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Abstract
This paper introduces a novel measure-theoretic
learning theory to analyze generalization behav-
iors of practical interest. The proposed learning
theory has the following abilities: 1) to utilize
the qualities of eachlearned representation on
the path from raw inputs to outputs in represen-
tation learning, 2) to guarantee good generaliza-
tion errors possibly with arbitrarily rich hypoth-
esis spaces (e.g., arbitrarily large capacity and
Rademacher complexity) and non-stable/non-
robust learning algorithms, and 3) to clearly dis-
tinguish each individual problem instance from
each other. Our generalization bounds are rel-
ative to a representation of the data, and hold
true even if the representation is learned. We
discuss several consequences of our results on
deep learning, one-shot learning and curriculum
learning. Unlike statistical learning theory, the
proposed learning theory analyzes each problem
instance individually via measure theory, rather
than a set of problem instances via statistics. Be-
cause of the differences in the assumptions and
the objectives, the proposed learning theory is
meant to be complementary to previous learning
theory and is not designed to compete with it.

1. Introduction
Statistical learning theory provides tight and insightful re-
sults under its assumptions and for its objectives (e.g., Vap-
nik 1998; Mukherjee et al. 2006; Mohri et al. 2012). As the
training datasets are considered as random variables, statis-
tical learning theory was initially more concerned with the
study ofdata-independentbounds based on the capacity of
the hypothesis space (Vapnik, 1998), or the classical sta-
bility of learning algorithm (Bousquet & Elisseeff, 2002).
Given the observations that these data-independent bounds
could be overly pessimistic for a “good”(training) dataset,
data-dependentbounds have also been developed in sta-
tistical learning theory, such as theluckiness framework
(Shawe-Taylor et al., 1998; Herbrich & Williamson, 2002),
empirical Rademacher complexity of a hypothesis space
(Koltchinskii & Panchenko, 2000; Bartlett et al., 2002), and
the robustness of learning algorithm (Xu & Mannor, 2012).

Along this line of reasoning, we notice that the previous
bounds, including data-dependent ones, can be pessimistic
for a “good” problem instance, which is defined by a tuple
of a true (unknown) measure, datasets and a learned model
(see Section 3 for further details). Accordingly, this paper
proposes a learning theory designed to be strongly depen-
dent on each individual problem instance. To achieve this
goal, we directly analyse the generalization gap (difference
between expected error and empirical error) and datasets
as non-statistical objects via measure theory. This is in
contrast to the setting of statistical learning theory wherein
these objects are treated as random variables.

The non-statistical nature of our proposed theory can be of
practical interest on its own merits. For example, the non-
statistical nature captures well a situation wherein a dataset
to learn a model is specified and fixed first (e.g., a UCL
dataset, ImageNet, a medical image dataset, etc.), rather
than remaining random with a certain distribution. Once
a dataset is actually specified, there is no randomness re-
maining over the dataset (although one can artificially cre-
ate randomness via an empirical distribution). For exam-
ple, Zhang et al. (2017) empirically observed thatgiven a
fixed (deterministic) dataset(i.e., each of CIFAR10, Ima-
geNet, and MNIST), test errors can be small despite the
large capacity of hypothesis space and a possible instability
of the learning algorithm. Understanding and explaining
this empirical observation has become an active research
area (Arpit et al., 2017; Krueger et al., 2017; Hoffer et al.,
2017; Wu et al., 2017; Dziugaite & Roy, 2017; Dinh et al.,
2017; Bartlett et al., 2017; Brutzkus et al., 2017).

For convenience within this paper, the proposed theory is
calledanalytical learning theory, due to its non-statistical
nature. A firm understanding of analytical learning theory
might be conceptually challenging, as it requires a different
style of thinking and a shift of technical basis from statis-
tics (e.g., concentration inequalities) to measure theory. We
present the foundation of analytical learning theory in Sec-
tion 3, several applications in Sections 4-5, and additional
discussions in Section 6.

2. Preliminaries
In machine learning, a typical goal is to return a model
ŷA(Sm) via a learning algorithmA given a dataset
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Sm = {s(1), . . . , s(m)} such that the expected error
Eμ[LŷA(Sm)] , Ez[LŷA(Sm)(z)] with respect to a true
(unknown) normalized measureμ is minimized. Here,Lŷ
is a function that combines a loss function` and a model
ŷ; e.g., in supervised learning,Lŷ(z) = `(ŷ(x), y), where
z = (x, y) is a pair of an inputx and a targety. Because
the expected errorEμ[LŷA(Sm)] is often not computable,
we usually approximate the expected error by an empiri-

cal errorÊZm′ [LŷA(Sm)] ,
1

m′

∑m′

i=1 LŷA(Sm)(z(i)) with

a datasetZm′ = {z(1), . . . , z(m′)}. Accordingly, we define
the generalization gap, Eμ[LŷA(Sm)]− ÊZm′ [LŷA(Sm)],
where the case ofZm′ = Sm is of particular interest (e.g.,
in the empirical risk minimization). One of the goals of
learning theory is to explain and validate when and how
minimizing ÊSm

[LŷA(Sm)] is a sensible approach to mini-
mizingEμ[LŷA(Sm)] by analyzing the generalization gap.

2.1. Discrepancy and variation

In the following, we define a quality of a dataset, called
discrepancy, and a quality of a function, calledvariation
in the sense of Hardy and Krause. These definitions have
been used in harmonic analysis, number theory, and numer-
ical analysis (Krause, 1903; Hardy, 1906; Hlawka, 1961;
Niederreiter, 1978; Aistleitner et al., 2017). This study
adopts these definitions in the context of machine learn-
ing. Intuitively, thestar-discrepancyD∗[Tm, ν] evaluates
how well a datasetTm = {t(1), . . . , t(m)} captures a nor-
malized measureν, and thevariation V [f ] in the sense of
Hardy and Krausecomputes how a functionf varies in
total w.r.t. each small perturbation of every cross combina-
tion of its variables.

Discrepancy of dataset with respect to a measure.For
any t = (t1, . . . , td) ∈ [0, 1]d, let Bt , [0, t1] × ∙ ∙ ∙ ×
[0, td] be a closed axis-parallel box with one vertex at the
origin. The local discrepancyD[Bt; Tm, ν] of a dataset
Tm = {t(1), . . . , t(m)} with respect to a normalized Borel
measureν on a setBt is defined as

D[Bt; Tm, ν] ,
1
m

m∑

i=1

1Bt(t
(i)) − ν

(
Bt

)

where 1Bt is the indicator function of a setBt. Fig-
ure 1 in Appendix A.1 shows an illustration of thelocal
discrepancyD[Bt; Tm, ν] and related notation. Thestar-
discrepancyD∗[Tm, ν] of a datasetTm = {t(1), . . . , t(m)}
with respect to a normalized Borel measureν is defined as

D∗[Tm, ν] , sup
t∈[0,1]d

∣
∣D[Bt; Tm, ν]

∣
∣.

Variations of a function. Let ∂l be the partial derivative
operator; that is,∂lg(t1, . . . , tk) is the partial derivative of
a functiong with respect to thel-th coordinate at a point
(t1, . . . , tk). Let ∂1,...,k , ∂1, . . . , ∂k. A partition P of
[0, 1]k with sizemP

1 , . . . ,mP
k is a set of finite sequences

t
(0)
l , t

(1)
l . . . , t

(mP
l )

l (l = 1, . . . , k) such that0 = t
(0)
l ≤

t
(1)
l ≤ ∙ ∙ ∙ ≤ t

(mP
l )

l = 1 for l = 1, . . . , k. We define a dif-
ference operatorΔP

l with respect to a partitionP as: given

a functiong and a point(t1, . . . tl−1, t
(i)
l , tl+1, . . . , tk) in

the partitionP (for i = 0, . . . , mP
l − 1),

ΔP
l g(t1, . . . tl−1, t

(i)
l , tl+1, . . . , tk)

= g(t1, . . . tl−1, t
(i+1)
l , tl+1, . . . , tk)

− g(t1, . . . tl−1, t
(i)
l , tl+1, . . . , tk),

where (t1, . . . tl−1, t
(i+1)
l , tl+1, . . . , tk) is the subsequent

point in the partitionP along the coordinatel. Let
ΔP

1,...,k , ΔP
1 . . . ΔP

k . Given a functionf of d vari-
ables, letfj1...jk

be the function restricted onk ≤ d vari-
ables such thatfj1...jk

(tj1 , . . . , tjk
) = f(t1, . . . , td), where

tl ≡ 1 for all l /∈ {j1, j2, . . . jk}. That is, fj1...jk
is a

function of (tj1 , . . . , tjk
) with other original variables be-

ing fixed to be one. Thevariation of fj1...jk
on [0, 1]k in

the sense of Vitaliis defined as

V (k)[fj1...jk
]

, sup
P∈Pk

mP
1 −1∑

i1=1

∙ ∙ ∙
mP

k −1∑

ik=1

∣
∣
∣ΔP

1,...,kfj1...jk
(t(i1)j1

, . . . , t
(ik)
jk

)
∣
∣
∣ ,

wherePk is the set of all partitions of[0, 1]k. Thevariation
of f on [0, 1]d in the sense of Hardy and Krauseis defined
as

V [f ] =
d∑

k=1

∑

1≤j1<∙∙∙<jk≤d

V (k)[fj1...jk
].

