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ABSTRACT

Label propagation on the tensor product of multiple graphs can in-

fer multi-relations among the entities across the graphs by learning

labels in a tensor. However, the tensor formulation is only empiri-

cally scalable up to three graphs due to the exponential complexity

of computing tensors. In this paper, we propose an optimization for-

mulation and a scalable Lowrank Tensor-based Label Propagation

algorithm (LowrankTLP). The optimization formulation minimizes

the rank-k approximation error for computing the closed-form so-

lution of label propagation on a tensor product graph with efficient

tensor computations used in LowrankTLP. LowrankTLP takes ei-

ther a sparse tensor of known multi-relations or pairwise relations

between each pair of graphs as the input to infer unknown multi-

relations by semi-supervised learning on the tensor product graph.

We also accelerate LowrankTLP with parallel tensor computation

which enabled label propagation on a tensor product of 100 graphs

of size 1000 within 150 seconds in simulation. LowrankTLP was

also successfully applied to multi-relational learning for predict-

ing author-paper-venue in publication records, alignment of several

protein-protein interaction networks across species and alignment

of segmented regions across up to 7 CT scan images. The experi-

ments prove that LowrankTLP indeed well approximates the origi-

nal label propagation with high scalability.

Source code: https://github.com/kuanglab/LowrankTLP
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1 INTRODUCTION

Label propagation has been widely used for semi-supervised learn-

ing on the similarity graph of labeled and unlabeled samples [20,

24, 25]. As illustrated in Figure 1 (top left), label propagation prop-

agates training labels on a graph to learn a vector y predicting the

labels of each vertex. A generalization of label propagation on the

Kronecker product of two graphs (also called bi-random walk) can

infer the pairwise relations in a matrix Y between the vertices from

the two graphs as shown in Figure 1 (bottom left). This approach

*Equal contribution

has been applied to aligning biological and biomedical networks

[17, 22]. Similar link prediction problems on Kronecker product

graphs also exist in matching images [6], collaborative filtering

[11], citation network analysis [12] and multi-language translation

[23]. When applied on the tensor product of n graphs to predict the

matching across the n graphs in an n-way tensor Y as shown in Fig-

ure 1 (right), label propagation accomplishes n-way relational learn-

ing from knowledge graphs [14]. Label propagation on the tensor

product graph explores the graph topologies for associating vertices

across the graphs assuming the global relations among the vertices

reveal the vertex identities [22]. However, the tensor formulation

of label propagation is only empirically scalable up to three graphs

even if the graphs are sparse [12, 16]. In particular, each multiplica-

tion with tensor will exponentially increase the number of non-zero

entries and after several iterations, a dense tensor is expected.

To tackle the scalability issue, we introduce an optimization for-

mulation to minimize rank-k approximation error for a low-rank

computation of the closed-form solution of label propagation on

a tensor product graph, and a Lowrank Tensor-based Label Prop-

agation algorithm (LowrankTLP) using efficient tensor operations

to compute the approximated solution. We also show that our op-

timization formulation based on the rank-k tensor product graph

incurs less approximation error than the direct rank-k approxima-

tion of the global similarity matrix for computing the closed-form

solution. Finally, we implemented a parallel LowrankTLP using

SPLATT library [18] for parallel shared-memory tensor operations

to increase the scalability by a large magnitude.

2 PRELIMINARIES

Below is a list of tensor notations and definitions. Four useful lem-

mas are also given in Appendix A. For more general information of

tensors, we direct the readers to the survey paper [9].

(1) Notations and operators:

vector: x Hadamard product: ∗ outer product: ◦
matrix: X Kronecker product: ⊗ the i-mode product: ×i
tensor: X Khatri–Rao product: ⊙ vectorization of tensor:

−→X

http://arxiv.org/abs/1802.07379v1
https://github.com/kuanglab/LowrankTLP
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Figure 1: Label propagation generalized on tensor product

graphs. Top left: label propagation on a graph predicts the

labels of the vertices for semi-supervised learning; Bottom left:

label propagation on the Kronecker product of two graphs pre-

dicts links between the vertices across the two graphs; Right: la-

bel propagation on an n-way tensor product graph learns n-way

multi-relations across the vertices in n graphs. Each n vertices

in the same color is represented as an entry in the n-way tensor.

(2) CANDECOMP/PARAFAC decomposition (CP): An n-

way tensor X ∈ RI1×I2×...×In of rank R can be written as

X =
R
∑

r=1

a
(1)
r ◦ a

(2)
r ◦ · · · ◦ a

(n)
r

= JA(1),A(2), . . .A(n)K,

where a
(i )
r is the r -th column of factor matrixA(i ) ∈ RIi×R .

Vectorization property: The vectorization of CP-form is
−→X = (A(n) ⊙A(n−1) ⊙ · · · ⊙A(1))1, where 1 is a vector with

all-ones.

(3) Tucker Decomposition: Ann-way tensorX ∈ RI1×I2×...×In
can be decomposed into a core tensor G ∈ RR1×R2×...×Rn

and factor matrices {A(i ) ∈ RIi×Ri |i = 1, . . . ,n} as

X = G ×1 A(1) ×2 A(2) · · · ×n A(n)

= JG;A(1),A(2), . . . ,A(n)K,

where ×i is the i-mode matrix product of a tensor.

