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Improved rate for a multi-server coded caching
Minquan Cheng, Qiaoling Zhang, Jing Jiang

Abstract

Multi-server coded caching, which can further reduce the amount of transmission by means of the collaboration among these
servers in the wireless network during the peak traffic times, can be seen everywhere in our life. This amount is called rate. The
three servers setting (two data servers and one parity check server)is widely used in practice, e.g. redundant array of independent
disks-4. Luo et al. in 2016 proposed the first coded caching scheme for this setting. In this paper, we obtain a smaller rate by
modifying Luo’s scheme for some parameters. In addition, our method can be more generalized to further reduce the rate.

I. INTRODUCTION

Predominantly driven by video content demand, there is a dramatic increase in wireless traffic now. The high temporal
variability of network traffic results in communication systems that are congested during peak-traffic times and underutilized
during off-peak times. Caching is natural strategy to cope with this high temporal variability by shifting some transmissions
from peak to off-peak times with the help of cache memories at the network edge.

Maddah-Ali and Niesen in [6] proved that coded caching does not only shift some transmissions from peak to off-peak
times, but also further reduces the amount of transmission during the peak traffic times by exploiting caches to create multicast
opportunities. The first caching scenario is focused in [6]: a single server containing N files with the same length connects to
K users over a shared link and each user has a cache memory of size M files. During the off-peak traffic times the server
places some contents to each user’s cache. In this phase the server does not known what each user will require next. During the
peak traffic times, each user requires a file from server randomly. Then according to each user’s cache, the server sends a coded
signal (XOR of some required packets) to the users such that various user demands are satisfied. The first determined coded
caching scheme, which is called MN scheme in this paper, was proposed in [6]. It is worth mentioning that the broadcasted
amount of MN scheme for the worst request, where all the requirements are different from each other, is at most four times
larger than the lower bound when K ≤ N [2]. We denote such amount by RMN (K, MN ). So MN scheme has been extensively
employed in practical scenarios, such as device to device networks [3], hierarchical networks [4], security [8], multi-servers
setting [5], [7], [9] and so on. There are also many results following MN scheme in [2], [10], [11], [14]–[17] etc.

The coded caching used in muti-server setting can be seen everywhere. We focus on the setting in [5] which is also widely
used (e.g. redundant array of independent disks-4) in our life. In this setting there are three servers, i.e., two data servers A,
B storing N/2 disjoint files respectively and a parity server P storing the bitwise XOR of the information in A and B. The
servers connect to users and operate on independent errorfree channels. This implies that these servers can transmit messages
simultaneously and without interference to the same or different users. According to user’s requirements, each server combines
multiple segments from its own files into a single message, and broadcasts it such that each user can be satisfied by means of
its cache and the received signal messages from servers.

In practice servers are aware of the content cached by each user and of the content stored in other servers. So even though any
two files sorted on different servers can not be combined into a single message, the servers can still coordinate the messages of
these two files. Denote the maximum amount broadcasted among the three servers by R files for the worst request. Clearly it is
meaningful to make R as small as possible. Luo et al., in [5] constructed the first determined coded caching scheme by means of
MN scheme and the results on saturating matching in bipartite graph. Specifically they first considered the symmetric request,
i.e., both data servers receive the same number of requests, and showed that in their scheme the rate R = 1

2RMN (K, MN )
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if KM
N is even, otherwise R = ( 1

2 + 1
6∆(MN ))RMN (K, MN ) where the upper bound of ∆(MN ) is 1

3 . Then a scheme and the
related rate for the other requests can be obtained directly by means of several classes of schemes in symmetric requests.

In this paper, by modifying the schemes in [5] we derive a new rate R = ( 1
2 + 1

6∆′(MN ))RMN (K, MN ) when KM
N is odd.

Here ∆′(MN ) is obviously smaller than ∆(MN ) in most cases. In particular K is large, ∆′(M/N)
∆(M/N) ≈ 0 if M

N nears 1/2, and
∆′(M/N)
∆(M/N) ≈

1
9 if M

N nears 1
3 or 2

3 . The rest of this paper is organized as follows. Section II briefly reviews MN scheme,
the scheme proposed in [5] and the related concepts. In Section III, an improved scheme and its performance analysis are
proposed. Conclusion is drawn in Section IV.

II. PRELIMINARIES

A. MN scheme and bipartite graph

In a (K,M,N) caching system, denote N files by W1, W2, . . ., WN . In the single server setting, when t = KM
N is an

integer, an MN scheme can be realized as follows [6].

