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1 Introduction

The goal of most empirical studies is to estimate parameters of a population sta-

tistical model using a random sample of data. The difference between estimates and

population parameters is uncertain because sample data do not have all the informa-

tion about the population. Statistical inference provides methods for quantifying this

uncertainty. Typical approaches include hypothesis testing and confidence sets. In a

hypothesis test, the researcher divides all possible population models into two sets of

models. The null set includes the models which the researcher suspects to be false.

The alternative set includes all other likely models. It is desirable to control the size

of the test, that is, the error probability of rejecting the null set when the null set

contains the true model. A powerful test has a small error probability of failing to

reject the null set when the true model is outside the null set. Another approach is

to use the data to build a confidence set for the unknown value of parameters of the

true model. The researcher needs to control the error probability that the confidence

set excludes the true value. Error probabilities must be controlled uniformly over the

entire set of likely models. This paper studies necessary and sufficient conditions for

the impossibility of controlling error probabilities of hypothesis tests and confidence

sets.

Previous work demonstrates the impossibility of controlling error probabilities

of tests and confidence sets in specific settings. There are essentially two types of

impossibility found in the literature. The first type of impossibility says that any

hypothesis test has power limited by size. That is, it is impossible to find a pow-

erful test that controls size. We call this impossibility type A. The second type of

impossibility states that any confidence set that is almost surely (a.s.) bounded has

error probability arbitrarily equal to one (i.e. zero confidence level). In other words,

it is impossible for finite bounds to contain the true value of parameters with high

probability. We call this impossibility type B. Despite being related, both types of

impossibility often appear disconnected in the existing literature.

The first contribution of this paper is to connect the literature on impossible in-

ference and study the relationships between type A and type B impossibility. Figure

1 at the end of this introduction summarizes the literature along with novel relation-

ships derived in this paper. To the best of our knowledge, impossibility type A dates

back to the 1950s. In a classic paper, Bahadur and Savage (1956) show both types of
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impossibility in the population mean case. Any test for distinguishing zero mean from

nonzero mean distributions has power limited by size; and any a.s. bounded confi-

dence interval for the population mean has error probability equal to one.1 Bahadur

and Savage (1956) employ the Total Variation (TV) metric to measure the distance

between any two distributions. We refer to this notion of distance as strong distance.

They show that the null set of distributions with a certain mean is dense with respect

to (wrt) the TV metric in the set of distributions with all possible means.

In fact, impossibility type A is very much related to the density of the convex

hull of the null set in the set of all likely models wrt the TV metric. Kraft (1955)

targets the problem of testing any two sets of distributions and arrives at an important

generalization of the theory of Bahadur and Savage (1956). Kraft’s Theorem 5 gives a

necessary and sufficient condition for the existence of a test whose minimum power is

strictly greater than its size. Such tests exist if, and only if, the minimal TV distance

between the convex hulls of the null and alternative sets is bounded away from zero.

Kraft attributes the theorem to Le Cam, and an analogous version of his theorem

appears in Theorem 2.1 of Ingster and Suslina (2003). Romano (2004) demonstrates

that the null set being dense in the set of all likely models wrt the TV metric is a

sufficient condition to impossibility A. We derive a corollary of Kraft’s Theorem 5

that says that the convex hull of the null set being dense in the set of all likely models

wrt the TV metric is a necessary and sufficient condition for impossibility type A.

The null set being dense implies the convex hull of the null set being dense. Our

corollary connects the literature on impossibility type A wrt the TV metric.

A different branch of the econometrics literature focuses on impossibility type B

of confidence sets for a given parameter of interest, e.g. mean or regression slope. In

the population mean case, Bahadur and Savage (1956) arrive at impossibility type B

by demonstrating the following fact. For any mean value m, the set of distributions

with mean equal to m is dense in the set of all likely models wrt the TV metric.

This is stronger than the sufficient condition for impossibility type B used by Gleser

and Hwang (1987). Gleser and Hwang (1987) consider classes of models indexed by

1The impossibility typically arises due to the richness of models in the class of all likely models.
Impossibility does not arise if we restrict the class to have only one model, which is the same
as pointwise inference. Uniform inference over a larger class of models is important because the
researcher typically does not know all aspects of the model at hand. For example, instruments could
be weak, and if we incorrectly assume they are always strong, pointwise inference conclusions are
quite misleading.
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parameters in an Euclidean space. They obtain impossibility type B whenever there

exists one distribution P ∗ such that, for every value of the parameter of interest, P ∗

is approximately equal to distributions with that value of the parameter of interest

wrt the TV metric.2 As for impossibility type A, impossibility type B also holds if the

condition of Gleser and Hwang (1987) holds over the convexified space of distributions,

which is a weaker sufficient condition.3

Dufour (1997) generalizes Gleser and Hwang (1987) to classes of models indexed by

parameters in general metric spaces. Dufour (1997) also notes that impossibility type

B implies that tests constructed from a.s. bounded confidence sets fail to control

size. Unlike all authors mentioned thus far, Dufour (1997) relies on a notion of

distance much weaker than the TV metric, which is the notion of distance behind

weak convergence or convergence in distribution. He obtains impossibility type B

whenever there exists one distribution P ∗ such that, for every value of the parameter

of interest, there exists a sequence of distributions with that value of the parameter of

interest that converges in distribution to P ∗. The weaker notion of distance restricts

the analysis to confidence sets whose boundary have zero probability under P ∗. The

Lévy-Prokhorov (LP) metric is known to metrize weak convergence. We refer to this

notion of distance as weak distance. We demonstrate the impossibility type B of

Dufour also holds after convexifying the space of distributions.