Vectorization property: The vectorization of X is
−→X =

(A(n) ⊗ A(n−1)... ⊗ A(1))−→G .

(4) Tensor product graph (TPG): Given the adjacency ma-

trices of n distinct graphs {W (i ) ∈ RIi×Ii |i = 1, . . . ,n},
the tensor product graph is defined as W = ⊗ni=1W

(i ) ∈
R
(∏n

i Ii )×(
∏n

i Ii ), with edge w {a1,a2, ...,an }, {b1,b2, ...,bn } =
∏n

l=1
w
(l )
al ,bl

encoding the similarity between a pair of n-

way tuples of graph vertices {a1, a2, . . . ,an} and {b1,b2, . . . ,bn},
∀ {al ,bl } ∈ [1 : Il ]. See Figure 1 (right).

3 PROBLEM FORMULATION

Here, we define the problem of multi-relational learning with knowl-

edge graphs and show an overview of our method in Figure 2.

• Knowledge graphs [Figure 2 (A)]: Adjacency matrices of

n distinct graphs {W (i ) ∈ RIi×Ii |i = 1, . . . ,n} with the

symmetric normalized form S (i ) = [D(i )]− 1
2W (i )[D(i )]− 1

2 ,

where D(i ) is the degree matrix of the i-th graph.

• Input options [Figure 2 (B)]: There are usually two possi-

ble kinds of inputs in real applications.

– Option 1 (known multi-relations): an n-way sparse

tensor Y0 stores a small labeled (known) subset of

all n-way relations {{i1, i2, . . . , in }|∀i j ∈ [1 : Ij ], j ∈
[1,n]} where i j denotes the i-th vertex of graphW (j).
The zero entries are unlabeled (unknown) n-way rela-

tions.

– Option 2 (pairwise relations): the non-negative ma-

trices {Ri j ∈ RIi×Ij |i, j ∈ [1,n]} contain the pairwise

similarities between the vertices of graph W (i ) and

W (j) . We convert the matrices into a rank-r CP-form

of Y0 as input as following: we first apply symmetric

NMF (symNMF) [5] on a symmetric matrix built by

stacking all Ri j ’s to obtain a nonnegative factor ma-

trix F ∈ R(
∑n
i=1 Ii )×r . Then, the rank-r CP-form of

Y0 is approximated as Y0 = JF (n), F (n−1), . . . , F (1)K
where F (i ) ∈ RIi×r is the i-th submatrix of F . This is

under the assumption that more similar pairwise rela-

tions between every pair of {ia, ib } ⊂ {i1, i2, . . . , in}
imply a stronger relation at the {i1, i2, . . . , in }-th en-

try of Y0.

• Output [Figure 2 (D)]: a spare tensor Y∗ stores the pre-

dicted labels of the n-way relations queried by the user.

Our goal is to predict the multi-relations of a set of queried en-

tries in the outputY∗ given the known relations in the initial sparse-

form or CP-form of the tensor Y0 based on the topological informa-

tion carried by the edges of the TPG of the knowledge graphs as

described in Section 2(4). This task will be solved by our scalable

label propagation algorithm for manifold learning on the TPG.

4 RELATED WORK

Multi-relational learning with knowledge graphs remains a chal-

lenge due to the exponential number of possible multi-relations to

evaluate even in a small number of graphs of medium sizes. Two

categories of tensor-based techniques have been previously applied

to the multi-relational learning problem.

The first category applies low-rank approximation on each indi-

vidual graph to improve the scalability. For example, approximate

link propagation (ApproxLink) [16] is a semi-supervised learning

algorithm for link prediction on a pair of graphs, which is gen-

eralizable to multiple graphs. Transductive learning over product

graph (TOP) [12] is a cross-graph relational learning (CGRL) al-

gorithm introducing the product graph structure via a Gaussian ran-

dom fields prior. In general, these methods are not suitable for ap-

plications with a large number of graphs: First, low-rank approxi-

mation of each individual graph does not guarantee a globally opti-

mal approximation of the TPG; and second, the rank of the TPG is

exponential in the number of graphs, and therefore not scalable to

many graphs. Thus, these approximation methods do not preserve

the original performance and still suffers scalability issues to learn

from a large number of knowledge graphs.

The second category applies tensor completion with the known multi-

relations in the initial tensor to predict the unknown multi-relations.
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Figure 2: The general schema of LowrankTLP. (A) Knowledge Graphs: Three graphs, S (1), S (2) and S (3) are given. Then, Algo-

rithm 1 will obtain the k optimal eigenvalues and the corresponding eigenvectors of the tensor product graph based on the eigen-

decomposition of each graph. (B) Input: Two options of initial tensor Y0 as input: known multi-relations in a sparse tensor or a

CP-form computed with pairwise relations of every pair of graphs. (C) Efficient Tensor Operations: Y0 and the selected eigen-pairs

are used to perform compression operations and expansion operations to obtain the closed-form solution of label propagation in a

CP-form. (D) Output: The sparse tensorY can be obtained by computing the queried multi-relations, which can also be used to align

the graphs.