• During the off-peak traffic times, each file is divided into F =
(
K
t

)
equal packets, and is denoted by Wi = {Wi,T | T ⊆

[1,K], |T | = t}. Each use k caches the following packets.

Zk = {Wi,T | k ∈ T , i = 1, 2, . . . , N}

• During the peak traffic times, each user requires a file randomly. Denote the user request by d = (d1, d2, . . . , dK). Then
for each subset S with cardinality t+ 1 of [1,K], the server broadcasts the following coded signal.⊕

k∈S

Wdk,S\{k} (1)

Clearly the server broadcasts
(
K
t+1

)
times. So the amount of transmission by server is

RMN (K, MN ) =

(
K

t+ 1

)/(K
t

)
=
K − t
t+ 1

.

The following concepts related on graph and matching are useful in this paper. A graph is denoted by G = (V, E), where
V is the set of vertices and E is the set of edges. A subset of edges M ⊆ E is a matching if no two edges have a common
vertex. A bipartite graph, denoted by G = (X ,Y; E), is a graph whose vertices are divided into two disjoint parts X and Y
such that every edge in E connects a vertex in X to one in Y . For a set X ⊆ X , let NG(X) denote the set of all vertices in
Y adjacent to some vertex of X . The degree of a vertex is the number of vertices adjacent to it. If every vertex of X has the
same degree, we also call such a degree the degree of X and denote d(X ).

Theorem 1: (Hall’s Marriage Theorem, [1] ) Given a bipartite graph G = (X ,Y; E), there exists a matching with |X |
edges, i.e., a saturating matching, if and only if |X| ≤ |NG(X)| holds for any subset X ⊆ X .

Corollary 1: ( [1]) Given a bipartite graph G = (X ,Y; E), assume that d(X ) = m and d(Y) = n. If m ≤ n, then there
is a saturating matching.

B. The scheme in [5]

Now let us consider the three servers setting. In the following we denote the files in server A and B by {A1, . . ., AN/2}
and {B1,. . ., BN/2} respectively. So the files in parity server P are {A1 ⊕B1, . . ., AN/2 ⊕BN/2}. That is Table I.

TABLE I
FILES STORED IN EACH SERVER

Server A Server B Server P
A1 B1 A1 ⊕B1

A2 B2 A2 ⊕B2

...
...

...
AN/2 BN/2 AN/2 ⊕BN/2
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And the following notations are useful.

• Denote the set of users requesting files from server A by KA, and the set of users requesting files from server B by KB .
Clearly the set of all the users is K = KA

⋃
KB . Let KA = |KA| and KB = |KB |.

• Assume that the kth user of KA requests the dk-th file in server A, and the kth user of KB requests the dk-th file in
server B.

Luo et al., in [5] used the same caching strategy as MN scheme during the off-peak traffic times and modified the coded
signals in (1) during the peak traffic times as follows. Given a subset S1 of size t+ 1, it can be divided into three parts, say
QA, QB and Q′A where QA,Q

′

A ⊆ KA and QB ⊆ KB . If there exists a subset S2 of size t + 1 which can be divided into
QA, QB and Q′B where Q′B ⊆ KB , then the pair (S1,S2) is called an effective pair. When servers A, B and P broadcast the
following messages respectively

mA
S1 =

( ⊕
k∈QA

Adk,S1\{k}

)⊕( ⊕
k∈QB

Adk,S1\{k}

)⊕( ⊕
k∈Q′A

Adk,S1\{k}

)

mB
S2 =

( ⊕
k∈QA

Bdk,S2\{k}

)⊕( ⊕
k∈QB

Bdk,S2\{k}

)⊕( ⊕
k∈Q′B

Bdk,S2\{k}

)

mP
S1

⋂
S2 =

[ ⊕
k∈QB

(
Adk,S1\{k} ⊕Bdk,S1\{k}

)]⊕[ ⊕
k∈QA

(
Bdk,S2\{k} ⊕Adk,S2\{k}

)]

=

[( ⊕
k∈QB

Adk,S1\{k}

)⊕( ⊕
k∈QB

Bdk,S1\{k}

)]⊕[( ⊕
k∈QA

Bdk,S2\{k}

)⊕( ⊕
k∈QA

Adk,S2\{k}

)]
(2)

Then each user in S1 and S2 can obtain the requested packets from mA
S1 , mB

S2 and mP
S1

⋂
S2 . So if the sets S1 and S2 form an

effective pair, then the messages indexed by S1 and S2 in (1) can be replaced by three messages in (2). This implies that two
messages, which should be transmitted, can be completed as each server just transmits a single message. Clearly we prefer to
make as many effective pairs as possible. In the case of symmetric request, i.e., KA = KB , Luo et al., obtained the following
results.