The following proposition might be helpful in intuitively
understanding the concept of the variation as well as in
computing it when applicable. All the proofs in this paper
are presented in Appendix B.
Proposition 1. Suppose thatfj1...jk

is a function for which
∂1,...,kfj1...jk

exists on[0, 1]k. Then,

V (k)[fj1...jk ] ≤ sup
(tj1 ,...,tjk

)∈[0,1]k
|∂1,...,kfj1...jk (tj1 , . . . , tjk )| .

If ∂1,...,kfj1...jk
is also continuous on[0, 1]k,

V (k)[fj1...jk ] =

∫

[0,1]k
|∂1,...,kfj1...jk (tj1 , ..., tjk )| dtj1 ∙ ∙ ∙dtjk .

3. A basis of analytical learning theory
This study considers the problem of analyzing the gen-
eralization gapEμ[LŷA(Sm)] − ÊZm′ [LŷA(Sm)], includ-
ing the case ofZm′ = Sm. Whenever we writeZm′ ,
it is always including the case ofZm′ = Sm. With our
notation, one can observe that the generalization gap is
fully and deterministically specified by a tuple or aprob-
lem instance(μ, Sm, Zm′ , LŷA(Sm)), where we identify
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Table 1.A simplified comparison, wherein GG denotes the generalization gap

Statistical LearningTheory Analytical LearningTheory
GG is characterizedby hypothesis spaceH or learning algorithmA a learned model̂yA(Sm)

GG is decomposedvia statistics measure theory
Statisticalassumption isrequired can be additionally used
Relative advantagewhen a (training) datasetSm remainsrandom a (training) datasetSm is specified
Relative advantagein worst-caseanalysis beyond worst-caseanalysis

an omitted measure space(Z, Σ, μ) by the measureμ
for brevity. Indeed, the expected error is defined by the
Lebesgue integral of a functionLŷA(Sm) on a (unknown)
normalized measure space(Z, Σ, μ) asEμ[LŷA(Sm)] =∫
Z LŷA(Sm)dμ, which is a deterministic mathematical ob-

ject. Accordingly, we introduce the following notion of
strong instance-dependence:

– A mathematical objectϕ in the theory of the generaliza-
tion gap of the tuple(μ, Sm, Zm′ , LŷA(Sm)) is said to be
strongly instance-dependentif the objectϕ is invariant un-
der any change of any mathematical object that contains or
depends on anȳμ 6= μ, any ŷ 6= ŷA(Sm), or anyS̄m such
thatS̄m 6= Sm andS̄m 6= Zm′ .

Any generalization bound that depends on a non-singleton
hypothesis spaceH 6= {ŷA(Sm)}, such as ones with
Rademacher complexity and VC dimension, isnotstrongly
instance-dependent because the non-singleton hypothesis
space containŝy 6= ŷA(Sm), and the bound is not invari-
ant under an arbitrary change ofH. The definition of sta-
bility itself depends onS̄m that is not equal toSm and
Zm′ (Bousquet & Elisseeff, 2002), making the correspond-
ing bounds benot strongly instance-dependent. Moreover,
a generalization bound that depends on a concept of ran-
dom datasets̄Sm different fromSm andZm′ (e.g., an ad-
ditive termO(

√
1/m) that measures a deviation from an

expectation over̄Sm 6= Sm, Zm′ ) is not strongly instance-
dependent, because the bound is not invariant under an ar-
bitrary change of̄Sm.

Data dependence does not imply strong instance-
dependence. For example, in the data-dependent bounds of
the luckiness framework (Shawe-Taylor et al., 1998; Her-
brich & Williamson, 2002), the definition ofω-smallness
of the luckiness function contains a non-singleton hypothe-
sis spaceH, a sequence of non-singleton hypothesis spaces
(ordered in a data-dependent way by a luckiness function),
and a supremum overH with the probability over datasets
S̄m 6= Sm (with Zm′ = Sm) (e.g., see Definition 4 in Her-
brich & Williamson 2002 with contraposition). The data-
dependent bounds with empirical Rademacher complexity
(Koltchinskii & Panchenko, 2000; Bartlett et al., 2002) also
depend on a non-singleton hypothesis space and its empir-
ical Rademacher complexity. These bounds can be made
more data-dependent by considering a sequence of hypoth-
esis spaces instead, but such data-dependent bounds still

contain the complexity of a non-singleton hypothesis space
(and its ordering). Moreover, the definition of robustness
itself depends on̄Sm, which is not equal toSm or Zm′ (Xu
& Mannor, 2012). Therefore, all of these data-dependent
bounds are not strongly instance-dependent.

Analytical learning theory is designed to be strongly
instance-dependent. To achieve this goal, unlike statistical
learning theory, analytical learning theory directly analyzes
the (deterministic) mathematical objectEμ[LŷA(Sm)] −

ÊZm′ [LŷA(Sm)]. Because of the difference in the settings
and the aims, analytical learning theory is not designed
to compete with previous learning theory results, which
are based on a statistical viewpoint. Table 1 summarizes
the major simplified differences between statistical learn-
ing theory and analytical learning theory, as the rest of this
paper clarifies these differences. See Appendix A.2 for a
graphical illustration of the difference.

3.1. Analytical decomposition of expected error
Let (Z, Σ, μ) be any (unknown) normalized measure space
that defines the expected error,Eμ[Lŷ] =

∫
Z Lŷ dμ. Here,

the measure space may correspond to an input-target pair as
Z = X × Y for supervised learning, the generative hidden
spaceZ of X × Y for unsupervised / generative models,
or anything else of interest (e.g.,Z = X ). Let T∗μ be the
pushforward measure ofμ under a mapT . Let T (Zm′) =
{T (z(1)), . . . , T (z(m′))} be the image of the datasetZm′

underT . Let |ν|(E) be the total variation of a measureν
on E. For vectorsa, b ∈ [0, 1]d, let [a, b] = {t ∈ [0, 1]d :
a ≤ t ≤ b}, where≤ denotes the product order; that is,
a ≤ t if and only if aj ≤ tj for j = 1, . . . , d. This study
adopts the convention that the infimum of the empty set is
positive infinity.

Theorem 1 is introduced to exploit the various struc-
tures in machine learning through the decomposition
LŷA(Sm)(z) = (f ◦ T )(z) whereT (z) is the output of
a representation function andf outputs the associated loss.
Here,T (z) can be any intermediate representation on the
path from the raw data (whenT (z) = z) to the output
(whenT (z) = Lŷ(z)). The proposed theory holds true
even if the representationT (z) is learned, or even if the
decomposition(f ◦ T ) is unknown. The empirical error
ÊZm′ [LŷA(Sm)] can be the training error withZm′ = Sm

or the test/validation error withZm′ 6= Sm. We can
also setSm to be the whole training-validation-test dataset



Generalization in Machine Learning via Analytical Learning Theory

with Zm′ = Sm or Zm′ being any other dataset. While
Zm′ ⊆ Z (to define thêEZm′ [LŷA(Sm)]), a datasetSm is
arbitrary andSm * Z is allowed whenZm′ 6= Sm.

Theorem 1. For any Lŷ, let F [Lŷ] be a set of all pairs
(T , f) such thatT : (Z, Σ) → ([0, 1]d,B([0, 1]d)) is a
measurable function,f : ([0, 1]d,B([0, 1]d)) → (R,B(R))
is of bounded variation asV [f ] < ∞, and

Lŷ(z) = (f ◦ T )(z) for all z ∈ Z ,

whereB(A) indicates the Borelσ-algebra onA. Then, for
any dataset pair(Sm, Zm′) (includingZm′ = Sm) and any
LŷA(Sm),

(i) Eμ[LŷA(Sm)]

≤ ÊZm′ [LŷA(Sm)] + inf
(T ,f)∈F̂

V [f ]D∗[T∗μ, T (Zm′)],

whereF̂ = F [LŷA(Sm)], and

(ii) for any (T , f) ∈ F [LŷA(Sm)] such thatf is right-
continuous component-wise,

Eμ[LŷA(Sm)] − ÊZm′ [LŷA(Sm)]

=

∫

[0,1]d



(T∗μ)([0, t]) −
1

m′

m′
∑

i=1

1[0,t](T (zi))



 dνf (t),

wherezi ∈ Zm′ , and νf is a signed measure cor-
responding tof as f(t) = νf ([t,1]) + f(1) and
|νf |([0, 1]d) = V [f ].

Theorem 1 holds for each individual instance
(μ, Sm, Zm′ , LŷA(Sm)), for example, without taking
a supremum over a set of other instances. In contrast,
typically in previous bounds, when asserting that an upper
bound holds onEμ[Lŷ] − ÊSm [Lŷ] for any ŷ ∈ H (with
high probability), what it means is that the upper bound
holds onsupŷ∈H(Eμ[Lŷ] − ÊSm [Lŷ]) (with high proba-
bility). Thus, in classical bounds including data-dependent
ones, as aH gets larger and more complex, the bounds
tend to become more pessimistic for the actual instance
ŷA(Sm) (learned with the actual instanceSm).

Remark 1. The bound and the equation in Theorem 1 are
strongly instance-dependent, and in particular,invariant to
hypothesis spacesH and the properties of learning algo-
rithm A over datasets different from a given datasetSm

(andZm′ ) (e.g., stability and robustness). They are fully
determined by each given instance(μ, Sm, Zm′ , LŷA(Sm))
without dependence on other instances.