This problem is usually solved by graph-regularized tensor decom-

position (TD) assuming that the tensors to be completed are low-

rank and the regularization by graph Laplacian encourages the com-

ponents in the factor matrices to be smooth among strongly con-

nected vertices in the graph [3, 4, 13]. For example, the cross-mode

regularization (GraphTD) [13] regularizes all the factor matrices

together in the graph Laplacian of the TPG. Two major weaknesses

of these tensor-completion methods are the lack of unique solution

and that the performance tends to decrease quickly when only a

small number of known relations are provided.

5 LABEL PROPAGATION ON TENSOR

PRODUCT GRAPH

Here, we formally define the generalization of label propagation on

TPG and it’s closed-from solution. Let S be the normalized TPG as

follows,

S = (⊗ni=1[D
(i )]−

1
2 )(⊗ni=1W

(i ))(⊗ni=1[D
(i )]−

1
2 )

= ⊗ni=1([D
(i )]−

1
2W (i )[D(i )]−

1
2 ) (by Lemma A.1)

= ⊗ni=1S
(i )
.

The iterations of label propagation on vectorized tensor
−→
Y starting

at the initialization
−→
Y0 defined in section 3 is as follows:

−−−−→
Yt+1

= α(⊗ni=1S
(i ))
−→
Yt
+ (1 − α)

−→
Y0
, (1)

where α ∈ (0, 1) is a balancing parameter and t denotes the itera-

tion. Applying the vectorization property of Tucker decomposition

as introduced in Section 2(3), Equation (1) can be rewritten as

Yt+1
= αYt ×1 S (n) ×2 S (n−1) · · · ×n S (1) + (1 − α)Y0

. (2)

Even if Y0 is in sparse form or CP form, the density of tensor Y
increases exponentially in each iteration. Therefore, the space com-

plexity is O(∏n
i=1 Ii ) for store the dense tensor and the time com-

plexity is O((∏n
i=1 Ii )(

∑n
i=1 Ii )) per iteration.

Since the eigenvalues of S are in [−1, 1] and α ∈ (0, 1), iteration

(1) converges to the following closed-form solution [24],

−→
Y∗ = lim

t→∞

−→
Yt
= (1 − α)(I − αS)−1

−→
Y0
. (3)

Furthermore, given the eigen-decomposition of each S (i ) as {S (i ) =
Q (i )Λ(i )Q (i )T |i = 1, . . .n}, the eigen-decomposition of S can be
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expressed as

S = QΛQT
= (⊗ni=1Q

(i ))(⊗ni=1Λ
(i ))(⊗ni=1Q

(i )T )
with Lemma A.1 and A.4. Substituting S into Equation (3) we get

−→
Y∗ = (1 − α)(⊗ni=1Q

(i ))(I − α(⊗ni=1Λ
(i )))−1(⊗ni=1Q

(i )T )
−→
Y0
. (4)

It can be observed that computing the closed-form solution in Equa-

tion (4) from right to left needs 2n matrix-tensor products in total

with the vectorization property of Tucker decomposition. There-

fore, the space and time complexity will be the same as running

two iterations of label propagation, apart from computing the eigen-

decompositions of all the normalized graphs {S (i ) |i = 1, ...,n}. In

[12, 16], Eckart-Young-Mirsky theorem [7] is applied on each in-

dividual graph to approximate their TPG. However, this approxi-

mation does not consider the overall spectral of the TPG and thus,

leads to a large error in both approximation and multi-relational

predictions. In other words, the direct application of Eckart-Young-

Mirsky theorem to individual graphs results in a large perturbation

on the whole transformation matrix (I − αS)−1, and thus, an inaccu-

rate computation of the closed-form solution.

6 LOW-RANK LABEL PROPAGATION

In this section, we first introduce our optimization formulation and

then the LowrankTLP algorithm illustrated in Figure 2 to solve the

optimization problem. We also show that our formulation incurs

less approximation error than the direct rank-k approximation of the

global similarity matrix for computing the closed-form solution.

6.1 Learning rank-k approximation

We propose to approximate the closed-form solution in Equation (4)

by minimizing the perturbation on transformation matrix (I −αS)−1
as follows,

minimize
eig(Sk )

| |(I − αS)−1 − (I − αSk )−1 | |2,F

subject to rank(Sk ) = k, eig(Sk ) ⊆ eig(S),
(5)

where eig(Sk ) and eig(S) denote the sets of eigen-pairs of Sk and S

respectively. The objective is to find a low-rank matrix Sk defined

by a subset of eigen-pairs of S that gives the lowest divergence on

the overall transformation matrix (I −αS)−1 in the closed-form solu-

tion in Equation (3). Next, we will show this optimization problem

has a global optimal solution and can be solved by Algorithm 1.

Let Sk = Q1:kΛ1:kQ
T
1:k

be the eigen-decomposition of Sk , where

Λ1:k and Q1:k store the eigenpairs {(λj ,qj )|j = 1, . . . ,k} of Sk se-

lected from eig(S). Also, define diagonal matrix Λrest and matrix

Qrest to contain the remaining eigen-pairs {(λi ,qi )|i = k+1, . . . ,N }
of eig(S), where N =

∏n
i=l

Il .