Theorem 2: ( [5] ) Based on MN scheme, when KA = KB and K = KA +KB , the rate of the server system in Table I
is

RT (K, MN ) =

{
1
2RMN (K, MN ) if KM

N is even
( 1

2 + 1
6∆(MN ))RMN (K, MN ) if KM

N is odd
(3)

where ∆(MN ), which is bounded by 1
3 , represents the ratio of unpaired messages.

In the following we will focus on the symmetric request. For the sake of introduction in this paper, we will use the following
rules.

Remark 1: Each vertex of a graph is always represented by a subset S ⊆ K with size t+ 1. And for any bipartite graph
G = (X ,Y; E) where a vertex S ∈ X is adjacent to S ′ ∈ Y if and only if they can form an effective pair.

C. Research motivation

The brief proof of Theorem 2 is very useful. Here we take the case that t is odd as an example. For each w = 0, 1, . . .,
t+ 1, define

Vw = {S ⊆ K | |S| = t+ 1, |S
⋂
KA| = w} (4)

Clearly |Vw| = |Vt+1−w| =
(
KA

w

)(
KB

t+1−w
)

=
(

KA

t+1−w
)(
KB

w

)
since KA = KB . By the fact

(
K
t+1

)
=
∑t+1
w=0

(
KA

w

)(
KB

t+1−w
)
, Luo

et. al. [5] constructed several classes of bipartite graphes satisfying Corollary 1 in the following way. For each w ∈ [1, t−1
2 ),

they defined a bipartite graph Gw = (Vw,Vt+1−w; Ew) by (4) and showed that these bipartite graphes satisfy Corollary 1.
When KA < t+ 1, S

⋂
KA 6= ∅ always holds for each subset S ⊆ K with cardinality t+ 1. So they did not need to consider
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the case w = 0. When KA ≥ t+ 1 and w = 0, assume that server A (and B) broadcast the messages mA
S (and mB

S ), S ⊆ KA
(and S ⊆ KB) independently. For the sets V t−1

2
, V t+1

2
, and V t+3

2
, let

X = V t−1
2

⋃
V t+3

2
, Y = V t+1

2
. (5)

They defined a bipartite graph G = (X ,Y; E) and showed that there is a saturating matching. So the number of unpaired
messages is

n =

∣∣∣∣( KA

(t+ 1)/2

)(
KB

(t+ 1)/2

)
−
(

KA

(t− 1)/2

)(
KB

(t+ 3)/2

)
−
(

KB

(t− 1)/2

)(
KA

(t+ 3)/2

)∣∣∣∣ (6)

and the ratio of unpaired messages is

∆(
t

K
) =

n(
K
t+1

) . (7)

Since each unpaired message can be transmitted by any two servers, each server could transmit 2
3n unpaired messages. So the

rate is

RT (K, MN ) =
[(1−∆( tK )) + 2

3∆( tK )]
(
K
t+1

)(
K
t

) =

(
1

2
+

1

6
∆(

t

K
)

)
RMN (K, MN ).

This is the result in Theorem 2. From the above discussions, it is sufficient to study the number of unpaired messages when
we want to reduce rate RT (K, MN ).

III. IMPROVED SCHEME

In this section, we focus on the case of symmetric request for the case that t is odd. Clearly an intuitive approach to reduce
the ratio of unpaired messages is finding the maximal matching of graph G = (V t−1

2

⋃
V t+1

2

⋃
V t+3

2
, E). It is well known that

this maximal problem is an NP-hard and its complexity is very high since there are
(

K/2
(t+1)/2

)(
K/2

(t+1)/2

)
+
(

K/2
(t−1)/2

)(
K/2

(t+3)/2

)
+(

K/2
(t+3)/2

)(
K/2

(t−1)/2

)
vertices. We will propose a local maximal matching method to reduce the complexity.

Denote KA = {a1, a2, . . ., aKA
} and KB = {b1, b2, . . ., bKB

}. We divide sets V t−1
2

, V t+1
2

and V t+3
2

into four subsets
respectively in the following way:

Vw;a1,b1 = {S ∈ Vw | a1 ∈ S, b1 ∈ S}, Vw;a1,b1
= {S ∈ Vw | a1 ∈ S, b1 6∈ S},

Vw;a1,b1 = {S ∈ Vw | a1 6∈ S, b1 ∈ S}, Vw;a1,b1
= {S ∈ Vw | a1 6∈ S, b1 6∈ S},

(8)

where w = t−1
2 , t+1

2 , t+3
2 . It is easy to check that

|Vw;a1,b1 | =
(
K/2− 1

w − 1

)(
K/2− 1

t− w

)
, |Vw;a1,b1

| =
(
K/2− 1

w − 1

)(
K/2− 1

t+ 1− w

)
,

|Vw;a1,b1 | =
(
K/2− 1

w

)(
K/2− 1

t− w

)
, |Vw;a1,b1

| =
(
K/2− 1

w

)(
K/2− 1

t+ 1− w

)
.