We revisit impossibility type A when distributions are indistinguishable in the LP

metric as opposed to the TV metric. We find that impossibility type A applies to all

tests that are a.s. continuous under alternative distributions. A sufficient condition

is that the convex hull of the null set is dense in the set of all likely models wrt to

the LP metric. On the one hand, the LP metric does not yield impossibility type A

for every test function. On the other hand, the class of a.s. continuous tests includes

the vast majority of tests used in empirical studies. Convergence in the TV metric

2Gleser and Hwang (1987) restrict their analysis to distributions that have parametric density
functions with respect to the same sigma-finite measure. Two distributions are indistinguishable if
their density functions are approximately the same pointwise in the data. In their setting, pointwise
approximation in density functions is the same as approximation in the TV metric. However,
pointwise approximation in density functions is still stronger than convergence in distribution. See
Proposition 2.29 and Corollary 2.30, Van der Vaart (2000).

3Donoho (1988) also provides type B impossibility for parameters of interest that are functionals
of distributions satisfying a dense graph condition in the TV metric. One example of such a functional
is the derivative of a probability density function (PDF). Althought it is impossible to obtain a.s.
bounded confidence sets, Donoho (1988) shows that it is possible to build valid one-sided lower-
bounded confidence intervals in some cases.

4



always implies convergence in the LP metric. The converse is not true, except in

more restricted settings. For example, if convergence in distribution implies uniform

convergence of probability density functions (PDF), then Scheffé’s Theorem implies

convergence in the TV metric (Corollary 2.30 of Van der Vaart (2000)).

The second contribution of this paper is to note that a weaker notion of distance,

such as the LP metric, brings further insights into the problem of impossible infer-

ence. First, it is often easier to prove convergence of models in terms of the weak

distance than it is in the strong distance. Application of arguments similar to Port-

manteau’s theorem immediately yields the LP version of impossible inference in an

important class of models in economics that rely on discontinuities. Second, the use

of the LP metric helps researchers look for tests with nontrivial power. If models are

indistinguishable wrt the LP metric, but distinguishable wrt the TV metric, we show

that a useful test must necessarily be a.s. discontinuous. Third, the LP metric can be

a sensible choice of distance to study hypothesis tests that are robust to small model

departures. For example, consider the null set of continuous distributions versus the

alternative set of discrete distributions with finite support in the rational numbers. It

is possible to approximate any such discrete distribution by a sequence of continuous

distributions in the LP metric. Hence, it is impossible to powerfully test these sets

with a.s. continuous tests. On the other hand, a positive TV distance between null

and alternative leads to a perfect test that rejects the null if observations take ratio-

nal values. Robustness leads us to ask whether observing rational numbers is indeed

evidence against the null hypothesis, or simply a matter of rounding or measurement

error. The same problem may arises in reduced-form or structural econometric mod-

els, even when the degree of misspecification is small. Depending on the problem at

hand, we may want to look for tests that separate the closure of each hypothesis wrt

the LP metric.

The third contribution of this paper is to point out impossible inference in mi-

croeconometric models based on discontinuities and macroeconometric models of time

series. Numerous microeconometric analyses identify parameters of interest by relying

on natural discontinuities in the distribution of variables. This is the case of Regres-

sion Discontinuity Designs (RDD), an extremely popular identification strategy in

economics. In RDD, the assignment of individuals into a program changes discontin-

uously at a cutoff point in a variable like age or test score, as for Hahn, Todd, and

Van der Klaauw (2001) and Imbens and Lemieux (2008). For example, Schmieder,
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von Wachter, and Bender (2012) study individuals whose duration of unemployment

insurance jumps with respect to age. Jacob and Lefgren (2004) look at students whose

participation in summer school changes discontinuously with respect to test scores.

Assuming all other characteristics vary smoothly at the cutoff, the effect of the sum-

mer school on future performance is captured by a discontinuous change in average

performance at the cutoff. A fundamental assumption for identification is that perfor-

mance varies smoothly with test scores after controlling for summer school. Models

with continuous effects are well-approximated by models with discontinuous effects.