Remark 2. Theorem 1 together with Remark 1 has a sig-
nificant consequence in practice. For example, even if the
true model is contained in some “small” hypothesis space
H1, we might want to use a much more complex “larger”
hypothesis spaceH2 in practice such that the optimization
becomes easier and the training trajectory reaches a better

modelŷA(Sm) in the end of the learning process (e.g., over-
parameterization in deep learning potentially makes the
non-convex optimization easier; see Dauphin et al. 2014;
Choromanska et al. 2015; Soudry & Hoffer 2017). This
is consistent with both Theorem 1 and practical observa-
tions in deep learning, although it can be puzzling from
the viewpoint of previous results that explicitly or implic-
itly penalizes the use of more complex “larger” hypothesis
spaces (e.g., see Zhang et al. 2017).

Remark 3. The reason why both analytical learning the-
ory and certain practical observations can possibly obtain
results that might appear to contradict statistical learning
theory is the difference in the settings or the sets of assump-
tions. The larger complexities of a hypothesis space and in-
stability/nonrobustness (or other properties of the learning
algorithm) indeed degrade the statistical guarantee overdif-
ferent random problem instancesparticularly with a worst-
case distribution̄μ 6= μ; however, it can improve the an-
alytical guarantee and practical performances for“good”
problem instances(μ, Sm, Zm′ , LŷA(Sm)).

For example, no free lunch theorems in machine learning
are well-known results, typically proven with the worst-
case distribution̄μ 6= μ for a fixedA or H over random
different instances, rather than each individual instance
(μ, Sm, Zm′ , LŷA(Sm)).

3.2. Additionally using statistical assumption and
general bounds onD∗

By additionally using the standard i.i.d. assumption,
Proposition 2 provides a general bound on the star-
discrepancyD∗[T∗μ, T (Zm′)] that appears in Theorem 1.
Proposition 2 is a direct consequence of (Heinrich et al.,
2001, Theorem 2).

Proposition 2. Let T (Zm′) = {T (z(1)), . . . , T (z(m′))} =

{t(1), . . . , t(m
′)} be a set of i.i.d. random variables with

values on[0, 1]d and distributionT∗μ. Then, there exists
a positive constantc1 such that for allm′ ∈ N+ and all
c2 ≥ c1, with probability at least1 − δ,

D∗[T∗μ, T (Zm′)] ≤ c2

√
d

m′

whereδ = 1
c2

√
d
(c1c

2
2e

−2c2
2)d with c1c

2
2e

−2c2
2 < 1.

Remark 4. Proposition 2 is not probabilistically vacuous
in the sense that we can increasec2 to obtain1 − δ > 0, at
the cost of increasing the constantc2 in the bound. Forcing
1 − δ > 0 still keepsc2 constant without dependence on
relevant variables such asd andm′. This is because1 −
δ > 0 if c2 is large enough such thatc1c

2
2 < e2c2

2 , which
depends only on the constants.

Using Proposition 2, one can immediately provide a sta-
tistical bound via Theorem 1 over randomZm′ . To see
how such a result differs from that of statistical learning
theory, consider the case ofZm′ = Sm. Whereas statistical
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learning theory applies a statistical assumption to the whole
objectEμ[LŷA(Sm)] − ÊSm

[LŷA(Sm)], analytical learning

theory first decomposesEμ[LŷA(Sm)] − ÊSm [LŷA(Sm)]
into V [f ]D∗[T∗μ, T (Sm)] and then applies the statistical
assumption only toD∗[T∗μ, T (Sm)]. This makesV [f ]
strongly instance-dependent even with the statistical as-
sumption. For example, withf(z) = LŷA(Sm)(z) and
T (z) = z, if the training datasetSm satisfies the standard
i.i.d. assumption, we have that with high probability,

Eμ[LŷA(Sm)] − ÊSm
[LŷA(Sm)] ≤ c2V [LŷA(Sm)]

√
d
m , (1)

where the term V [LŷA(Sm)] is strongly instance-
dependent. Indeed, in this case, the whole bound in
Equation (1) is strongly instance-dependent. See Appendix
A.3 for a conceptual discussion of using a statistical
assumption whenZm′ = Sm.

In Equation (1), it is unnecessary form to approach infin-
ity in order for the generalization gap to go to zero. This is
because it is multiplied byV [LŷA(Sm)], which is a quality
of a learned model̂yA(Sm). This strongly supports the con-
cept ofone-shot learning, in contrast to traditional results.

For the purpose of the non-statistical decomposition of
Eμ[LŷA(Sm)] − ÊSm [LŷA(Sm)], instead of Theorem 1, we
might be tempted to conduct a simpler decomposition with
the Hölder inequality or its variants. However, such a sim-
pler decomposition is dominated by a difference between
the true measure and the empirical measure on an arbi-
trary set in high-dimensional space, which suffers from the
curse of dimensionality. Indeed, the proof of Theorem 1
is devoted to reformulatingEμ[LŷA(Sm)]− ÊSm [LŷA(Sm)]
via the equivalence in the measure and the variationbefore
taking any inequality, so that we can avoid such an issue.
That is, the star-discrepancy evaluates the difference in the
measures on high-dimensional boxes with one vertex at the
origin, instead of on an arbitrary set.

The following proposition proves the existence of a dataset
Zm′ with a convergence rate that is asymptotically faster in
terms of the dataset sizem′. This is a direct consequence
of (Aistleitner & Dick, 2014, Theorem 2).

Proposition 3. Assume thatT is a surjection. LetT∗μ
be any (non-negative) normalized Borel measure on[0, 1]d.
Then, for anym′ ∈ N+, there exists a datasetZm′ such
that

D∗[T∗μ, T (Zm′)] ≤ 63
√

d
(2 + log2 m′)(3d+1)/2

m′
.

4. Linear models possibly with rich
hypothesis spaces, algorithmic instability
and nonrobustness

Even in the classical setting of linear regression models,
recent papers (Zhang et al. 2017, Section 5; Kawaguchi

et al. 2017, Section 3; Poggio et al. 2017, Section 5) point
out the need for further theoretical studies to better un-
derstand precisely what makes a learned model generalize
well. Moreover, numerous related papers, even with their
focus on deep learning, essentially ask the open question of
understanding generalization with rich hypothesis spaces,
algorithmic instability and nonrobustness (e.g., see Bartlett
et al. 2017), which is applicable to linear models.

Theorem 1 with Remarks 1-3 answers the above open ques-
tion abstractly for machine learning and deep learning in
general. This section provides a more concrete answer for
the case of linear models, which is a simple case that still
captures the essence of the question.

Let Sm = {s(i)}m
i=1 be the training dataset of the input-

target pairs ass(i) = (x(i), y(i)). Let ŷA(Sm) = Ŵφ(∙) be
the learned model at the end of any training process. For
example, in empirical risk minimization,̂W is an output of
the training process,̂W := minimizeW ÊSm [ 12‖Wφ(x) −
y‖2

2]. Here,φ : (X , Σx) → ([0, 1]dφ ,B([0, 1]dφ)) is any
normalized measurable function, corresponding to fixed
features. For any given variablev, let dv be the dimension-
ality of the variablev. The goal is to minimize the expected
errorEs[ 12‖Ŵφ(x) − y‖2

2] of the learned model̂Wφ(∙).

4.1. Domains with structured labels
In this subsection only, we assume that the target outputy
is structured such thaty = W ∗φ(x) + ξ, whereξ is a zero-
mean random variable independent ofx. Many columns
of W ∗ can be zeros (i.e., sparse) such thatW ∗φ(x) uses a
small portion of the feature vectorφ(x). Thus, this struc-
tured label assumption can be satisfied by including a suf-
ficient number of elements from a basis with uniform ap-
proximation power (e.g., polynomial basis, Fourier basis, a
set of step functions, etc.) to the feature vectorφ(x) up to
a desired approximation error. Note that we do not assume
any knowledge ofW ∗.

Let μx be the (unknown) normalized measure for the input
x (corresponding to the marginal distribution of(x, y)). Let
Xm = {x(i)}m

i=1 andS̃m = {(x(i), ξ(i))}m
i=1 be the input

part and the (unknown) input-noise part of the same train-
ing dataset asSm, respectively. We do not assume access
to S̃m. Let Wl be thel-th column of the matrixW .

Theorem 2. Assume that the labels are structured as de-
scribed above and‖Ŵ − W ∗‖ < ∞. Then, Theorem 1
implies that

Es

[
1
2
‖Ŵφ(x) − y‖2

2

]

− ÊSm

[
1
2
‖Ŵφ(x) − y‖2

2

]

(2)

≤ V [f ]D∗[φ∗μx, φ(Xm)] + A1 + A2,

where f(t) = 1
2‖Ŵ t − W ∗t‖2

2, A1 = ÊS̃m
[ξ>(Ŵ −

W ∗)φ(x)], A2 = Eξ[‖ξ‖2
2] − ÊS̃m

[‖ξ‖2
2], and
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V [f ] ≤
dφ∑

l=1

‖(Ŵl − W ∗
l )>(Ŵ − W ∗)‖1

+
∑

1≤l<l′≤dφ

|(Ŵl − W ∗
l )>(Ŵl′ − W ∗

l′ )|.