(9)

Let λ = M
N . So λ = t

K in MN scheme. Given a fixed number λ, Table II can be obtained by (9) when K is appropriate large.

Now let us consider the sets in (4) and their subsets in (8). We can obtain a bipartite graph for any two different subsets.
However we only interested in the bipartite graph which has at least one edge. It is not difficult to check that any two elements
of a set can not form an effective pair since they have the same number of users requiring from server A(and sever B). So
we only need to consider any two subsets from distinct sets. We take bipartite graph G = (V t+1

2 ;a1,b1
,V t−1

2 ;a1,b1
; E) as an

example. First let us count the degree of each vertex in V t+1
2 ;a1,b1

. Given a vertex

S = {ai1 , ai2 , . . . , ai(t+1)/2
, bi′1 , bi′2 , . . . , bi′(t+1)/2

} ∈ V t+1
2 ;a1,b1

,

1 6∈ {i1, . . . , i(t+1)/2, i
′
1, . . . , i

′
(t+1)/2}, it is adjacent to (t+ 1)/2 vertices

Sj = S
⋃
{b1} \ {aij} ∈ V t−1

2 ;a1,b1
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TABLE II
THE CARDINALITY OF SUBSETS IN (8)

Subsets Cardinality |Vw;,|/|V t+1
2

;a1,b1
| Approximate of |Vw;,|/|V t+1

2
;a1,b1

|

V t−1
2

;a1,b1

(K/2−1
(t−3)/2

)(K/2−1
(t+1)/2

) (t+1)(t−1)
(K−t+1)(K−t−1)

λ2

(1−λ)2

V t−1
2

;a1,b1

(K/2−1
(t−3)/2

)(K/2−1
(t+3)/2

) (t+1)(t−1)(K−t−3)
(t+3)(K−t+1)(K−t−1)

λ
1−λ

V t−1
2

;a1,b1

(K/2−1
(t−1)/2

)(K/2−1
(t+1)/2

)
t+1

K−t−1
λ

1−λ

V t−1
2

;a1,b1

(K/2−1
(t−1)/2

)(K/2−1
(t+3)/2

) (t+1)(K−t−3)
(t+3)(K−t−1)

1

V t+1
2

;a1,b1

(K/2−1
(t−1)/2

)(K/2−1
(t−1)/2

) (t+1)(t+1)
(K−t−1)(K−t−1)

λ2

(1−λ)2

V t+1
2

;a1,b1

(K/2−1
(t−1)/2

)(K/2−1
(t+1)/2

)
t+1

K−t−1
λ

1−λ

V t+1
2

;a1,b1

(K/2−1
(t+1)/2

)(K/2−1
(t−1)/2

)
t+1

K−t−1
λ

1−λ

V t+1
2

;a1,b1

(K/2−1
(t+1)/2

)(K/2−1
(t+1)/2

)
1 1

V t+3
2

;a1,b1

(K/2−1
(t+1)/2

)(K/2−1
(t−3)/2

) (t+1)(t−1)
(K−t+1)(K−t−1)

λ2

(1−λ)2

V t+3
2

;a1,b1

(K/2−1
(t+1)/2

)(K/2−1
(t−1)/2

)
t+1

K−t−1
λ

1−λ

V t+3
2

;a1,b1

(K/2−1
(t+3)/2

)(K/2−1
(t−3)/2

) (t+1)(t−1)(K−t−3)
(t+3)(K−t+1)(K−t−1)

λ
1−λ

V t+3
2

;a1,b1

(K/2−1
(t+3)/2

)(K/2−1
(t−1)/2

) (t+1)(K−t−3)
(t+3)(K−t−1)