Kamat (2015) uses the TV metric to show that the current practice of tests in RDD

suffers from impossibility type A. We revisit his result using the LP metric, and we

show that impossibility type B also holds in RDD. On a positive note, the two types

of impossibility theorems vanish if we restrict the class of models as in Armstrong

and Kolesar (2015) and Kamat (2015). A Monte Carlo experiment shows that the

usual implementation of Wald tests in RDD, as suggested by Calonico, Cattaneo, and

Titiunik (2014), may have size above the desired significance level, even under sensi-

ble model restrictions. We rely on data-generating processes that are consistent with

the empirical example of Lee (2008). Moreover, the simulations show that the Wald

test has very little power, even after artificially controlling size. Slope restrictions on

the conditional mean functions do not correct the finite sample failure of the typical

Wald test.

In other applications, researchers assume a discontinuous change in unobserved

characteristics of individuals at given points. This is the idea of bunching, widely

exploited in economics. Bunching may occur because of a discontinuous change in

incentives or a natural restriction on variables. For example, the distribution of

reported income may display a non-zero probability at points where the income tax

rates change, as in Saez (2010); or, the distribution of average smoking per day has

a non-zero mass at zero smoking. We show that the problem of testing for existence

of bunching in a scalar variable suffers from type A impossibility for a.s. continuous

tests but not for discontinuous tests.

Caetano (2015) uses the conditional distribution of variables with bunching and

proposes an exogeneity test without instrumental variables. The key insight is that

bunching in the distribution of an outcome variable given a treatment variable consti-

tutes evidence of endogeneity. For example, consider the problem of determining the

effect of smoking on birth weight. A crucial assumption is that birth weight varies
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smoothly with smoking while controlling for all other factors. Under this assumption,

bunching is equivalent to the observed average birth weight being discontinuous at

zero smoking. The exogeneity test looks for such discontinuity as evidence of en-

dogeneity. Our point is that models in which birth weight is highly sloped or even

discontinuous based on smoking are indistinguishable from smooth models. Therefore,

we find the exogeneity test has power limited by size. The current implementation of

tests for the size of discontinuity leads to bounded confidence sets, so it also fails to

control size.

In addition to these applications with discontinuities, we verify the existence of

impossible inference in a macroeconometrics example where data are continuously

distributed. We first show that the choice of the weak versus the strong distance

connects to the work of Peter J. Huber on robust statistics and leads us to look

at the closure of the set of covariance-stationary time-series processes wrt the LP

metric. This closure contains error-duration models and Compound Poisson models.

Our theory implies that it is impossible to robustly distinguish these models from

covariance-stationary models, even with discontinuous tests.

The rest of this paper is divided as follows. Section 2 sets up a statistical frame-

work for testing and building confidence sets. It presents necessary and sufficient con-

ditions for impossible inference in general non-parametric settings. Section 3 gives

multiple economic applications where both types of impossibility arise. Section 4

presents a Monte Carlo simulation for an empirical application of RDD. Section 5

concludes. An appendix contains all formal proofs. Figure 1 (on the next page)

summarizes the literature on impossible inference, along with implications of this

paper.
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2 Impossible Inference

The researcher has a sample of n observations Z = (Z1, . . . , Zn) that take values

in Z, a subset of the Euclidean space Rn×l. The data Z follow a distribution P ,

and the set of all possible distributions considered by the researcher is P. Every

probability distribution P ∈ P is defined on the same sample space Z with Borel

sigma-algebra B. It is assumed that all distributions in P are absolutely continuous

wrt the same sigma-finite measure.4 We are interested in testing the null hypothesis

H0 : P ∈ P0 versus the alternative hypothesis H1 : P ∈ P1 for a partition P0,P1 of

P. We characterize a hypothesis test by a function of the data φ : Z → [0, 1]. If φ

takes on only the values 0 and 1, the test is said to be non-randomized, but said to be

randomized otherwise. Given a sample Z, we reject the null H0 if the function φ(Z)

equals one, but we fail to reject H0 if φ(Z) = 0. If the function φ(Z) is between 0

and 1, we reject the null with probability φ(Z) conditional on Z. The unconditional

probability of rejecting the null hypothesis under distribution P ∈ P is denoted EP [φ].

The size of the test φ is supP∈P0
EP [φ]. The power of the test under distribu-

tion Q ∈ P1 is given by EQ[φ]. We say a test φ has power limited by size when

supQ∈P1
EQ[φ] ≤ supP∈P0

EP [φ]. Define co(P′) to be the convex hull of an arbitrary

subset P′ ⊆ P. That is,

co(P′) =

{
P ∗ : P ∗ =

N∑
i=1

αiPi, for some N ∈ N, Pi ∈ P′ ∀i,

αi ∈ [0, 1] ∀i,
N∑
i=1

αi = 1

}
. (2.1)

A small distance between models in P0 and P1 determines testing impossibility.