PROPOSITION 1. Let A = (I − αS)−1 and its approximation Â =

(I − αSk )−1, we have

Â = Q1:k ((I − αΛ1:k )−1 − I )QT
1:k + I , (6)

Proof: by definition of Sk we have Â = (I − αQ1:kΛ1:kQ
T
1:k
)−1,

which can be further expanded asQ1:k ((I −αΛ1:k )−1− I )QT
1:k
+ I by

Woodbury formula [8]. (End of Proof)

THEOREM 6.1. The optimal k eigenvalues {λj |j = 1, . . . ,k}
that solve the optimization problem (5) are a subset of the union

of the k largest (algebraic) and k smallest (algebraic) eigenvalues

of S and satisfy the following condition

α |λj |
1 − αλj

≥ α |λi |
1 − αλi

, ∀j ∈ [1,k],∀i ∈ [k + 1,N ].

Proof: the perturbation can be obtained as

Â −A = Qrest(I − (I − αΛrest)−1)QT
rest, (7)

whose singular values are { α |λi |
1−αλi |i = k + 1, . . . ,N } and k zeros.

Thus, it’s spectral norm and Frobenius norm are

| |Â −A| |2 =
α |λ∗ |
1 − αλ∗ and | |Â −A| |F =

√

√

√ N
∑

i=k+1

( α |λi |
1 − αλi

)2, (8)

where λ∗ could be either the largest positive value or the smallest

negative value of λk+1, . . . , λN . To minimize both norms in Equa-

tion (8), the k selected eigenvalues {λj |j = 1, . . . ,k} should give

the k largest { α |λj |
1−αλj |j = 1, . . . ,k} among all the eigenvalues of S .

In addition, since α ∈ (0, 1) and λj ∈ [−1, 1], j = 1, . . . ,k , the func-

tion
α |λj |
1−αλj is monotonically increasing in the positive orthant and

decreasing in the negative orthant with λj . Thus, {λj |j = 1, . . . ,k}
must be in the union of the k largest (algebraic) eigenvalues and k

smallest (algebraic) eigenvalues of S . (End of Proof)

Let λ
(i )
j

and q
(i )
j

be the eigenvalue and its corresponding eigen-

vector of S (i ) contributing to λj and qj . Since S = ⊗n
i=1S

(i ), by

Lemma A.4 we have

λj =

n
∏

i=1

λ
(i )
j and q j = ⊗ni=1q

(i )
j , j = 1, . . . k . (9)

THEOREM 6.2. Given the vector λ(i ) of the eigenvalues of S (i )

for i = 1, . . .n and function top bot 2k(x) which returns the k

largest numbers union the k smallest numbers in vector x , we have

top bot 2k(⊗ni=1λ
(i )) = top bot 2k(λ(n) ⊗ top bot 2k(Γ(n−1))),

Γ
(i )
=

{

λ(i ) ⊗ top bot 2k(Γ(i−1)), if i = 2, . . . ,n − 1
λ(1), if i = 1.

Theorem 6.2 can be easily proved by induction based on the ob-

servation that the k largest elements in the outer product of two real

vectors can only be among the multiplications between the top k

numbers union the bottom k numbers in the two vectors. Thus, only

the numbers in top bot 2k(Γ(i−1)) are needed to compute the next

Γ
(i ) in the recursion. Taking the elements in top bot 2k(Γ(i−1))

in the multiplication with each λ(i ) guarantees that the numbers

needed for computing the k largest elements in ⊗ni=1λ
(i ) will be

kept in Γ
(i ).

Based on Theorem 6.2 we propose Algorithm 1 to select {(λ(i )
j
,q
(i )
j
)|

i = 1, . . . ,n, j = 1, . . . ,k} pairs efficiently in timeO(∑n
i=1(kIi log(kIi ))

and output a vector λselect storing the selected eigenvalues of S and

matrices Q
(i )
select

storing the selected eigenvectors among {Q (i ) —
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Algorithm 1 Select Eigenvalues

1: Input:{S (i ) |i = 1, . . .n}, α
2: Output: λselect and {Q (i )

select
|i = 1, . . . ,n}

3: store the eigenvalues of S (i ) in vector λ(i ), for i = 1, . . .n.

4: Γ ← λ(1)

5: for i = 2 to n do

6: Γ ← λ(i ) ⊗ top bot 2k(Γ)
7: end for

8: λselect ← k elements from Γ with the largest
α |Γj |
1−α Γj , j = 1, . . . ,k

9: for i = n to 1 do

10: return Q
(i )
select

from Q (i ) by looking-up indexes of the values

output by function top bot 2k().
11: end for

i = 1, . . . ,n} defined as

λselect = [λ1, λ2, . . . , λk ]T (10)

Q
(i )
select

= [q(i )1 ,q
(i )
2 , . . . ,q

(i )
k
]. (11)

Define M = (I − αΛ1:k )−1 − I computed with λselect as

M = diag

( [

αλ1

1 − αλ1
,

αλ2

1 − αλ2
, . . . ,

αλk
1 − αλk

] )

.

The matrix Q1:k can be computed from {Q (i )
select
|i = 1, . . . ,n} as

Q1:k = ⊙ni=1Q
(i )
select
. By Equation (6), the closed-form solution can

be approximated as

−→
Y∗ =(1 − α)Â

−→
Y0 (12)

=(1 − α)(⊙ni=1Q
(i )
select
)M(⊙ni=1Q

(i )
select
)T
−→
Y0
+ (1 − α)

−→
Y0
. (13)

6.2 LowrankTLP algorithm

Equation (13) implies a 2-step tensor computation of the closed-

form solution given in Algorithm 2. The two tensor operations are

also illustrated in Figure 2.