1

Hence d(V t+1
2 ;a1,b1

) = (t+ 1)/2. Now let us consider the degree of each vertex in V t−1
2 ;a1,b1

. Given a vertex

S = {ai1 , ai2 , . . . , ai(t−1)/2
, bi′1 , bi′2 , . . . , bi′(t+1)/2

,b1} ∈ V t−1
2 ;a1,b1

,

1 6∈ {i1, . . . , i(t−1)/2, i
′
1, . . . , i

′
(t+1)/2}, it is adjacent to K

2 −
t+1

2 = K−t−1
2 vertices, i.e., S

⋃
{a} \ {b1} ∈ V t+1

2 ;a1,b1
for each

a ∈ KA \ ({a1}
⋃
S). That is d(V t−1

2 ;a1,b1
) = K−t−1

2 . Similarly we can compute the degree of each vertex in the bipartite
graph G = (X ,Y, E) generated by any two subsets from distinct sets and list them in Tables III and IV where d(X ) and d(Y)

are respectively on the the top and bottom of the diagonal in the entry indexed by X and Y . It is easy to check that the elements
on the top and bottom of the diagonal in the entry indexed by (V t−1

2 ;a1,b1
,V t+1

2 ;a1,b1
) are t+1

2 and K−t−1
2 respectively. By

the way the entry is defined by empty when there is no edges in the related bipartite graph.

TABLE III
THE DEGREES FOR EACH BIPARTITE GRAPH (I)

V d(V)
d(V t+1

2
)

V t+1
2

V t+1
2
,a1,b1

V t+1
2
,a1,b1

V t+1
2
,a1,b1

V t+1
2
,a1,b1

V t−1
2
,a1,b1 (K−t+1)(t+1)

4

(t−1)(K−t−1)
4

(K−t+1)(t+3)
4

(t−1)(K−t−3)
4

V t−1
2
,a1,b1 (K−t+1)(t+3)

4

(t−1)(K−t−3)
4

V t−1
2
,a1,b1 t+1

2

K−t−1
2

1

1
(K−t−1)(t+1)

4

(K−t−1)(t+1)
4

K−t−1
2

t+1
2

V t−1
2
,a1,b1 t+3

2

K−t−3
2

(K−t−3)(t+3)
4

(t+1)(K−t−3)
4

V t+3
2
,a1,b1 (t+1)(K−t+1)

4

(t−1)(K−t−1)
4

K−t+1
2

t−1
2

V t+3
2
,a1,b1 t+1

2

K−t−1
2

(t+1)(K−t−1)
4

(K−t−1)(t+1)
4

1

1
K−t−1

2

t+1
2

V t+3
2
,a1,b1 (t+3)(K−t+1)

4

(K−t−3)(t−1)
4

V t+3
2
,a1,b1 t+3

2

K−t−3
2

(t+3)(K−t−1)
4

(K−t−3)(t+1)
4

In order to make the cardinality of a maximal matching as large as possible, we can also use several subsets to generate a
bipartite graph.

Example 1: A bipartite graph G = (X ,Y2; E) where

X = V t+1
2 ;a1,b1

, Y = V t−1
2 ;a1,b1

⋃
V t+3

2 ;a1,b1
, (10)
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TABLE IV
THE DEGREES FOR EACH BIPARTITE GRAPH (II)

V t−1
2

d(V t−1
2

)

d(V t+3
2

)

V t+3
2

V t+3
2
,a1,b1

V t+3
2
,a1,b1

V t+3
2
,a1,b1

V t+3
2
,a1,b1

V t−1
2
,a1,b1 (K−t+1

2
2

)( t+1
2
2

) ( t+1
2
2

)(K−t+1
2
2

)
t+1
2

(K−t+1
2
2

) K−t−1
2

( t+1
2
2

)

V t−1
2
,a1,b1 (K−t+1

2
2

)( t+3
2
2

) ( t+1
2
2

)(K−t−1
2
2

)

V t−1
2
,a1,b1 K−t−1

2

( t+1
2
2

) t+1
2

(K−t+1
2
2

)
(K−t+1)(t+1)

4

(t+1)(K−t+1)
4 (K−t−1

2
2

)( t+1
2
2

) ( t+3
2
2

)(K−t+1
2
2

)
t+1
2

(K−t−1
2
2

) K−t−1
2

( t+3
2
2

)

V t−1
2
,a1,b1 K−t−1

2

( t+3
2
2

) t+1
2

(K−t−1
2
2

) (K−t−1
2
2

)( t+3
2
2

) ( t+3
2
2

)(K−t−1
2
2

)

can be obtained. From Table III, we have d(V t+1
2 ;a1,b1

) = t+1
2 + t+1

2 = t+1 and d(V t−1
2 ;a1,b1

⋃
V t+3

2 ;a1,b1
) = K−t+1

2 . Suppose

that λ ∈ (0, 3−
√

5
2 ). It is easy to check that t + 1 ≤ K−t+1

2 if λ ∈ (0, 1
3 −

1
K ], otherwise t + 1 ≥ K−t+1

2 . From Corollary
1 there is a saturating matching. So there are |V t−1

2 ;a1,b1

⋃
V t+3

2 ;a1,b1
| or |V t+1

2 ;a1,b1
| vertices in the maximal matching of G

generated by (10). Of course we can also assume that

X = V t+1
2 ;a1,b1

, Y = V t−1
2 ;a1,b1

or X = V t+1
2 ;a1,b1

, Y = V t+3
2 ;a1,b1

.