Remark 5. The bound in Theorem 2 (i.e., the right-hand-
side of Equation (2)) is minimized (to be the noise term
A2 only) if and only if Ŵ = W ∗ (see Appendix A.4 for
pathological cases). Therefore, minimizing the bound in
Theorem 2 is equivalent to minimizing the expected error
Es[‖Ŵφ(x)−y‖2

2] or generalization error (see Appendix A.4
for further details). Furthermore, the bound in Theorem 2
holds with equality ifŴ = W ∗. Therefore, the bound in
Theorem 2 is tight in terms of both the minimizer and its
value.
In contrast to the conventional wisdom,1 Theorem 2 tightly
concludes that all that matters is how closeŴ is to W ∗

in the end of the learning process, producing a strongly
instance-dependent bound. As in other important theories,
although it becomes apparent in hindsight, Theorem 2 pro-
vides a crucial practical insight: we should makeŴ closer
to W ∗ at the end of the learning process, even if it increases
the bound on the norm‖W‖ as well as the capacity and
complexity of a hypothesis space, and even if it decreases
the stability and robustness of the learning algorithm.

Remark 6. For D∗[φ∗μx, φ(Xm)] and A2, we can
straightforwardly apply the probabilistic bounds under the
standard i.i.d. statistical assumption. From Proposition 2,
with high probability,D∗[φ∗μx, φ(Xm)] ≤ O(

√
dφ/m).

From Hoeffding’s inequality withM ≥ ‖ξ‖2
2, with proba-

bility at least1 − δ, A2 ≤ M
√

ln(1/δ)/2m.

It is not necessary forD∗[φ∗μx, φ(Xm)] to approach zero
to minimize the expected error; irrespective of whether the
training dataset satisfies a certain statistical assumption to
boundD∗[φ∗μx, φ(Xm)], we can minimize the expected
error via makingŴ closer toW ∗ as shown in Theorem 2.

4.2. Domains with unstructured/random labels

In this subsection, we discard the structured label assump-
tion in the previous subsection and consider the worst case
scenario wherey is a variable independent ofx. This
corresponds to the random label experiment by Zhang
et al. (2017), which posed another open question: how to
theoretically distinguish the generalization behaviors with
structured labels from those with random labels. General-
ization behaviors in practice are expected to be significantly
different in problems with structured labels or random la-
bels, even when the hypothesis space (and Rademacher
complexity) and learning algorithm remain unchanged.

As desired, Theorem 3 (unstructured labels) predicts a
completely different generalization behavior from that in

1A good description of the conventional wisdom is given in
(Zhang et al., 2017; Bartlett et al., 2017).

Theorem 2 (structured labels), even with an identical hy-
pothesis space (and the same Rademacher complexity and
capacity) and learning algorithm. Here, we consider the
normalization ofy such thaty ∈ [0, 1]dy . Let μs be the
(unknown) normalized measure for the pairs = (x, y).

Theorem 3. Assume the unstructured labels as described
above. LetM = supt∈[0,1] ‖Ŵ t − y‖∞. Assume that

‖Ŵ‖ < ∞ andM < ∞. Then, Theorem 1 implies that

Es

[
1
2
‖Ŵφ(x) − y‖2

2

]

− ÊSm

[
1
2
‖Ŵφ(x) − y‖2

2

]

(3)

≤ V [f ]D∗[T∗μs, T (Sm)],

whereT (s) = (φ(x), y), f(t, y) = 1
2‖Ŵ t − y‖2

2, and

V [f ] ≤ (M +1)
dφ∑

l=1

‖Ŵl‖1 +
∑

1≤l<l′≤dφ

|Ŵ>
l Ŵl′ |+dyM.

Unlike in the structured case (Theorem 2), minimizing the
bound on the generalization gap in this case requires us
to bound the norm ofŴ . This corresponds to the tradi-
tional wisdom from statistical learning theory, except that
we do not require a pre-defined bound on‖W‖ over ran-
dom problem instances; Theorem 3 is only sensitive to the
actual value of‖Ŵ‖ at the end of learning process with
the given problem instance, producing a strongly instance-
dependent bound. The generalization gap goes to zero as
D∗[T∗μs, T (Sm)] approaches zero via certain statistical
assumption as in statistical learning theory. We can guar-
antee it via Proposition 2 as follows: with high probability,
D∗[T∗μs, T (Sm)] ≤ O(

√
(dφ + dy)/m).

For linear models with over-parameterization, a recent im-
pactful paper (Zhang et al. 2017, Section 5) poses open
questions: “is it then possible to generalize with such a
rich model class and no explicit regularization?” and “do
all global minima generalize equally well?”. Theorems 2
and 3 shed light on those questions with a mathematically
tight reasoning for each problem instance (see Remark 5).

5. General results for machine/deep learning
In this section, we consider the applications of Theorem
1 to general models in machine learning including deep
neural networks, in order to understand the qualitative na-
ture of learning under the setting wherein the generalization
gap is decomposed without statistical assumptions. Deriv-
ing more concrete statements for each specific model type
(e.g., convolutional neural networks with ReLU units) is
left to future work. We first state that the results from the
previous section can be applied to deep learning.

Remark 7. Theorems 2 and 3 hold true, with learned rep-
resentationsφ, instead of fixed features. Letφ(x) represent
the last hidden layer in a neural network or the learned rep-
resentation in representation learning in general. Consider
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the squared loss (square of output minus target). Then, the
identical proofs of Theorems 2 and 3 work with the learned
representationφ.

5.1. Theory with intermediate learned representation

An important question in representation learning such as
deep learning is how to consider the quality oflearnedrep-
resentations. The following example provides a general re-
sult to answer such a question with practical insights.

General Example 1. (Decomposition at a space of learned
representation) LetT (z) = (φ(x), v) whereφ is a map
of any learned representation andv is a variable such
that there exists a functionf satisfying LŷA(Sm)(z) =
f(φ(x), v) (for supervised learning, settingv := y always
satisfies this condition regardless of the information con-
tained inφ(x)). For example,φ(x) may represent the out-
put of any intermediate hidden layer in deep learning (pos-
sibly the last hidden layer), andv may encode the noise
left in the labely. Let f be a map such thatLŷA(Sm) =
f(T (z)). Then, ifV [f ] < ∞, Theorem 1 implies that for
any dataset pair(Sm, Zm′) (includingZm′ = Sm),

Eμ[LŷA(Sm)] ≤ ÊZm′ [LŷA(Sm)] + V [f ]D∗[T∗μ, T (Zm′)].

General Example 1 partially supports the concept of
the disentanglementin deep learning (Bengio et al.,
2009b) and proposes a new concrete method to measure
a degree of the disentanglement as follows. In the defi-
nition of V [f ] =

∑d
k=1

∑
1≤j1<∙∙∙<jk≤d V (k)[fj1...jk ],

each term V (k)[fj1...jk
] can be viewed as mea-

suring how entangled the j1, . . . , jk-th variables
are in a space of a learned (hidden) representa-
tion. We can observe this from the definition of
V (k)[fj1...jk

] or from Proposition 1 as:V (k)[fj1...jk ] =∫
[0,1]k

|∂1,...,kfj1...jk (tj1 , . . . , tjk )| dtj1 ∙ ∙ ∙ dtjk , where∂1,...,k

fj1...jk (tj1 , . . . , tjk ) is the k-th ordercrosspartial deriva-
tives across thej1, . . . , jk-th variables. If all the variables
in a space of a learned (hidden) representation are com-
pletely disentangled in this sense,V (k)[fj1...jk

] = 0 for all
k ≥ 2 andV [f ] is minimized toV [f ] =

∑d
j1=1 V (1)[fj1 ].

It has been empirically observed that deep networks (par-
ticularly in the unsupervised setting) tend to transform the
data distribution into a flatter one closer to a uniform distri-
bution in a space of a learned representation (e.g., see Ben-
gio et al. 2013). If the distributionT∗μ with the learned rep-
resentationT is uniform, then there exist better bounds on
D∗[T∗μ, T (Zm′)] such asD∗[T∗μ, T (Zm′)] ≤ 10

√
d/m′

(Aistleitner, 2011). Intuitively, if the measureT∗μ is non-
flat and concentrated near a highly curved manifold, then
there are more opportunities for a greater mismatch be-
tweenT∗μ andT (Zm′) to increaseD∗[T∗μ, T (Zm′)] (see
Appendix A.5 for pathological cases). This intuitively sug-
gests the benefit of the flattening property that is sometimes
observed with deep representation learning: it is often illus-

trated with generative models or auto-encoders by showing
how interpolating between the representations of two im-
ages (in representation space) corresponds (when projected
in image space) to other images that are plausible (are on or
near the manifold of natural images), rather than to the sim-
ple addition of two natural images (Bengio et al., 2009b).

If D∗[T∗μ, T (Zm′)] is small, it means that the learned rep-
resentationφ is effective at minimizing the generalization
gap. This insight can be practically exploited by aiming to
makeT∗μ flatter and spread out the data pointsT (Zm′) in
a limited volume. It would also be beneficial to directly
regularize an approximatedD∗[T∗μ, T (Zm′)] with the un-
knownμ replaced by some known measures (e.g., a finite-
support measure corresponding to a validation dataset).

Furthermore, General Example 1 suggests a method of reg-
ularization or model selection to control higher derivatives
of a learned model w.r.t. a learned representation. Let
f(t) = `(Ŷ (t), Y (t)); here,Ŷ andY represent the learned
model yA(Sm) and the target outputy as a function of
t = T (z), respectively. Then, for example, if̀ is the
square loss, and if̂Y and Y are smooth functions,V [f ]
goes to zero as∇kŶ − ∇kY → 0 for k = 1, 2, ..., which
can be upper bounded by‖∇kŶ ‖ + ‖∇kY ‖.