Compression step (line 4-15 in Algorithm 2)

• Y0 is sparse (option 1): the role of (⊙ni=1Q
(i )
select
)T
−→
Y0 in

Equation (13) is to compress the original tensor Y0 to a

k-D vector v with its jth element

v j = Y0×̄1q(n)j ×̄2q
(n−1)
j

. . . ×̄nq(1)j , (14)

where each ×̄i denotes mode-i vector product of tensor. In

Equation (14), the original tensor Y0 is compressed to a

scalar by multiplying with n vectors which is similar to

computing the core tensor in Tucker decomposition. Let

the number of nonzeros in Y0 be |Y0 |, the time complex-

ity of the compression step is O(|Y0 |nk).
The construction of v via Equation (14) performs j se-

quences of n-way tensor-vector products. The same kernel

appears in a similar form involving n−1 products during

the computation of the CP. We can leverage parallel algo-

rithms which have been developed to compute the CP [19].

The resulting computation takes the form

Z ← Y 0
(1)(Q

(2)
select

⊙ · · · ⊙ Q (n)
select
), (15)

v j ← q
(1)T
j

z j ∀j = 1, . . . ,k, (16)

where Y 0
(1) denotes flattening Y0 to a matrix.

• Y0 in CP-form (option 2): when the initial tensor Y0 is in

the CP-form JF (n), F (n−1), . . . , F (1)K the k-D vector v can

be obtained by

v = (⊙ni=1Q
(i )
select
)T (⊙ni=1F

(i ))1 (17)

= ∗ni=1(Q
(i )T
select

F (i ))1, (18)

where Equation (17) is obtained by vectorization property

of CP-form (Section 2(2)) and Equation (18) can be de-

rived from Lemma A.2. Since eachQ
(i )T
select

F (i ) takesO(krIi ),
the time complexity of the compression step becomes only

O(kr ∑n
i=1 Ii ).

Expansion step: (line 18-21 in Algorithm 2)

After obtaining the k-D vector v which is then multiplied by the

diagonal matrix M to obtain another k-D vector v̂ , the second step

is to compute

−→
Y∗ = (1 − α)((⊙ni=1Q

(i )
select
)v̂ +
−→
Y0). (19)

The left term of (19) has the same form of the vectorized CP decom-

position with factor matrices {Q (i )
select
|i = 1, . . . ,n} (Section 2(2)).

Thus, the tensorized version can be obtained as

Y∗ = (1 − α)(Jv̂ ′;Q
(n)
select
,Q
(n−1)
select

, . . .Q
(1)
select

K +Y0), (20)

where v̂
′ is a reversal of the elements in v̂. From Equation (20)

together with the initial tensor Y0, the k-D vector v̂ and matrices

{Q
(i )
select

∈ RIi×k |i = 1, . . .n} store all the information for comput-

ing any entry of Y∗ with a time complexity O(nk).
Combining the compression and expansion steps, the time com-

plexities of the sparse-form input and CP-form input areO(|Y0 |nk)
and O(kr ∑n

i=1 Ii ), respectively. The time complexity of computing

the eigen-decomposition of all the normalized graph is O(∑n
i=1 I

3
i
).

Thus, assuming |Y0 | >
∑n
i=1 I

3
i

the overall time complexity of Al-

gorithm 2 is O(|Y0 |nk) for sparse input and O(∑n
i=1(I 3i + krIi )) for

CP-form input.

The space required to store the eigenvectors of all the normalized

graphs isO(∑n
i=1 I

2
i ); to store the indexes of the selected eigen-pairs

is O(k); and to store the initial tensor is O(|Y0 |) and O(∑n
i=1 Iir )

for sparse and CP-form input, respectively. Thus, the overall space

complexity isO(|Y0 |+k) for sparse input assuming |Y0 | >
∑n
i=1 I

2
i

and O(∑n
i=1 I

2
i ) + k) for CP-form input.

6.3 Error analysis

Instead of using our objective in Equation (5), another natural alter-

native is to directly find the best rank-k approximation of A. Theo-

rem 6.3 below shows that our objective in Equation (5) is a better

choice.

THEOREM 6.3. Let Â = (I − αSk )−1, where the eigen-pairs of

the rank-k matrix Sk are selected by Algorithm 1 and Ak is the best
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Algorithm 2 LowrankTLP

1: Input: {S (i ) |i = 1, . . .n}, Y0, α , k and a multi-relation set

Ω ={{i1, i2, . . . , in}|il ∈ [1 : Il ]} queried by the user.

2: Output: Sparse tensor Y∗
3: Apply Algorithm 1 to obtain λselect, {Q (i )select

|i = 1, . . . ,n}
4: Initializev to be a k-D vector with all zeros.