Similarly we can also show that they have saturating matchings respectively. And it is easy to check that cardinality of the
maximal matching by the first assumption is maximal.

With the aid of a computer, we have the following bipartite graphes such that the the number of the unpair of messages is
minimal according to the value of λ.

A. 0 < λ ≤ 3−
√

5
2

When λ ≤ 3−
√

5
2 , one of the most appropriate method constructing bipartite graphs is

G1 = (V t+1
2 ;a1,b1

,V t−1
2 ;a1,b1

⋃
V t+3

2 ;a1,b1
; E1)

G2 = (V t+1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E2) G3 = (V t+1
2 ;a1,b1

,V t−1
2 ;a1,b1

; E3)

G4 = (V t−1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E4) G5 = (V t−1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E5)

(11)

From Tables III and IV, similar to the discussion in Example 1 the following statement holds.

Lemma 1: Each of the bipartite graphs in (11) has a saturating matching.

From Lemma 1 and Table II, the number of unpaired messages is

n1 =
∣∣∣V t+1

2 ;a1,b1

∣∣∣+
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t−1
2 ;a1,b1

⋃
V t+3

2 ;a1,b1
|
∣∣∣∣∣∣+

∣∣∣∣∣∣V t+1
2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,b1

∣∣∣∣∣∣
+
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t−1
2 ;a1,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t−1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t−1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,b1

∣∣∣∣∣∣
=

[(
t+1

K−t−1

)2

+
∣∣∣1− 2 t+1

K−t−1

∣∣∣+ 2
∣∣∣ t+1
K−t−1 −

(t+1)(t−1)(K−t−3)
(t+3)(K−t+1)(K−t−1)

∣∣∣] (K/2−1
(t+1)/2

)2
=
[
|K−3t−3|
K−t−1 + (t+1)2(K−t+1)(t+3)+8K(t+1)(K−t−1)

(K−t−1)2(t+3)(K−t+1)

] (
K/2−1
(t+1)/2

)2
.
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Now let us consider the reduction comparing with the scheme in [5], i.e.,

n1

n
=

[
|K−3t−3|
K−t−1 + (t+1)2(K−t+1)(t+3)+8K(t+1)(K−t−1)

(K−t−1)2(t+3)(K−t+1)

] (
K/2−1
(t+1)/2

)2∣∣∣( KA

(t+1)/2

)(
KB

(t+1)/2

)
−
(

KA

(t−1)/2

)(
KB

(t+3)/2

)
−
(

KB

(t−1)/2

)(
KA

(t+3)/2

)∣∣∣
=
(
|K−3t−3|
K−t−1 + (t+1)2(K−t+1)(t+3)+8K(t+1)(K−t−1)

(K−t−1)2(t+3)(K−t+1)

) (K−t−1)2

K2

2 (t+1)(K−t−1)
(K−t+1)(t+3) − 1

≈ |1− 3λ|(1− λ) + λ2.

(12)

The last equation holds when K is appropriate large and λ is a fixed number. This implies that the number of unpaired messages
left by (11) is about |1−3λ|(1−λ)+λ2

3 times smaller than that of obtained by (5). Figure 1 is the function n1/n depends on
variable λ ∈ (0, 3−

√
5

2 ]. Clearly n1/n ≈ 1
9 if λ towards 1

3 . We can also compute the ratio of unpaired messages as follows.

Fig. 1. The function n1
n

in (12) depends on variable 0 < λ ≤ 3−
√
5)/2

∆1(λ) =
n1(
K
t+1

) < n1∣∣∣V t+1
2

∣∣∣+
∣∣∣V t−1

2

⋃
V t+3

2

∣∣∣
=
[
|K−3t−3|
K−t−1 + (t+1)2(K−t+1)(t+3)+8K(t+1)(K−t+1)

(K−t−1)2(t+3)(K−t+1)

] (K/2−1
(t+1)/2)

2

2( K/2
(t−1)/2)(

K/2
(t+3)/2)+( K/2

(t+1)/2)(
K/2

(t+1)/2)

=
[
|K−3t−3|
K−t−1 + (t+1)2(K−t+1)(t+3)+8K(t+1)(K−t−1)

(K−t−1)2(t+3)(K−t+1)

] (K−t−1)2

K2

2 (t+1)(K−t−1)
(K−t+1)(t+3) + 1

≈ |1−3λ|(1−λ)+λ2

3

(13)

Clearly ∆1(λ) tends to 1
27 if λ towards 1

3 .