There exist various notions of distance to measure the difference between two distri-

butions P and Q. A common choice in the literature on testing impossibility is the

Total Variation (TV) metric dTV (P,Q):

dTV (P,Q) = sup
B∈B
|P (B)−Q(B)| . (2.2)

Theorem 5 of Kraft (1955) says that there exists a test φ with minimum power

4For example, Lebesgue for continuous distributions; counting measure for discrete distributions;
a mixture of Lebesgue and counting measure for mixed continuous-discrete distributions.
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strictly greater than size if, and only if, there exists ε > 0 such that dTV (P,Q) ≥ ε

for every P ∈ co(P0) and Q ∈ co(P1). We restate his theorem below for convenience.

Theorem 1. (Kraft (1955)) Fix ε > 0. The following statements are equivalent:

(a) ∃φ : inf
Q∈P1

EQφ ≥ ε+ sup
P∈P0

EPφ, and

(b) ∀P ∈ co(P0), ∀Q ∈ co(P1), dTV (P,Q) ≥ ε.

An important implication of Theorem 1 for impossible inference is that it gives

a necessary and sufficient condition in terms of the convex hull of the null set being

dense in the set of all likely models wrt the TV metric. In other words, the convex

hull co(P0) is indistinguishable from (or dense in) the set of all likely models wrt the

TV metric if, for any Q ∈ P1, there exists a sequence {Pk}∞k=1 in co(P0) such that

dTV (Pk, Q)→ 0. We demonstrate this fact in the corollary below.

Corollary 1. The following statements are equivalent:

(a) for every Q ∈ P1, there exists a sequence {Pk}k ⊆ co(P0) such that dTV (Pk, Q)→
0, and

(b) for every φ and Q ∈ P1, EQφ ≤ supP∈co(P0) EPφ.

The proof of this corollary, as well as all other proofs for the paper, are found in the

appendix. The striking result of Kraft (1955) stated in Theorem 1 makes the type A

impossibility found by Bahadur and Savage (1956) and Romano (2004) special cases

of Corollary 1. In particular, Theorem 1 of Romano (2004) says that Corollary 1-(a)

without convexification is a sufficient condition for Corollary 1-(b). Notably, Romano

(2004) finds a positive result for testing population means. He demonstrates that the

t-test uniformly controls size in large samples with a very weak uniform integrability

type of condition, and that the t-test is also aymptotic minimax optimal.

Dufour (1997) uses the notion of distance associated with weak convergence to

derive impossibility type B. We say a sequence {Pk}∞k=1 converges in distribution

to Q, if, for every B ∈ B such that Q(∂B) = 0, Pk(B) → Q(B). Here, ∂B is the

boundary of a Borel set B, that is, the closure of B minus the interior of B. We denote

convergence in distribution by Pk
d→ Q. Convergence in distribution is equivalent to

convergence in the Lévy-Prokhorov (LP) metric (Dudley (1976), Theorem 8.3) :

dLP (P,Q) = inf{ε > 0 : P (A) ≤ Q(Aε) + ε for A ∈ B} (2.3)

10



where Aε = {x : |x− a| < ε for a ∈ A}.

Convergence of Pk to Q in the TV metric implies convergence in distribution. The

converse does not hold, in general.5 It is necessary to restrict the class of distributions

in order for convergence in the TV metric to imply convergence in distribution. For

example, suppose that Pk
d→ Q, that these distributions have common support [a, b]

and PDFs fPk
, fQ. Assume further that fPk

converges uniformly over [a, b]. Then,

fPk
converges uniformly to fQ (Theorem 7.17 of Rudin (1976)). Convergence of

PDFs implies convergence in the TV metric (Scheffé’s Theorem, see Corollary 2.30

of Van der Vaart (2000)).

On the one hand, it is true that the zero TV distance provides a necessary and

sufficient condition for testing impossibility. On the other hand, there are examples

of models with nonzero TV distance where it seems sensible that no powerful test

should exist. For example, consider the null set of continuous distributions versus the

alternative set of discrete distributions with finite support in the rational numbers. It

is possible to approximate any such discrete distribution by a sequence of continuous

distributions in the LP metric. We are led to think the data generated by a null

model is observationally equivalent to data generated by an alternative model. This

motivates us to revisit impossibility type A when distributions are indistinguishable

in the LP metric.

Assumption 1. For every Q ∈ P1, there exists a sequence {Pk}∞k=1 in co(P0) such

that Pk
d→ Q. In other words, the convex hull co(P0) is indistinguishable from (or

dense in) the set of all likely models wrt the LP metric.

Assumption 1 is a sufficient condition for impossibility type A, as described in

Theorem 2.

Theorem 2. If Assumption 1 holds, then any hypothesis test φ(Z) that is almost-

surely (a.s.) continuous under any Q ∈ P1 has power limited by size.

Remark 1. As pointed out by Canay, Santos, and Shaikh (2013), the topology induced

by the LP metric is not fine enough to guarantee convergence of integrals of any test

5For example, a standardized binomial variable converges in distribution to a standard normal as
the number of trials goes to infinity and the probability of success is fixed. It does not converge in
the TV metric because the distance between these two distributions is always equal to one. In fact,
consider the event equal to the entire real line minus the support of the binomial distribution. This
event has unit probability under the normal distribution, but zero probability under the binomial
distribution.