5: if Y0 is sparse then

6: for j=1 to k do

7: v j ← Y0×̄1q(n)j ×̄2q
(n−1)
j

. . . ×̄nq(1)j
8: end for

9: else if Y0 is in CP-form JF (n), F (n−1), . . . , F (1)K then

10: Ψ← Q
(1)T
select

F (1)

11: for j=2 to k do

12: Ψ← Ψ∗Q
(j)T
select

F (j)

13: end for

14: v ← Ψ1

15: end if

16: m ← αλselect/(1 − αλselect)
17: v̂

′ ← (v∗m)′
18: Initialize Y = {} to be an empty tensor

19: for every tuple {i1, i2, . . . , in } in Ω do

20: Y∗in,in−1, ...,i1 ← (1−α)(
∑k
j=1 v̂

′

j

∏n
l=1

q
(l )
il ,k
+Y0

in,in−1, ...,i1
)

21: end for

rank-k approximation to A in both spectral and Frobenius norm.

We have

| |Â −A| |2 < | |Ak −A| |2 and | |Â −A| |F < | |Ak −A| |F , (21)

where | |.| |2 is spectral norm and | |.| |F is Frobenius norm.

Proof: Let σ1 > σ2 > · · · > σN be the sorted eigenvalues of

matrix S . Since σi ∈ [−1, 1], i = 1, . . .N and α ∈ (0, 1), by Eckart-

Young-Mirsky theorem, the eigenvalues ofAk are { 1
1−ασi |i = 1, . . . ,k}

and the perturbations are

| |Ak −A| |2 =
1

1 − ασk+1
, (22)

| |Ak −A| |F =

√

√

√ N
∑

i=k+1

( 1

1 − ασi
)2. (23)

Using {σi |i = 1, . . . ,k} as eigenvalues and their corresponding

eigenvectors of S to construct a rank-k matrix L and define B =

(I−αL)−1. We have | |Â−A| |2 ≤ ||B−A| |2 and | |Â−A| |F ≤ ||B−A| |F
by definition of Â. Also, it is not hard to show | |B−A| |2 < | |Ak−A| |2
and | |B −A| |F < | |Ak −A| |F by the facts that every σi ∈ [−1, 1] and

α ∈ (0, 1). Thus, inequalities (21) hold. (End of Proof)

7 EXPERIMENTS

In the experiments, LowrankTLP was applied for multi-relational

learning in simulation and three real datasets: DBLP dataset of sci-

entific publication records, segmented CT Scan images and protein-

protein interaction (PPI) networks. LowrankTLP was compared

with four baselines ApproxLink [16], TOP [12], TD (tensor decom-

position) and GraphTD [13] in the simulation, DBLP data and CT

Scan images data. For global alignment of multiple PPI networks

LowrankTLP was compared with IsoRankN [10] and BEAMS [1]

which were developed specifically for global PPI network align-

ment.

7.1 Simulations

Synthetic graphs were generated to evaluate the performance and

the scalability. We started with a graph of density 0.1 and size I

to generate n distinct graphs by randomly permuting 10% of edges

from the common ”ancestor” graph so that they share similar struc-

tures that can be utilized for alignment. The inputs are the n graphs

and a sparse n−way tensor Y0 with I/2 (half) of its diagonal entries

set to 1s. We set the other I/2 diagonal entries and I/2 randomly

sampled off-diagonal entries to 0.9 and treat them as positive and

negative test samples, respectively. The outputs are scores of the I

test entries after label propagation, which can be used to distinguish

the positive and negative classes based on the assumption that the

vertices indexed by the diagonal entries of the tensor should have

high similarities since they come from the same ”ancestor” graph

and this information should be captured by the TPG.

We compared LowrankTLP with ApproxLink, TD and GraphTD

using the same sparse tensorY0 as input. Rank
⌈

n
√
k
⌉

approximation

is applied to each individual graph for ApproxLink to guarantee

their TPG has at least rank k . For fair comparisons, the best param-

eters are chosen for all the baselines, and fixed α = 0.1 is used for

LowrankTLP. The area under the curve (AUC) and mean average

precision (MAP) are the evaluation metrics.

Figure 3 (A) & (B) show that LowrankTLP clearly outperforms

all the baselines to align five graphs at moderate rank k ≥ 3000.

We also observe that ApproxLink performs better than GraphTD

which implies that label-propagation-based methods are more ro-

bust to sparse input than tensor-completion methods due to the uti-

lization of manifold learning. When n = 50, LowrankTLP achieves

a high AUC and MAP when k ≥ 100,000, whereas ApproxLink and

GraphTD are not applicable to such a large number of graphs.

We further compared our MATLAB LowrankTLP implementa-

tion using Tensor Toolbox [2] version 2.6 with a parallel shared-

memory version developed in C with SPLATT library [18], version

1.1.1 for sparse tensor operations in Figure 3 (C). The paralleliza-

tion by SPLATT results in speedups of over an order of magnitude

compared to the Tensor Toolbox. This parallel version is able to

align 100 graphs of size 1000 each in 148s while the MATLAB

version is not able to perform the alignment using a server with In-

tel(R) Xeon(R) CPU E5-2450 with 32 cores 2.10GHz, 2 CPUs and

196GB of RAM.