B. 3−
√

5
2 < λ ≤

√
5−1
2

When 3−
√

5
2 < λ ≤

√
5−1
2 , one of the most appropriate method constructing bipartite graphs is

G1 = (V t+1
2 ;a1,b1

,V t−1
2 ;a1,b1

; E1), G2 = (V t+1
2 ;a1,b1

,V t−1
2 ;a1,b1

; E2)

G3 = (V t+1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E3) G4 = (V t+1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E4)

G5 = (V t−1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E5) G6 = (V t−1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E6)

(14)

From Tables III and IV, similar to the discussion in Example 1 the following result can be obtained.

Lemma 2: Each of the bipartite graphs in (14) has a saturating matching.
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From Lemma 2 and Table II, the number of unpaired messages is

n2 =
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t−1
2 ;a1,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t−1
2 ;a1,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,b1

∣∣∣∣∣∣
+
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t−1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t−1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,b1

∣∣∣∣∣∣ .
=

(
t+1

K−t−1

∣∣∣ t+1
K−t−1 − 1

∣∣∣+ 2
∣∣∣ t+1
K−t−1 −

(t+1)(t−1)(K−t−3)
(t+3)(K−t+1)(K−t−1)

∣∣∣+
∣∣∣ t+1
K−t−1 − 1

∣∣∣) (K/2−1
(t+1)/2

)2
=

(
K

(K−t−1)2 |2t+ 2−K|+ t+1
K−t−1

8K
(t+3)(K−t+1)

) (
K/2−1
(t+1)/2

)2
Similar to (12) and (13), we have

n2

n
=
(

K
(K−t−1)2 |2t+ 2−K|+ t+1

K−t−1
8K

(t+3)(K−t+1)

) (K−t−1)2

K2

2 (t+1)(K−t−1)
(K−t+1)(t+3) − 1

≈ |2λ− 1|

(15)

and the ratio of unpaired messages

∆2(λ) =
n2(
K
t+1

) < n2

2
(

K/2
(t−1)/2

)(
K/2

(t+3)/2

)
+
(

K/2
(t+1)/2

)(
K/2

(t+1)/2

)
≈ 1

3 |2λ− 1|
(16)

Clearly both n2/n and ∆2(λ) tend to 0 if λ towards 1/2. Figure 2 is the function n2/n depends on variable λ ∈ ( 3−
√

5
2 ,

√
5−1
2 ].

Fig. 2. The function n2
n

in (15) depends on variable 3−
√
5

2
< λ ≤

√
5−1
2

C.
√

5−1
2 < λ < 1

When
√

5−1
2 < λ < 1, one of the most appropriate method constructing bipartite graphs is

G1 = (V t+1
2 ;a1,b1

,V t−1
2 ;a1,b1

⋃
V t+3

2 ;a1,b1
; E1)

G2 = (V t+1
2 ;a1,b1

,V t−1
2 ;a1,b1

; E2) G3 = (V t+1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E3)

G4 = (V t−1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E4) G5 = (V t−1
2 ;a1,b1

,V t+3
2 ;a1,b1

; E5)

(17)

Similar to the discussions in Section III-A, the following results can be obtained.
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Lemma 3: Each of the bipartite graphs in (17) has a saturating matching.

From Lemma 3 and Table II, the number of unpaired messages is

n3 =
∣∣∣V t+1

2 ;a1,b1

∣∣∣+
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t−1
2 ;a1,b1

⋃
V t+3

2 ;a1,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t−1
2 ;a1,b1

∣∣∣∣∣∣
+
∣∣∣∣∣∣V t+1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t−1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,,b1

∣∣∣∣∣∣+
∣∣∣∣∣∣V t−1

2 ;a1,b1

∣∣∣− ∣∣∣V t+3
2 ;a1,b1

∣∣∣∣∣∣
=

(
1 + t+1

K−t−1

∣∣∣ t+1
K−t−1 − 2

∣∣∣+ 2
∣∣∣ t+1
K−t−1 −

(t+1)(t−1)(K−t−3)
(t+3)(K−t+1)(K−t−1)

∣∣∣) (K/2−1
(t+1)/2

)2
=

(
1 + K

(K−t−1)2 |3t+ 3− 2K|+ t+1
K−t−1

8K
(t+3)(K−t+1)