5.2. Theory with raw space and loss space

This subsection applies Theorem 1 to a raw representation
spaceT (z) = z and a loss spaceT (z) = (ι◦LŷA(Sm))(z),
whereι : {0, 1} → [0, 1] is an inclusion map.

General Example 2. (Decomposition in the space ofZ)
Consider a normalized domainZ = [0, 1]dz and a Borel
measureμ on Z. For example,Z can be an unknown
hidden generative space or an input-output space (Z =
X ×Y). Let us apply Theorem 1 to this measure space with
T (z) = z andf = LŷA(Sm). Then, ifV [LŷA(Sm)] < ∞,
Theorem 1 implies that for any dataset pair(Sm, Zm′) (in-
cludingZm′ = Sm) and anyLŷA(Sm),

Eμ[LŷA(Sm)] ≤ ÊZm′ [LŷA(Sm)] + V [LŷA(Sm)]D∗[μ,Zm′ ].

This indicates that we can regularizeV [LŷA(Sm)] in some
spaceZ to control the generalization gap. For exam-
ple, letting the modelyA(Sm) be invariant to a subspace
that is not essential for prediction decreases the bound on
V [LŷA(Sm)]. As an extreme example, ifx = g(y, ξ) with
some generative functiong and noiseξ (i.e., a setting con-
sidered in an information theoretic approach),ŷA(Sm) be-
ing invariant toξ results in a smaller bound onV [LŷA(Sm)].
This is qualitatively related to an information theoretic ob-
servation such as in (Achille & Soatto, 2017).

General Example 3. (Decomposition in the loss space)
Consider multi-class classification with 0-1 loss. Let
T = ι ◦ LŷA(Sm). Let f be an identity map. Then,
V [f ] = 1 and LŷA(Sm)(z) = (f ◦ T )(z) for all z ∈
Z. Then, the pair ofT and f satisfies the condition in
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Theorem 1 asLŷA(Sm) and ι are measurable functions.

Thus, from Theorem 1,Eμ[LŷA(Sm)]− ÊZm′ [LŷA(Sm)] ≤
V [f ]D∗[T∗μ, T (Zm′)] = |(T∗μ)({1})−EZm′ [LŷA(Sm)]|)
(see Appendix B.7 for this derivation), which establishes a
tightness of Theorem 1 with the 0-1 loss as follows: for any
dataset pair(Sm, Zm′) (includingZm′ = Sm),
∣
∣
∣Eμ[LŷA(Sm)] − ÊZm′ [LŷA(Sm)]

∣
∣
∣ = V [f ]D∗[T∗μ, T (Zm′)].

6. Discussion
By generating strongly instance-dependent bounds,
throughout this paper, Theorem 1 has been shown to
answer the following open questions: 1) how to math-
ematically analyze generalization behaviors of machine
learning models possibly with arbitrarily rich hypothesis
spaces (large capacity, Rademacher complexity, etc.) and
non-stable/non-robust learning algorithms, and 2) how
to theoretically distinguish generalization behaviors with
structured labels from unstructured random labels. Perhaps
more importantly, Theorem 1 presents a way to measure
the quality of the learned modelyA(Sm) along with each
instance(μ, Sm, Zm′ , LŷA(Sm)), and has produced several
new theoretical insights on the generalization gap.

Theorem 1 also provides a different theoretical insight that
has another immediate practical consequence on how to
handle a dataset. In Theorem 1, the quality of a dataset
Sm is determined by theproductof its similarity toμ (the
star-discrepancy) and the quality of the learned function
LŷA(Sm) through the dataset (the variation). That is, while
conventional wisdom based on statistical learning theory
tells us to collect a statistically “good” (e.g., i.i.d.) dataset
from a distribution closer to the trueμ, Theorem 1 tells
us that there may be better choices. According to Theo-
rem 1, collecting a dataset that can induce a better model
ŷA(Sm) with a lower empirical error and lower variation
of LŷA(Sm) also results in better generalization gap and
expected error, even if the similarity toμ is reduced and
the statistical property (e.g., independence) becomes in-
valid (e.g., in Example 2, even ifD∗[μ, Sm] approaches
infinity, if V [LŷA(Sm)] goes to zero faster, the generaliza-
tion gap approaches zero). This is consistent with emerging
practical heuristics in deep learning; it is becoming a com-
mon practice to add new data points to explicitly improve a
currently learned model (e.g., by probing the model), rather
than considering the statistical property in the dataset.

As we discussed in Section 3.2, Theorem 1 produces gen-
eralization bounds that can be zero even withm = 1
(andm′ = 1), supporting the concept of one-shot learn-
ing. This is true in general, even if the datasetcom-
pletely differs from the measureμ (e.g., learning with
different distributions). This is because although it in-
creasesD∗, it can decreaseV [f ] in the generalization
bounds ofV [f ]D∗[T∗μ, T (Sm)]. Furthermore, by being

strongly instance-dependent, particularly on the learned
modelLŷA(Sm) in the end, Theorem 1 supports the con-
cept of curriculum learning (Bengio et al., 2009a), which
directly guides the learning to obtain a good modelyA(Sm)

in the end. Moreover, consider certain types of curricu-
lum learning that can violate statistical assumptions and
degrade statistical guarantees. Theorem 1 supports even
such types of curriculum learning, because learning a bet-
ter modelyA(Sm) in the end decreasesV [f ].

As we discussed in Section 3.2,V [f ] is always
strongly instance-dependent, but a probabilistic bound on
D∗[T∗μ, T (Sm)] may not always remain strongly instance-
dependent, depending on the choice ofT . For example, if
T is learned withSm, we cannot directly adopt the prob-
abilistic bound onD∗[T∗μ, T (Sm)] from Section 3.2, be-
causeT (Sm) does not satisfy the i.i.d. assumption. In such
a case, one can derive new probabilistic bounds onD∗ with
learned representationT via the following standard statis-
tical approach. Consider a setΦ such thatT ∈ Φ andΦ is
independent ofSm. Then, by applying Proposition 2 with
a union bound over a cover ofΦ, we can obtain probabilis-
tic bounds onD∗ with the log of the covering number of
Φ for all representationsT ′ ∈ Φ, including the learnedT .
As in data-dependent approaches (e.g., Shawe-Taylor et al.
1998), one can also consider a sequence of sets{Φj}j such
that T ∈ ∪jΦj . However, in both cases, the bounds on
D∗[T∗μ, T (Sm)] now depend on the setΦ (via its covering
number) or the sequence{Φj}j (via the ordering inj and a
complexity ofΦj) that depends on̂y 6= ŷA(Sm), and hence
are not strongly instance-dependent. This is a limitation of
our result toward a complete learning theory with strong
instance-dependence, and solving it is left to future work.

From a practical viewpoint, this might not be a major lim-
itation, since a probabilistic bound onD∗ is unnecessary
for the convergence of the generalization gap. The con-
vergence ofV [f ] to zero (faster than the increase rate of
D∗) is sufficient for the convergence of generalization gap,
andD∗ would also decrease deterministically. Moreover,
one can simply measure the empirical error with another
datasetZm′ 6= Sm (e.g., held-out validation dataset) to get
D∗[T∗μ, T (Zm′)] ≤ O(

√
d/m′) (with high probability),

where the representationT is learned withSm (since the
i.i.d. condition can now be straightforwardly satisfied).

The fact that Theorem 1 is invariant to a hypothesis space
H and certain details of a learning algorithmA can make it
difficult to understand their effects. However, as we move
towards the goal of artificial intelligence,H andA would
become extremely complex, which can pose a challenge in
theory. From this viewpoint, our theory can also be consid-
ered as a methodology to avoid such a challenge, producing
theoretical insights for intelligent systems with arbitrarily
complexH andA, so long as other conditions are imposed
on the actual functions being computed by them.
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Weston, Jason. Curriculum learning. InProceedings
of the 26th annual international conference on machine
learning, pp. 41–48, 2009a.
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Appendix

Appendix A contains additional explanations to facilitate
understanding this paper. Appendix B includes all the
proofs of the theoretical results.

A. Additional explanations

Both statistical learning theory and analytical learning the-
ory have relative advantages and disadvantages, because of
the difference in the objectives and the sets of assumptions.

To recognize certain differences in analytical learning the-
ory and statistical learning theory, it is good to remember
the basics of the mathematical logics such as the difference
in “∀x, ∃y” v.s. “∃y, ∀x”. Typically in statistical learning
theory, some upper bound holds over a fixedH or a fixedA
with a certain propertywith high probability over different
datasets. Usually in analytical learning theory, some upper
bound holdsindividually for each problem instance.

A.1. An illustration of discrepancy

Figure 1 shows an illustration of thelocal discrepancy
D[Bt; Tm, ν] and related notation in two dimensional
space.

Figure 1.The local discrepancy
D[Bt; Tm, ν] evaluates the dif-
ference between the empirical
measure of the boxBt (the nor-
malized number of data points
in the boxBt, which is 4/10)
and the measureν of the boxBt

(the measure of the blue region)

A.2. An illustration of a difference in the scopes of
statistical and analytical learning theories

Figure 2 shows a graphical illustration of a difference in the
scopes of statistical learning theory and analytical learning
theory. Here,μm is the product measure.