7.2 Predicting relations in scientific publications

We downloaded the DBLP dataset of scientific publication records

from AMiner (Extraction and Mining of Academic Social Networks)

[21]. The dataset contains 2,092,356 papers, 8,024,869 citations,

1,712,433 authors and 4,258,946 collaborations between authors,

and a total of 264,025 distinct venues in which the papers were

published. We built three graphs: Authors × Author (W (1)), Pa-

per × Paper (W (2)) and Venue × Venue (W (3)). In W (1) the edge

weight is the count of papers that both authors have co-authored; in

W (2), the edge weight is the number of times both papers were cited

by another paper; and in W (3), the edge weight is calculated using
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Figure 3: Simulation results. (A) & (B) Each experiment was repeated five times and the average is shown. (C) Runtime of Lowrank-

TLP. The rank k = n∗104
5 is chosen by the empirical results to achieve AUC ≈ 0.9.
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Figure 4: DBLP results. (A) The performance of 5-fold cross-validation. The average and standard deviation across the 5 folds are

shown. (B) & (C) The performance of using various percentages of training data.

Jaccard similarity between the vectors of the two venues whose di-

mensions are a bag of citations. After removing the vertices with

low degree in each graph, we finally obtain W (1) with 13,823 ver-

tices and 266,222 edges; W (2) with 11,372 vertices and 4,309,772

edges; and W (3) with 10,167 vertices and 46,557,116 edges. We

also built 12,066 triples in the form (Paper, Author, Venue) as pos-

itive multi-relations, given by the natural relationship that a paper

is written by an author, and published in a specific venue. These

triples are stored in a sparse Tensor as input.

We performed 5-fold cross-validation to select the parameters

for LowrankTLP and the baselines with the 12,066 positive triples

together with the same number of randomly sampled triples as neg-

ative samples. Figure 4 (A) shows that LowrankTLP outperforms

the baselines in every fold. We also randomly sampled 0.1%, 10%,

50% and 90% of positive triples as training data to test the rest of

the positive tuples together with the same number of randomly sam-

pled negative triples. Using the optimal parameters chosen from

the previous 5-fold cross-validation, we tested the performance of

all the methods on various percentages of training/test data. Fig-

ure 4 (B) & (C) show that LowrankTLP clearly outperforms all the

baselines. Interestingly, both LowrankTLP and ApproxLink can

achieve AUC ≈ 0.76 and MAP ≈ 0.8 when there are only 0.1% of

training data while the prediction of the tensor-completion methods

TD and GraphTD are nearly random, which further confirms that la-

bel propagation based methods are more stable to sparse input than

tensor-completion methods.

7.3 Alignment of CT Scan images

We obtained a dataset of 134 CT Scan images of an anonymized

female patient. The scans were acquired on a Philips Brilliance Big

Bore CT Scanner, and each slice is 512 × 512 pixels with a slice

thickness of 3mm. We used a subset of 26 slices which contain the

same set of four segmented regions (features). We built a graph

for each slice by sampling from each region a number of circles

where the number is proportional to the size of the region. To build

a graph for each image, we calculated the similarity between the

circles’ spots using the following function: s(xi ,xj ) = e−
| |xi−xj | |22

σ if

ϕ(xi ) , ϕ(xj ) and otherwise 1, where xi and xj are the coordinates

of the two circles, ϕ(x) represents the region where the circle x is

located and σ = 10 is the width of RBF function. The pairwise

similarity between the circles in two different images was obtained

by the color density difference between the spots, calculated using

a RBF function with σ = 10−2. The initial tensor Y0 was then

generated in CP-form using these cross-images spots similarity ma-

trices. For example, to align 7 images,
(7
2

)

= 21 pairwise matrices

are computed.

Our objective is to align the sampled spots in the same features

across the images. A set of candidate tuples of spots across the

graphs were picked as the multi-relations to be learned. The can-

didate tuples of spots were selected if the color densities between

each pair of the spots in the tuple are all above a threshold. The

alignment accuracy was measured by the top-1 match of each spot.
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LowrankTLP

rank 10 rank 100 rank 1000 rank 10000 TD GraphTD

4 images 0.59 0.91 0.91 0.91 0.61 0.73

5 images 0.67 0.80 0.89 0.89 0.66 0.75

6 images 0.78 0.78 0.84 0.84 0.69 0.78

7 images 0.75 0.73 0.80 0.83 0.72 0.76

Table 1: Performance of image alignment. The accuracy is mea-

sured as the % of accurately aligned spots in the first image.

Figure 5: Results of CT Scan image alignment. Each segmented

region in the images is represented by a different color in the

alignment.

Specifically, for each spot in the first graph, we take the subtensor of

dimension (n − 1) associated with the entry in the first dimension to

find the entry of the highest score in the subtensor. Then, we check

if the features of the aligned spots from all the other images in the

maximum entry are the same as the spot in the first dimension.

Table (1) shows the results using the evaluation. LowrankTLP

was compared with TD and GraphTD. Note that ApproxLink and

TOP cannot take pairwise similarities as input and are thus inappli-

cable to this dataset. LowrankTLP achieved much higher accuracy

than the baselines TD and GraphTD for rank ≥ 100 in almost all

the cases. It is also interesting that, with a rank of only 10,000,

LowrankTLP was able to align 7 images with an accuracy of 0.83

meaning 83% of the spots in the first graph was perfectly matched

with a spot of the same feature in all other six images. An exam-

ple of six aligned images is shown in Figure 5. It is clear that the

aligned spots are consistent across the images.