11



function φ. Nevertheless, the class of tests that are a.s. continuous under any Q ∈ P1

can be very large. For example, take a test that rejects the null when a test statistic

is larger than a critical value: φ(Z) = I (ψ (Z) > c). This test is almost-surely (a.s.)

continuous if the function ψ is continuous and Q ∈ P1 is absolutely continuous with

respect to the Lebesgue measure. Note that Theorem 2 only requires a.s. continuity

under the alternative P1, and the null P0 may still contain discrete distributions.

Remark 2. We do not need to restrict Theorem 2 to the class of a.s. continuous

tests in every case of P. For example, consider P to be a subset of the parametric

exponential family of distributions with parameter θ of finite dimension. Then, for

any test φ, the power function of φ is continuous in θ, and Theorem 2 applies under

Assumption 1 (Theorem 2.7.1, Lehmann and Romano (2005)).

Remark 3. In many instances, Assumption 1 holds in both directions. That is, P1 is

indistinguishable from P0, and P0 is indistinguishable from P1 in the weak distance.

For example, Bahadur and Savage (1956) find that any distribution with mean m

is well-approximated by distributions with mean m′ 6= m, and vice-versa. Section 3

finds the same bidirectionality for models with discontinuities. If Assumption 1 holds

in both directions, switching the roles of P0 and P1 in Theorem 2 shows that power is

equal to size.

It is useful to connect our LP version of testing impossibility with the impossibility

of controlling error probability of confidence sets found by Gleser and Hwang (1987)

and Dufour (1997). Define a real-valued function µ : P → R, for example, mean,

variance, median, etc. The set of distributions P is implicitly chosen such that µ is

well-defined. We consider real-valued functions for simplicity, and results for µ with

more general ranges are straightforward to obtain. The range of µ is µ(P). Suppose

we are interested in a confidence set for µ(P ) when the true model is P ∈ P. A

confidence set takes the form of a function C(Z) of the data. For a model P ∈ P,

the coverage probability of C(Z) is given by P [µ(P ) ∈ C(Z)]. The confidence region

C(Z) has confidence level 1−α (i.e. error probability α) if C(Z) contains µ(P ) with

probability at least 1− α:

inf
P∈P

P [µ(P ) ∈ C(Z)] = 1− α. (2.4)
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For any value m ∈ µ(P), we define the subset P(m) by

P(m) = {P ∈ P : µ(P ) = m}. (2.5)

Impossibility type B says that confidence sets that are a.s. bounded under some

distributions in P have zero confidence level. The next assumption gives a sufficient

condition for impossibility type B in terms of the LP metric.

Assumption 2. There exists a distribution P ∗ (not necessarily in P) such that for

every m ∈ µ(P) there exists a sequence {Pk}k in co(P(m)) such that Pk
d→ P ∗.

If Assumption 1 holds with P0 = P(m) for every m ∈ µ(P), then Assumption 2

holds. In fact, if P(m) is dense in P for every m, then Assumption 2 is satisfied for

P ∗ = Q for any Q ∈ P1. Some models satisfy Assumption 1 with P0 = P(m) for every

m ∈ µ(P) and suffer from both types of impossibility. Examples of this case include

the problem of testing the mean (Bahadur and Savage (1956)), or the problem of

testing the size of the discontinuity in RDD (Section 3.1). Nevertheless, some other

models satisfy assumption Assumption 2 but not Assumption 1 for every m. These

models only suffer from impossibility of type B. Examples of this case include the

problem of ratio of regression parameters (Gleser and Hwang (1987)) or the problem

of weak instruments (Dufour (1997)).

The next theorem encapsulates the impossibility of controlling coverage probabil-

ities found by Gleser and Hwang (1987) and Dufour (1997). It differs from Gleser and

Hwang (1987) because Assumption 2 uses the LP distance. It differs slightly from

Dufour (1997) because Assumption 2 is stated in terms of the convex hull of P(m)

rather than simply P(m).

Theorem 3. Suppose Assumption 2 holds with P ∗. Assume the confidence set C(Z)

of Equation (2.9) has confidence level 1 − α, and P ∗(∂{m ∈ C(Z)}) = 0 for every

m ∈ µ(P). Then,

∀m ∈ µ(P) : P ∗ [m ∈ C(Z)] ≥ 1− α. (2.6)

For a set A ⊂ R, define U [A] = sup{c : c ∈ A}, L[A] = inf{c : c ∈ A}, and

D[A] = U [A]−L[A]. Assume {U [C(Z)] ≥ x}, {L[C(Z)] ≤ −x}, and {D[C(Z)] ≥ x}
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are measurable events for every x ∈ [0,∞]. If D[µ(P)] =∞, then

P ∗ [D[C(Z)] =∞] ≥ 1− α. (2.7)

In addition, if P ∗ [∂{D[C(Z)] =∞}] = 0, then

∀ε > 0 : sup
P∈Bε(P ∗)∩P

P [D[C(Z)] =∞] ≥ 1− α (2.8)

where Bε(P
∗) = {P : dLP (P, P ∗) < ε}.