In the setting of statistical learning theory (Figure 2 (a)),
our typical goal is to analyze the random expected error
Eμ[LŷA(Sm)] over the random datasetsSm by fixing a
hypothesis space and/or learning algorithm over random
datasets. Due to the randomness overSm, we do not know
whereq exactly lands inQ. The lower bound and neces-
sary condition in the setting of statistical learning theory is
typically obtained via a worst-case instanceq′ in Q. For ex-
ample, classical no free lunch theorems and lower bounds
on the generalization gap via VC dimension (e.g., Mohri
et al. 2012, Section 3.4) have been derived with the worst-

q

q'

(a) Statistical learning theory

q

(b) Analytical learning theory

Figure 2.An illustration of a difference in the scopes withZm′ =
Sm: q represents a query about the generalization gap of a learned
model yA(Sm), which is a deterministic quantity of the tuple
(μ, Sm, LŷA(Sm)). Intuitively, whereas analytical learning the-
ory analyzesq directly, statistical learning theory focuses more
on analyzing the setQ that containsq. The setQ is defined
by the sets of possible measuresμ and randomly-drawn differ-
ent datasetsSm and the hypothesis spaceH or learning algorithm
A.

case distribution characterizingq′ in Q. Such a necessary
condition is only proven to be necessary for the worst-case
q′ ∈ Q, but isnot proven to be necessary for othersq 6= q′.
Intuitively, we are typically analyzing the quality of the set
Q, instead of each individualq ∈ Q.

In this view, it becomes clear what is going on in some
potentially surprising empirical observations such as in
(Zhang et al., 2017). Intuitively, whereas statistical learn-
ing theory focuses more on analyzing the setQ, each ele-
ment such asq (e.g., a “good” case or structured label case)
andq′ (e.g., the worst-case or random label case) can sig-
nificantly differ from each other. Data-dependent analyses
in statistical learning theory can be viewed as the ways to
decrease the size ofQ around eachq.

In contrast, analytical learning theory (Figure 2 (b)) ignores
the setQ, and focuses on eachq only, allowing tighter re-
sults for each “good”q ∈ Q beyond the possibly “bad”
quality of the setQ overall.

It is important to note that analyzing the setQ is of great
interest on its own merits, andstatistical learning theory
has advantages over our proposed learning theory in this
sense. Indeed, analyzing a setQ is a natural task along
the way of thinking in theoretical computer science (e.g.,
categorizing a setQ of problem instances into polynomial
solvable set or not). This situation where theory focuses
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more onQ and practical studies care about eachq ∈ Q
is prevalent in computer science even outside the learning
theory. For example, the size ofQ analyzed in theory for
optimal exploration in Markov decision processes (MDPs)
has been shown to be often too loose for each practical
problem instanceq ∈ Q, and a way to partially mitigate
this issue was recently proposed (Kawaguchi, 2016). Sim-
ilarly, global optimization methods including Bayesian op-
timization approaches may suffer from a large complexQ
for each practical problem instanceq ∈ Q, which was par-
tially mitigated in recent studies (Kawaguchi et al., 2015;
2016).

Furthermore, the issues of characterizing a setQ only via
a worst-case instanceq′ (i.e., worst-case analysis) are well-
recognized in theoretical computer science, and so-called
beyond worst-case analysis(e.g., smoothed analysis) is an
active research area to mitigate the issues.

Moreover, a certain qualitative property of the setQ might
tightly capture that of each instanceq ∈ Q. While prov-
ing such an assertion seems challenging in general (prov-
ing that a upper bound on∀q ∈ Q matches a lower bound
∃q′ ∈ Q is not sufficient), one can study it with empirical
experiments (e.g., see Hestness et al. 2017).

A.3. On usage of statistical assumption withZm′ = Sm

Using a statistical assumption on a datasetZm′ with Zm′ 6=
Sm is consistent with a practical situation where a dataset
Sm is given first instead of remaining random. ForZm′ =
Sm, we can view this formulation as a mathematical mod-
eling of the following situation. ConsiderSm as a random
variable when collecting a datasetSm, and then condition
on the event of getting the collected datasetSm onceSm

is specified, focusing on minimization of the (future) ex-
pected errorEμ[LŷA(Sm)] of the modelŷA(Sm) learned
with this particular specified datasetSm.

In this view, we can observe that if we draw an i.i.d. dataset
Sm, a datasetSm is guaranteed to be statistically “good”
with high probability in terms ofD∗[T∗μ, T (Sm)] (e.g.,

D∗[T∗μ, T (Sm)] ≤ c2

√
d
m via Proposition 2). Thus, col-

lecting a training dataset in a manner that satisfies the i.i.d.
condition is an effective method. However, once a dataset
Sm is actually specified, there is no longer randomness over
Sm, and the specified datasetSm is “good” (high probabil-
ity event) or “bad” (low probability event). We get a “good”
dataset with high probability, and we obtain probabilistic
guarantees such as Equation (1).

In many practical studies, a dataset to learn a model is
specified first as, for example, in studies with CIFAR-10,
ImageNet, or UCI datasets. Thus, we might have a sta-
tistically “bad” datasetSm with no randomness overSm

when these practical studies begin. Even then, we can min-

imize the expected error in Theorem 1 by minimizingV [f ]
(and/or D∗[T∗μ, T (Sm)] as deterministic quantity) such
that V [f ]D∗[T∗μ, T (Sm)] becomes marginal without the
randomness overSm.

Several recent studies also consider a stochastic property of
learning algorithms (e.g., Zahavy et al. 2016).

A.4. Supplementary explanation in Remark 5

The bound is always minimized if̂W = W ∗, but it is not
a necessary condition in a pathological case where the star-
discrepancyD∗ is zero andA1 can be zero witĥW 6= W ∗.

In Section 4.1, the optimal solution to minimize the ex-
pected errorEs[ 12‖Ŵφ(x) − y‖2

2] is attained atŴ = W ∗.
To see this, we can expand the expected error as

Es

[
1
2
‖Ŵφ(x) − y‖2

2

]

= Ex

[
1
2
‖Ŵφ(x) − W ∗φ(x)‖2

2

]

+ Ex,ξ

[
1
2
‖ξ‖2

2 + ξ>
(
W ∗φ(x) − Ŵφ(x)

)]

= Ex

[
1
2
‖Ŵφ(x) − W ∗φ(x)‖2

2

]

+ Eξ

[
1
2
‖ξ‖2

2

]

,

where the last line follows thatξ is a zero-mean random
variable independent ofx. From the last line of the above
equation, we can conclude the above statement about the
minimizer.

A.5. Pathological cases for non-flat measures

If T∗μ is concentrated in a single point, then
D∗[T∗μ, T (Zm′)] = 0, but it implies that there is
only a single value ofLŷA(Sm)(z) = f(φ(x), v) because
(φ(x), v) takes only one value. Hence, this is tight and
consistent. On the other hand, to minimize the empirical
errorÊZm′ [LŷA(Sm)] with diverse label values,T∗μ should
not concentrate on the small number of finite points.

B. Proofs

We use the following fact in our proof.

Lemma 1. (theorem 3.1 in Aistleitner et al. 2017)Every
real-valued functionf on [0, 1]d such thatV [f ] < ∞ is
Borel measurable.

B.1. Proof of Proposition 1

Proof. By the definition, we have that

ΔP
j1,...,jk

fj1...jk
(t(i1)j1

, . . . , t
(ik)
jk

)

= ΔP
j1,...,jk−1

(
ΔP

jk
fj1...jk

(t(i1)j1
, . . . , t

(ik)
jk

)
)
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By the mean value theorem on the single variabletjk
,

ΔP
jk

fj1...jk
(t(i1)j1

, . . . , t
(ik)
jk

)

=
(
∂kfj1...jk

(t(i1)j1
, . . . , c

(ik)
jk

)
)

(t(ik+1)
jk

− t
(ik)
jk

),

wherec(ik)
jk

∈ (t(ik+1)
jk

, t
(ik)
jk

). Thus, by repeatedly applying
the mean value theorem,

ΔP
jk

fj1...jk
(t(i1)j1

, . . . , t
(ik)
jk

)

=
(
∂1,...,kfj1...jk

(c(i1)
j1

, . . . , c
(ik)
jk

)
) k∏

l=1

(t(ik+1)
jk

− t
(ik)
jk

),

wherec
(il)
jl

∈ (t(il+1)
jl

, t
(il)
jl

) for all l ∈ {1, . . . , k}. Thus,

V (k)[fj1...jk
]

= sup
P∈Pk

mP
1 −1∑

i1=1

∙ ∙ ∙
mP

k −1∑

ik=1

∣
∣
∣∂1,...,kfj1...jk

(c(i1)
j1

, . . . , c
(ik)
jk

)
∣
∣
∣

∙
k∏

l=1

(t(ik+1)
jk

− t
(ik)
jk
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By taking supremum for
∣
∣
∣∂1,...,kfj1...jk

(c(i1)
j1

, . . . , c
(ik)
jk

)
∣
∣
∣

and taking it out from the sum, we obtain the first
statement. The second statement follows the fact
that if ∂1,...,kfj1...jk

(t(i1)j1
, . . . , t

(ik)
jk

) is continuous, then

|∂1,...,kfj1...jk
(t(i1)j1

, . . . , t
(ik)
jk

)| is continuous and Riemann
integrable. Thus, the right hand side on the above equa-
tion coincides with the definition of the Riemann integral
of |∂1,...,kfj1...jk

(t(i1)j1
, . . . , t

(ik)
jk

)| over[0, 1]k.