7.4 Alignment of PPI Networks

We downloaded the IsoBase dataset [10, 15, 17], containing protein-

protein interactions (PPI) networks for five species: H. sapiens (HS),

D. melanogaster (DM), S. cerevisiae (SC), C. elegans (CE) and M.
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(B) Alignment of HS/DM/SC/CE networks

Figure 6: Results of PPI network alignment. In both (A) and

(B), the figure on the left shows the specificity of the detected

clusters containing different number of species, and the figure

on the right shows the AUC curves between true positives and

false positives in the predicted candidate entries only.

musculus (MM). The M. musculus network only contains 776 inter-

actions and was dropped from the analysis. After removing proteins

with no association in the PPI networks, there are 10,403, 7,396,

5,524 and 2,995 proteins and 109,822, 49,991, 165,588 and 9,711

interactions in the HS, DM, SC and CE PPI networks, respectively.

The dataset also contains cross-species protein sequence similar-

ity as BLAST Bit-values for all the pairs of species. Similar to the

CT Scan experiment, we generated the input tensor Y0 in CP-form

by using the pairwise sequence similarity of all pairs of the species.

This input option is very suitable for PPI network alignment since

the pairwise matrices can be naturally obtained using BLAST. In

addition, the annotations of the proteins with 37,463 gene ontology

(GO) terms below level five of GO are also provided. For the evalu-

ation, we generated candidate tuples of proteins with high sequence

similarity between all pairs of proteins in the tuple. These candi-

date tuples can then be classified as true multi-relations if all the

annotated proteins in the tuple share at one common GO term, and

otherwise false multi-relations. The experiments were performed

using three species (HS, DM and SC) and four species by adding

CE. Around 3M tuples were generated among three species and

about 163M among four species.

Similar to the post-processing in BEAMS [1], after applying

LowrankTLP to generate the prediction scores for all the candidate

tuples, the tuples are sorted for a greedy merge as protein clusters

for standard evaluation of PPI network alignment. A cluster of size

n is defined as a set of proteins with at least one protein from each of

the n species. The greedy merge scans the tuples and adds the tuple

that only contains proteins not seen yet as a new cluster. Otherwise,

the proteins that are already in some other clusters are removed

from the tuple, and the remaining proteins are added as a smaller

cluster.
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In the evaluation, the specificity is defined as the ratio between

the number of consistent clusters and the number of annotated clus-

ters, where an annotated cluster is a cluster in which at least two

proteins are associated to a GO term, and a consistent cluster is

the one in which all of its annotated proteins share at least one GO

term. In the left plot in Figure 6 (A), for both clusters of size 2 and

3, LowrankTLP performs better than both BEAMS and IsorankN

in the alignment of three networks. The left plot in Figure 6 (B)

shows that LowrankTLP performed similarly or slightly worse than

BEAMS in every cluster size in the alignment of four networks. Iso-

rankN was not able to detect any cluster of size 4.

To further compare LowrankTLP with BEAMS, we compared

the detailed ranking of the annotated clusters reported by BEAMS.

We classified these clusters as positive multi-relations or false multi-

relations, and report the AUC by their rankings in the right plots in

Figure 6. In both three-network alignment and four-network align-

ment, LowrankTLP ranked the true multi-relations above the false

multi-relations with AUC larger than 0.5. Note that since we only

check the very top of the predictions (those predicted as true multi-

relations), the AUC is less than 0.5 for BEAMs results.

8 CONCLUSION

In this study, we introduced a new algorithm LowrankTLP to im-

prove the scalability and performance of label propagation on tensor

product graphs for multi-relational learning. We demonstrated that

LowrankTLP well approximates label propagation on the full tensor

product graph to achieve both the better scalability and performance.

We also demonstrated that LowrankTLP, capable of taking either a

sparse tensor or a CP-form tensor as input, is a flexible approach

to meet the requirements of multi-relational learning problems in

a wide range of applications. In all the experiments, we observed

that it does not require a huge rank to achieve a good prediction per-

formance even if the size of a tensor product graph is exponential

of the size of the individual graphs. This observation supports that

the direct and efficient analysis of the entire spectral of the tensor

product graph is a better approach. In the future, we will analyze

the spectral of the tensor product graphs to develop a strategy of

estimating a good rank k for better application of LowrankTLP to

multi-relational learning.

A USEFUL LEMMAS

LEMMA A.1. If A,B,C and D are matrices of such size that one

can form the matrix products AC and BD, then (A ⊗ B)(C ⊗ D) =
(AC) ⊗ (BD).

LEMMA A.2. If matrices A,B,C and D are of such size that one

can form the operation (A ⊙ B), (C ⊙ D), (ATC) and (BTD), then

equality (A ⊙ B)T (C ⊙ D) = (ATC)∗(BTD) holds.

LEMMA A.3. Given two matrices A and B, the equation (A ⊗
B)T = AT ⊗ BT holds.

LEMMA A.4. Let λ1, . . . , λn be eigenvalues of A with corre-

sponding eigenvectors x1, . . . ,xn , and let µ1, . . . , µm be eigenval-

ues of B with corresponding eigenvectors y1, . . . ,ym . Then the

eigenvalues and eigenvectors of A ⊗ B are λiµ j and xi ⊗ yj , i =

1, . . . ,n, j = 1, . . . ,m.
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