Remark 4. Part (2.8) above implies the following. If 1−α > 0, then the confidence

set C(Z) is unbounded with strictly positive probability for some P ∈ P. Alternatively,

the contrapositive of part (2.8) says the following. Any confidence set that is a.s.

bounded under distributions in P in a neighborhood of P ∗ has 1 − α = 0 confidence

level.

Remark 5. It is possible to obtain a slightly more general version of Theorem 3

using Assumption 2 stated in terms of the TV metric as opposed to the LP metric. In

that case, Theorem 3 would be true for confidence sets that do not necessarily satisfy

P ∗(∂{m ∈ C(Z)}) = 0 and P ∗ [∂{D[C(Z)] =∞}] = 0.

A common way of obtaining confidence sets is to invert hypothesis tests. The

function C(Z) is constructed by inverting a test in the following manner. For a given

m ∈ µ(P), define P0,m = P(m) and P1,m = P \ P(m), where A \ B denotes the

remainder of set A after we remove the intersection of set B with set A. If φm(Z) is

a test for P0,m vs P1,m, then

C(Z) = {m ∈ µ(P) : φm(Z) = 0}. (2.9)

For every m ∈ µ(P), the test φm(Z) has size α(m) = supP∈P0,m
EP [φm(Z)]. The

confidence level of C(Z) is equal to one minus the supremum of α(m) over m ∈ µ(P).

The proof of this claim is found in Lemma 1 in the Appendix.

Theorem 3 along with Lemma 1 imply that tests that invert into a.s. bounded

confidence sets fail to control size.

Corollary 2. Suppose Assumption 2 holds, and µ(P) is unbounded. Let the confidence

set C(Z) be constructed from tests φm(Z), as in Equation (2.9). Assume C(Z) has
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confidence level 1 − α and satisfies the assumptions of Theorem 3. If C(Z) is a.s.

bounded under distributions in P in a neighborhood of P ∗, then α = 1. Consequently,

for every ε > 0, there exists mε ∈ µ(P) such that sup
P∈P0,mε

EPφmε > 1− ε.

Remark 6. Moreira (2003) provides numerical evidence that Wald tests can have

large null rejection probabilities for the null of no causal effect (m = 0) in the simul-

taneous equations model. To show that Wald tests have null rejection probabilities

arbitrarily close to one, the hypothesized value m for the null would need to change as

well. He also suggests replacing the critical value by a critical value function of the

data. This critical value function depends on the hypothesized value m. Our theory

shows that this critical value function is unbounded if we change m freely.

3 Applications

In this section, we apply our theory to multiple economic examples. The first three

examples are of models with discontinuities: RDD, bunching in a scalar variable, and

exogeneity tests based on bunching. In these settings, the proof of the LP version of

impossible inference follows arguments similar to Portmanteau’s Theorem. That is,

the indicator functions are approximately the same as the steep continuous functions

using the weak distance. The problem of testing for the existence of bunching in a

scalar variable differs from the other applications with discontinuities because there

exists a discontinuous powerful test. A fourth example is in time series; it connects

the LP version of impossible inference to Huber’s work on robust statistics. This

connection leads to the conclusion that it is impossible to powerfully discriminate

error-duration or Compound Poisson models from covariance-stationary models.

3.1 Regression Discontinuity and Kink Designs

The first example is the Regression Discontinuity Design (RDD), first formalized

by Hahn, Todd, and Van der Klaauw (2001) (HTV01). RDD has had an enor-

mous impact in applied research in various fields of economics. Applications of RDD

started gaining popularity in economics in the 1990s. Influential papers include Black

(1999), who studies the effect of quality of school districts on house prices, where qual-

ity changes discontinuously across district boundaries; Angrist and Lavy (1999), who
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measure the effect of class sizes on academic performance, where size varies discontin-

uously with enrollment; and Lee (2008), who analyzes U.S. House of Representatives

elections and incumbency, where election victory is discontinuous on the share of

votes.

Recent theoretical contributions include the study of rate optimality of RDD esti-

mators by Porter (2003) and the data-driven optimal bandwidth rules by Imbens and

Kalyanaraman (2012) and Calonico, Cattaneo, and Titiunik (2014). RDD identifies

causal effects local to a cutoff value; several authors develop conditions for extrapolat-

ing local effects farther away from the cutoff. These include estimation of derivatives

of the treatment effect at the cutoff by Dong (2016) and Dong and Lewbel (2015);

tests for homogeneity of treatment effects in Fuzzy RDD by Bertanha and Imbens

(2016); and estimation of average treatment effects in RDD with variation in cutoff

values by Bertanha (2016). All these theoretical contributions rely on point identifi-

cation and inference, and they are subject to both types of impossibility. The current

practice of testing and building confidence intervals relies on Wald test statistics

(t(Z)−m)/s(Z), where t(Z) and s(Z) are a.s. continuous and bounded in the data.