) (
K/2−1
(t+1)/2

)2
Similar to (12) and (13), we have

n3

n
=
(

1 + K
(K−t−1)2 |3t+ 3− 2K|+ t+1

K−t−1
8K

(t+3)(K−t+1)

) (K−t−1)2

K2

2 (t+1)(K−t−1)
(K−t+1)(t+3) − 1

≈ (1− λ)2 + λ |3λ− 2|

(18)

and the ratio of unpaired messages left

∆3(λ) =
n3(
K
t+1

) < n3

2
(

K/2
(t−1)/2

)(
K/2

(t+3)/2

)
+
(

K/2
(t+1)/2

)(
K/2

(t+1)/2

)
=
[
1 + K

K−t−1

∣∣∣ t+1
K−t−1 − 2

∣∣∣+ t+1
K−t−1

8K
(t+3)(K−t+1)

] (K/2−1
(t+1)/2)

2

2( K/2
(t−1)/2)(

K/2
(t+3)/2)+( K/2

(t+1)/2)(
K/2

(t+1)/2)

≈ (1−λ)2+λ|3λ−2|
3

(19)

Clearly n3/n and ∆3(λ) tend to 1
9 and 1

27 respectively if λ towards 2
3 . Figure 3 is the function n3/n depends on variable

λ ∈ (
√

5−1
2 , 1).

Fig. 3. The function n3
n

in (18) depends on variable
√
5−1
2

< λ < 1

Theorem 3: Based on MN scheme, when KA = KB , for the server system in Table I the rate is

RT (K, MN ) =

{
1
2RMN (K, MN ) if KM

N is even
( 1

2 + 1
6∆′(MN ))RMN (K, MN ) if KM

N is odd
(20)

where ∆′, which is the minimum value of ∆(MN ) in (7), ∆1(MN ) in (13), ∆2(MN ) in (16) and ∆3(MN ) in (19), represents the
ratio of unpaired messages.
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Finally, we should point out that the rate in Theorem 3 can be further improved when t is odd. First let us generalize the
notations in (8), i.e., define

Vw;a1,...,ah1−1,ah1
,b1,...,bh2−1,bh2

= {S ∈ Vw | ah1
, bh2

∈ S, ai, bj 6∈ S, i ∈ [1, h1), j ∈ [1, h2)} (21)

where w = t−1
2 , t+1

2 , t+3
2 and h1 ∈ [1, K2 − w + 1], h2 ∈ [1, K2 − t+ w]. It is easy to check that

|Vw;a1,...,ah1−1,ah1
,b1,...,bh2−1,bh2

| =
(
K/2− h1

w − 1

)(
K/2− h2

t− w

)
(22)

and
Vw;a1,...,ah1−1,ah1

,b1,...,bh2−1,bh2

⋂
Vw;a1,...,ah′1−1,ah′1

,b1,...,bh′2−1,bh′2
= ∅

for any distinct vectors (h1, h2) 6= (h′1, h
′
2). In addition,(

K/2

w

)(
K/2

t+ 1− w

)
=

K/2−w+1∑
h1=1

K/2−t+w∑
h2=1

(
K/2− h1

w − 1

)(
K/2− h2

t− w

)
(23)

since it is well know (
n

m

)
=

(
n− 1

m− 1

)
+

(
n− 2

m− 1

)
+ . . .+

(
m− 1

m− 1

)
, 1 ≤ m < n

always holds. So we have

Vw =

K/2−w+1⋃
h1=1

K/2−t+w⋃
h2=1

Vw;a1,...,ah1−1,ah1
,b1,...,bh2−1,bh2

.

Then we can also compute the degree of each vertex in the bipartite graph generated by any subsets in (21). Similar to
the discussions in Subsections III-A, III-B and III-C, we can further reduce the value of ∆′(MN ) in (20) by sacrificing run-
time efficiency on constructing the most appropriate classes of bipartite graphs. In fact the sacrificing run-time is very small
comparing with that of finding the maximal matching of graph G = (V t−1

2

⋃
V t+1

2

⋃
V t+3

2
; E).

IV. CONCLUSION

In this paper, we modified the scheme for multi-servers setting in [5] when KM
N is odd. Consequently an obviously smaller

rate was obtained. Especially when K is large, R ≈ 1
2RMN (K, MN ) if M

N nears 1/2, and R ≈ 41
81RMN (K, MN ) if M

N nears 1
3

or 2
3 . In addition, our modification can be generalized to further reduce the rate. However with an exhaustive computer search,

it will cost more running times to search the bipartite graphs generated by the subsets in (21) such that the unpaired messages
as small as possible. So it would be of interest if we can propose a determined construction of such bipartite graphs.
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