH
with large margins, i.e., our method gets 14.3%, 18.73%,
and 15.67% better than SSDH at code length 128, 256 and
512, respectively. It is worth mentioning that in SSDH [26],
the authors also reported a mAP of 63.80% (at L = 512
bits) on the Oxford5k dataset with the model fine-tuned on

a semi-manually labelled landmark dataset [15]. This mAP is
higher than the mAP 59.17% when fine-tuned SSDH on our
training dataset (Table II). This is understandable because the
dataset [15] used in SSDH paper is semi-manually labeled.
Hence, it is likely less noisy than our automatically-created
dataset. In spite of that, at the same code length 512, our
P2B achieves 74.84% mAP which is significantly higher than
63.80% of SSDH. The superior performance of P2B over
SSDH confirms the effectiveness of the proposed framework
for learning discriminative compact binary codes.

V. CONCLUSION

In this paper, we proposed an end-to-end framework for
learning compact binary codes for image retrieval without
human intervention. Specifically, we proposed a novel pairwise
loss function and an alternating optimization to attack the
associated binary constrained problem. We also proposed to
automatically mine matching/non-matching pairs for training
the network by exploiting the 3D reconstruction information.
The experimental results on three image retrieval benchmarks
show that the proposed method outperforms both state-of-the-
art unsupervised and supervised hashing methods.
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