For a choice of critical value z, hypothesis tests φ(Z) = I{|(t(Z) − m)/s(Z)| > z}
are a.s. continuous when the data is continuously distributed. Confidence intervals

C(Z) = {t(Z)− s(Z)z ≤ m ≤ t(Z) + s(Z)z} have a.s. bounded length 2s(Z)z.

The setup of RDD follows the potential outcome framework. For each individ-

ual i = 1, . . . , n, define four primitive random variables Di, Xi, Yi(0), Yi(1). These

variables are independent and identically distributed. The variable Di takes values

in {0, 1} and indicates treatment status. The real-valued variables Yi(0) and Yi(1)

denote the potential outcomes, respectively, if untreated and treated. Finally, the

forcing variable Xi represents a real-valued characteristic of the individual that is

not affected by the treatment. The forcing variable has a continuous PDF f(x) with

interval support equal to X. The econometrician observes Xi, Di, but only one of

the two potential outcomes for each individual: Yi = DiYi(1) + (1 − Di)Yi(0). For

simplicity, we consider the sharp RDD case, but it is straightforward to generalize our

results to the fuzzy case. In the sharp case, agents receive the treatment if, and only

if, the forcing variable is greater than or equal to a fixed policy cutoff c in the interior

of support X. Hence, Di = I{Xi ≥ c}, where I{·} denotes the indicator function.

We focus on average treatment effects. In RDD settings, identification of average

effects is typically obtained only at the cutoff value after assuming continuity of
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average potential outcomes conditional on the forcing variable. In other words, we

assume that E[Yi(0)|Xi = x] and E[Yi(1)|Xi = x] are bounded continuous functions

of x. HTV01 show that this leads to identification of the parameter of interest:

m = E [Yi(1)− Yi(0)|Xi = c] = lim
x↓c

E [Yi|Xi = x]− lim
x↑c

E [Yi|Xi = x] . (3.1)

Let G denote the space of all functions g : X→ R that are bounded, and that are

infinitely many times continuously differentiable in every x ∈ X \ {c}. The notation

X\{c} represents the set with every point of X except for c. Continuity of functions in

G suffices to show impossible inference in this section. Nevertheless, non-parametric

estimators of the size of the discontinuity m typically assume that functions in g

are continuously differentiable of first or second order. We impose that functions

in G are continuously differentiable of infinity order to demonstrate that both types

of impossibility hold even in this more restricted class of functions. The size of the

discontinuity m at the cutoff may take any value in R.

Each individual pair of variables Zi = (Xi, Yi) is iid as P . The family of all

possible models for P is denoted as

P = {P : (Xi, Yi) ∼ P, ∃g ∈ G s.t. EP [Yi|Xi = x] = g(x)}. (3.2)

The local average causal effect is the function of the distribution of the data P ∈ P
given by (3.1), provided the identification assumptions of HTV01 hold. The parameter

m of the size of the discontinuity is weakly identified in the set of possible true models

P. Intuitively, any conditional mean function E[Yi|Xi = x] that is continuous except

for a jump discontinuity at x = c is well-approximated by a sequence of continuous

conditional mean functions. The reasoning behind this approximation is similar to

the proof of part of Portmanteau’s theorem (Theorem 25.8, Billingsley (2008)). It

is known that, if E[f(Xn)] → E[f(X)] for every bounded function f that is a.s.

continuous under the distribution of X, then Xn
d→ X. The proof of Corollary 3 uses

an infinitely continuously differentiable function f that is approximately equal to an

indicator function.

Corollary 3. Assumption 1 is satisfied for P0,m ∀m ∈ R, and Theorems 2 and 3

apply to the RDD case. Namely, (i) a.s. continuous tests φm(Z) on the value of the

discontinuity m have power limited by size; and (ii) confidence sets on the value of
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the discontinuity m and with finite expected length have zero confidence level.

Remark 7. Corollary 3 also applies to quantile treatment effects by simply changing

the definition of the functional µ(P) to be the difference in side limits of a conditional

τ -th quantile Qτ (Yi|Xi = x) at x = c. This contrasts with the problem of testing

unconditional quantiles which does not suffer from impossible inference. See Lehman

and D’Abrera (1975), Tibshirani and Wasserman (1988), Coudin and Dufour (2009).

Remark 8. In the fuzzy RDD case, the treatment effect is equal to the discontinuity

in E[Yi|Xi] at Xi = c divided by the discontinuity in E[Di|Xi] at Xi = c. Corollary 3

applies to both of these conditional mean functions, and it leads to impossible infer-

ence in the fuzzy RDD case as well. Feir, Lemieux, and Marmer (2016) study weak

identification in Fuzzy RDD and propose a robust testing procedure. In contrast to

Kamat (2015) and to this paper, their source of weak identification comes from an

arbitrarily small discontinuity in E[Di|Xi] at Xi = c.