B.2. Proof of Theorem 1

The proof of Theorem 1 relies on several existing proofs
from different fields. Accordingly, along the proof, we
also track the extra dependencies and structures that ap-
pear only in machine learning, to confirm the applicability
of the previous proofs in the problem of machine learning.
Thus, while presenting the proof is necessary for the pur-
pose of this paper, each component of the proof by itself
is not intended to be an original contribution. Let1A be
an indicator function of a setA. Let Ω = [0, 1]d. Let
1 = (1, 1, . . . , 1) ∈ Ω and0 = (0, 0, . . . , 0) ∈ Ω as in a
standard convention. The following lemma follows theo-
rem 1.6.12 in (Ash & Doleans-Dade, 2000).

Lemma 2. For any(T , f) ∈ F [LŷA(Sm)],
∫

Z
f(T (z))dμ(z) =

∫

Ω

f(ω)d(T∗μ)(ω).

Proof of Lemma 2.By Lemma 1,f is a Borel measur-
able function. The rest of the proof of this lemma directly

follows the proof of theorem 1.6.12 in (Ash & Doleans-
Dade, 2000); we proceed from simpler cases to more gen-
eral cases as follows. In the case off being an indicator
function of some setA asf = 1A, we have that

∫

Z
f(T (z))dμ(z) = μ(Z ∩ T −1A)

= (T∗μ)(Ω ∩ A)

=
∫

Ω

f(ω)d(T∗μ)(ω).

In the case off being a non-negative simple function as
f =

∑n
i=1 αi1Ai ,

∫

Z
f(T (z))dμ(z) =

n∑

i=1

αi

∫

Z
1Ai(T (z))dμ(z)

=
n∑

i=1

αi

∫

Ω

1Ai(ω)d(T∗μ)(ω)

=
∫

Ω

f(ω)d(T∗μ)(ω),

where the second line follows what we have proved for the
case off being an indicator function.

In the case off being a non-negative Borel measurable
function, let (fk)k∈N be an increasing sequence of sim-
ple functions such thatf(ω) = limk→∞ fk(ω), ω ∈
Ω. Then, by what we have proved for simple func-
tions, we have

∫
Z fk(T (z))dμ(z) =

∫
Ω

fk(ω)d(T∗μ)(ω).
Then, by the monotone convergence theorem, we have∫
Z f(T (z))dμ(z) =

∫
Ω

f(ω)d(T∗μ)(ω).

In the case off = f+ − f− being an arbitrary Borel
measurable function, we have already proved the desired
statement for eachf+ and f−, and by the definition of
Lebesgue integration, the statement forf holds.

�

Proof of Theorem 1.With Lemmas 1 and 2, the proof fol-
lows that of theorem 1 in (Aistleitner & Dick, 2015). For
any(T , f) ∈ F [LŷA(Sm)],

∫

Z
LŷA(Sm)(z)dμ(z) −

1
m′

m′
∑

i=1

LŷA(Sm)(zi)

=
∫

Z
f(T (z))dμ(z) −

1
m′

m′
∑

i=1

f(T (zi))

=
∫

Ω

f(ω)d(T∗μ)(ω) −
1
m′

m′
∑

i=1

f(T (zi))

where the second line follows the condition ofT and f
and the third line follows Lemma 2. In the following, we
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first consider the case wheref is left-continuous, and then
discard the left-continuity condition later.

Consider the case where f is left-continuous(for the
second statement): Suppose thatf is left-continuous
coordinate-wise at every point in the domain. Given a pair
of vectors(a, b), we writea ≤ b if the relation holds for
every coordinate. Let̃f(ω) = f(1 − ω) − f(1) for all
ω ∈ Ω. Then, by theorem 3 and equation (20) in (Aistleit-
ner & Dick, 2015), there exists signed Borel measureμf̃

on Ω such thatf̃(ω) = μf̃ ([0, ω]) for all ω ∈ Ω and

|μf̃ |(Ω) = V [f ] + |f̃(0)| = V [f ]. Let νf be the reflected
measure ofμf̃ asνf (A) = μf̃ (1 − A) for any Borel set
A ⊂ Ω where1 − A = {1 − t : t ∈ A}. It follows thatνf

is a signed Borel measure and

|νf |(Ω) = |μf̃ |(Ω) = V [f ].

By using these, we can rewritef as

f(ω) = f(1) + f̃(1 − ω)

= f(1) +
∫

Ω

1[0,1−ω](t)dμf̃ (t)

= f(1) +
∫

Ω

1[ω,1](t)dνf (t)

= f(1) +
∫

Ω

1[0,t](ω)dνf (t),

where the second line follows from{1 − t : t ∈ [ω,1]} =
[0,1 − ω]. Then, by linearity,

1
m′

m′
∑

i=1

f(T (zi))−f(1) =
∫

Ω

1
m′

m′
∑

i=1

1[0,t](T (zi))dνf (t),

and by the Fubini–Tonelli theorem and linearity,
∫

Ω

f(ω)d(T∗μ)(ω) − f(1)

=
∫

Ω

∫

Ω

1[0,t](ω)d(T∗μ)(ω)dνf (t)

=
∫

Ω

(T∗μ)([0, t])dνf (t).

Therefore,

∫

Ω

f(ω)d(T∗μ)(ω) −
1
m′

m′
∑

i=1

f(T (zi))

=
∫

Ω



(T∗μ)([0, t]) −
1
m′

m′
∑

i=1

1[0,t](T (zi))



 dνf (t),

which proves the second statement of this theorem by
noticing thatf(t) = νf ([t,1]) + f(1). Moreover, this im-

plies that
∣
∣
∣
∣
∣
∣

∫

Ω

f(ω)d(T∗μ)(ω) −
1
m′

m′
∑

i=1

f(T (zi))

∣
∣
∣
∣
∣
∣

≤ |dνf (t)|(Ω)D∗[T∗μ, T (Zm′)]

= V [f ]D∗[T∗μ, T (Zm′)].

Discard the left-continuity condition of f (for the first
statement): Letf be given and fixed without left-continuity
condition. For each fixedf , by the law of large num-
bers (strong law of large numbers and the multidimensional
Glivenko–Cantelli theorem), for anyε > 0, there exists a
numbern and a setĀn = {ω̄i}n

i=1 such that both of the
following two inequalities hold:

∣
∣
∣
∣
∣

∫

Ω

f(ω)d(T∗μ)(ω) −
1
n

n∑

i=1

f(ω̄i)

∣
∣
∣
∣
∣
≤ ε,

and
D∗[T∗μ, Ān] ≤ ε.

Let Ān = {ω̄i}i=1 be such a set. For each fixedf , let fn

be a left-continuous function such thatfn(ω) = f(ω) for
all ω ∈ Ān ∪ T (Zm′) andV [fn] ≤ V [f ]. This definition
of fn is non-vacuous and we can construct such afn as
follows. LetG be thed-dimensional grid generated by the
set{0}∪{1}∪Ān∪T (Zm′); G is the set of all pointsω ∈ Ω
such that fork ∈ {1, . . . , d}, thek-th coordinate value of
ω is thek-th coordinate value of some element in the set
{0} ∪ {1} ∪ Ān ∪ T (Zm′). We can construct a desiredfn

by settingfn(ω) = f(succn(ω)), where succn(ω) outputs
an unique elementt ∈ G satisfying the condition thatt ≥ ω
andt ≤ t′ for all t′ ∈ {t′ ∈ G : t′ ≥ ω}.

Then, by triangle inequality, we write
∣
∣
∣
∣
∣
∣
∣

∫

Ω

f(ω)d(T∗μ)(ω) −
1
m′

m′
∑

i=1

f(T (zi))︸ ︷︷ ︸
=fn(T (zi))

∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∫

Ω

fn(ω)d(T∗μ)(ω) −
1
m′

m′
∑

i=1

fn(T (zi))

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

1
n

n∑

i=1

fn(ω̄i)︸ ︷︷ ︸
=f(ω̄i)

−
∫

Ω

fn(ω)d(T∗μ)(ω)

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

Ω

f(ω)d(T∗μ)(ω) −
1
n

n∑

i=1

f(ω̄i)

∣
∣
∣
∣
∣
.

Becausefn is left-continuous, we can apply our previous
result to the first and the second terms; the first term is
at mostV [fn]D∗[T∗μ, T (Zm′)] ≤ V [f ]D∗[T∗μ, T (Zm′)],
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and the second term is at mostV[fn]D∗[T∗μ, Ān] ≤ εV[f ].
The third term is at mostε by the definition ofĀn. Since
ε > 0 can be arbitrarily small, we have that for each
(f, T ) ∈ F [LŷA(Sm)], (deterministically,)

∣
∣
∣
∣
∣
∣

∫

Ω

f(ω)d(T∗μ)(ω) −
1
m′

m′
∑

i=1

f(T (zi))

∣
∣
∣
∣
∣
∣

≤ V [f ]D∗[T∗μ, T (Zm′)].

Putting together: for any(T , f) ∈ F [LŷA(Sm)],
∣
∣
∣
∣
∣
∣

∫

Z
LŷA(Sm)(z)dμ(z) −

1
m′

m′
∑

i=1

LŷA(Sm)(zi)

∣
∣
∣
∣
∣
∣

≤ V [f ]D∗[T∗μ, T (Zm′)]

Thus,
∣
∣
∣
∫
Z LŷA(Sm)(z)dμ(z) − 1

m′

∑m′

i=1 LŷA(Sm)(zi)
∣
∣
∣ is

a lower bound of a setQ = {V [f ]D∗[T∗μ, T (Zm′)] :
(T , f) ∈ F [LŷA(Sm)]}. By the definition of infimum,∣
∣
∣
∫
Z LŷA(Sm)(z)dμ(z) − 1

m′

∑m′

i=1 LŷA(Sm)(zi)
∣
∣
∣ ≤ inf Q,

if inf Q exists. BecauseQ is a nonempty subset of real and
lower bounded by0, inf Q exists. Therefore,

∣
∣
∣
∣
∣
∣

∫

Z
LŷA(Sm)(z)dμ(z) −

1
m′

m′
∑

i=1

LŷA(Sm)(zi)

∣
∣
∣
∣
∣
∣

≤ inf
(T ,f)∈F [LŷA(Sm)]

V [f ]D∗[T∗μ, T (Zm′)],

which implies the first statement of this theorem.

�

B.3. Proof of Proposition 2

Proof. From theorem 2 in (Heinrich et al., 2001), there ex-
ists a positive constantc1 such that for alls ≥ c1

√
d and

for all m′ ∈ N+,

P
{

D∗[T∗μ, T (Zm′)] ≥ sm′−1/2
}
≤

1
s

(
c1s

2

d

)d

e−2s2

,

where we used the fact that the VC dimension of the set of
the axis-parallel boxes contained in[0, 1]d with one vertex
at the origin isd (e.g., see Dudley 1984). By settings =
c2

√
d for anyc2 ≥ c1, we obtain the desiredresult.

B.4. Proof of Proposition 3

Proof. From theorem 1 in (Aistleitner & Dick, 2014), for
anym′ ∈ N+, there exists a setTm′ of pointst1, . . . , tm′ ∈
[0, 1]d such that

D∗[T∗μ, Tm′ ] ≤ 63
√

d
(2 + log2 m′)(3d+1)/2

m′
.

BecauseT is a surjection, for such aTm′ , there existsZm′

such thatT (Zm′) = Tm′ .

B.5. Proof of Theorem 2

Proof. Let LŷA(Sm)(x) = 1
2‖Ŵφ(x) − W ∗φ(x)‖2

2 (Z =
X ). Since

1
2
‖Wφ(x) − y‖2

2 =
1
2
‖Wφ(x) − W ∗φ(x)‖2

2

+
1
2
‖ξ‖2

2 − ξ> (Wφ(x) − W ∗φ(x)) ,

we have

Es

[
1
2
‖Ŵφ(x) − y‖2

2

]

− ÊSm

[
1
2
‖Ŵφ(x) − y‖2

2

]

= Eμx [LŷA(Sm)] − ÊXm [LŷA(Sm)] + A1 + A2

≤ V [f ]D∗[φ∗μx, φ(Xm)] + A1 + A2,

where the last line is obtained by applying Theorem 1 to
Eμx [LŷA(Sm)] − ÊXm [LŷA(Sm)] as follows. LetT (x) =
φ(x) andf(t) = 1

2‖Ŵ t − W ∗t‖2
2, wheret ∈ Rdφ . Then,

LŷA(Sm)(x) = (f ◦ T )(x), and(T , f) ∈ F [LŷA(Sm)] in
Theorem 1 ifV [f ] < ∞. Therefore, by Theorem 1, if
V [f ] < ∞,

Eμx [LŷA(Sm)] − ÊXm [LŷA(Sm)] ≤ V [f ]D∗[φ∗μx, φ(Xm)].

To upper boundV [f ] and to showV [f ] < ∞, we in-
voke Proposition 1 as follows. We have that∂f

∂tl
= (Ŵl −

W ∗
l )>(Ŵ−W ∗)t, and ∂f

∂tl∂tl′
= (Ŵl−W ∗

l )>(Ŵl′−W ∗
l′ ).

Because the second derivatives are constant overt, the third
and higher derivatives are zeros. Lett̃l = (t1, . . . , tdφ

)>

with tj ≡ 1 for all j 6= l. Then, we have that

d∑

l=1

V (1)[fl]

=
d∑

l=1

∫

[0,1]

|(Ŵl − W ∗
l )>(Ŵ − W ∗)t̃l|dtl

≤
d∑

l=1

‖(Ŵl − W ∗
l )>(Ŵ − W ∗)‖1

∫

[0,1]

‖t̃l‖∞dtl.

=
d∑

l=1

‖(Ŵl − W ∗
l )>(Ŵ − W ∗)‖1,

and
∑

1≤l<l′≤d

V (2)[fll′ ]

≤
∑

1≤l<l′≤d

|(Ŵl − W ∗
l )>(Ŵl′ − W ∗

l′ )|.
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Since higher derivatives exist and are zeros, from Proposi-
tion 1, V (k)[fj1...jk

] = 0 for k = 3, . . . , d. By the defini-
tion of V [f ], we obtain the desired bound forV [f ], and we
haveV [f ] < ∞ if ‖Ŵ − W ∗‖ < ∞ (where there is no
need to specify the particular matrix norm because of the
equivalence of thenorm).

B.6. Proof of Theorem 3

Proof. Let Wl′l be the(l′, l)-th entry of the matrixW . Let
LŷA(Sm)(s) = 1

2‖Ŵφ(x)−y‖2
2 (Z = X×Y). LetT (s) =

(φ(x), y) andf(t, y) = 1
2‖Ŵ t − y‖2

2 . Then,`(s) = (f ◦
T )(s), and(T , f) ∈ F [LŷA(Sm)] in Theorem 1 ifV [f ] <
∞. Therefore, by Theorem 1, ifV [f ] < ∞,

Es

[
1
2
‖Ŵφ(x) − y‖2

2

]

− ÊSm

[
1
2
‖Ŵφ(x) − y‖2

2

]

≤ V [f ]D∗[T∗μs, T (Sm)].

To upper boundV [f ] and to showV [f ] < ∞, we invoke
Proposition 1 as follows. For the first derivatives, we have
that ∂f

∂tl
= Ŵ>

l (Ŵ t − y) and ∂f
∂yl

= −(Ŵ t − y)l. For the

second derivatives, we have that∂
2f

∂tl∂tl′
= Ŵ>

l Ŵl′ ,

∂2f

∂yl∂yl′
=

{
1 if l = l′

0 if l 6= l,

and ∂2f
∂tl∂yl′

= −Ŵl′l. Because the second derivatives are
constant int andy, the third and higher derivatives are ze-
ros. Then, because| ∂f

∂tl
| ≤ M‖Ŵl‖1 and| ∂f

∂yl
| ≤ M , with

l = j1,
dφ∑

j1=1

V (1)[fj1 ] ≤ M

dφ∑

l=1

‖Ŵl‖1,

and
dφ+dy∑

j1=dφ+1

V (1)[fj1 ] ≤ dyM.

Furthermore, forj1, j2 ∈ {1, . . . , dφ}, with l = j1 and
l′ = j2,

V (2)[fj1j2 ] ≤ |Ŵ>
l Ŵl′ |.

Forj1 ∈ {1, . . . , dφ} andj2 ∈ {dφ +1, . . . , dφ +dy}, with
l = j1 andl′ = j2 − dφ,

V (2)[fj1j2 ] ≤ |Ŵl′l|,

and forj1, j2 ∈ {dφ + 1, . . . , dφ + dy},

V (2)[fj1j2 ] ≤

{
1 if j1 = j2

0 otherwise.

Thus,
∑

1≤j1<j2≤dφ+dy

V (2)[fj1j2 ]

=
∑

1≤l<l′≤dφ

|Ŵ>
l Ŵl′ | +

dφ∑

l=1

dy∑

l′=1

|Ŵl′l|

=
∑

1≤l<l′≤dφ

|Ŵ>
l Ŵl′ | +

dφ∑

l=1

‖Ŵl‖1.

Therefore,

V [f ]

=
dφ+dy∑

k=1

∑

1≤j1<∙∙∙<jk≤dφ+dy

V (k)[fj1...jk
]

=
2∑

k=1

∑

1≤j1<∙∙∙<jk≤dφ+dy

V (k)[fj1...jk
]

≤ (M + 1)
dφ∑

l=1

‖Ŵl‖1 +
∑

1≤l<l′≤dφ

|Ŵ>
l Ŵl′ | + dyM.

Here, we haveV [f ] < ∞ because‖Ŵ‖ < ∞ andM < ∞
(and the equivalence of thenorm).

B.7. Proof of the inequality in General Example 3

Let μT (Zm′ ) be a (empirical) normalized measure with the
finite support onT (Zm′). Then,

Eμ[LŷA(Sm)] − ÊZm′ [LŷA(Sm)]

≤ V [f ]D∗[T∗μ, T (Zm′)]

= max{|(T∗μ)({0}) − μT (Zm′ )({0})|,

|(T∗μ({0, 1})) − μT (Zm′ )({0, 1})|}

= |T∗μ({0}) − μT (Zm′ )({0})|

= |1 − T∗μ({1}) − 1 + μT (Zm′ )({1})|

= |T∗μ({1}) − μT (Zm′ )({1})|.

RewritingμT (Zm′ )({1}) = EZm′ [LŷA(Sm)] yields the de-
sired inequality in General Example 3.