The most common inference procedures currently in use in applied research with

RDD rely on Wald tests that are a.s. continuous in the data and produce confi-

dence intervals of finite expected length. See Imbens and Kalyanaraman (2012) and

Calonico, Cattaneo, and Titiunik (2014) for most-used inference procedures. Corol-

lary 3 implies it is impossible to control size of these tests and coverage of these

confidence intervals.

Ours is not the first paper to show impossible inference in the RDD case. Kamat

(2015) demonstrates the important fact that models with a discontinuity are similar

to models without a discontinuity in the TV metric. He applies the testing impossi-

bility of Romano (2004) and finds that tests have power limited by size. Using the

graphical intuition of Figure 3, we provide a simpler proof of the same facts, using

the weak distance instead of the TV metric. Moreover, we add that confidence in-

tervals produced from Wald tests have zero confidence level. On a positive note, the

two types of impossibility theorems vanish if we restrict the class of models as in

Armstrong and Kolesar (2015) and Kamat (2015).

A second example of an application of Theorems 2 and 3 to a model with dis-

continuity is the so-called Regression Kink Design (RKD). RKD has recently gained

popularity in economics. See, for example, Card, Lee, Pei, and Weber (2015), Dong

(2016), Nielsen, Sørensen, and Taber (2010), and Simonsen, Skipper, and Skipper

(2016). The setup is the same as in the RDD case, except that the causal effect of
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interest is the change in the slope of the conditional mean of outcomes at the thresh-

old. Continuity of the first derivatives ∇xE[Yi(1)|Xi = x] and ∇xE[Yi(0)|Xi = x] at

the threshold x = c guarantees identification of the average effect. The parameter of

interest m = µ(P ) is a function of the distribution of Zi = (Xi, Yi):

µ(P ) = ∇xE[Yi(1)−Yi(0)|Xi = x] = lim
x↓c
∇xE[Yi|Xi = x]− lim

x↑c
∇xE[Yi|Xi = x]. (3.3)

The family of all possible distributions of Zi is defined in a slightly different way

than in Equation (3.2):

P = {P : (Xi, Yi) ∼ P, ∃g ∈ G s.t. ∇xE[Yi|Xi = x] = g(x)}. (3.4)

Weak identification of µ arises from the fact that any conditional mean function

E[Yi|Xi = x] with a discontinuous first derivative at x = c is well-approximated by a

sequence of continuously differentiable conditional mean functions. Assumption 1 is

easily verified using this insight.

Corollary 4. Assumption 1 is satisfied for P0,m ∀m ∈ R, and Theorems 2 and 3

apply to RKD. Namely, (i) a.s. continuous tests φm(Z) on the value of the kink

discontinuity m have power limited by size; and (ii) confidence sets on the value of

the kink discontinuity m and with finite expected length have zero confidence level.

The proof of Corollary 4 follows that of Corollary 3. Simply use the new definitions

of P and µ(P ). Construct the sequence Pk with ∇xEPk
[Yi|Xi = x] = gk(x).

3.2 Testing for Existence of Bunching

The second example applies Theorem 2 to the problem of testing for existence

of bunching in a scalar random variable. Bunching occurs when the distribution

of X exhibits a non-zero probability at known point x0, but it is continuous in a

neighborhood of x0. Bunching in the distribution of a single variable is the object of

interest in many empirical studies. For example, Saez (2010) and Kleven and Waseem

(2013) rely on the existence of bunching on “reported income” at the boundary of

tax brackets to identify the elasticity of reported income with respect to tax rates;

Goncalves and Mello (2017) use bunching on “charged speed in traffic tickets” to

separate lenient from non-lenient police officers and identify racial discrimination; a
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standard practice in RDD analyses is to check if the distribution of the forcing variable

has bunching at the cutoff, which would count as evidence against the design.

Suppose X is a scalar random variable. In the absence of bunching, assume the

CDF of X is continuously differentiable. Testing for bunching amounts to testing

whether X has positive probability mass at x0. Let P0 be the set of distributions

of X with a continuously differentiable CDF. The set P1 is all mixed continuous-

discrete distributions with one mass point at x0 but continuously differentiable CDF

otherwise.6 Any distribution Q under the alternative is well-approximated in the LP

metric by a sequence of distributions Pk under the null. Therefore, any a.s. continuous

test has power limited by size.

Corollary 5. Assumption 1 is satisfied in the problem of testing for the existence of

bunching. Hence, any test φ(Z) that is a.s. continuous under P1 has power limited

by size.

There is one interesting feature about this example that is not shared by the RDD

and RKD examples of the previous section. In this example, it is not possible to find

a sequence Pk under the null that approximates a Q ∈ P1 using the TV metric.

The event X = x0 always has zero probability under the null, but strictly positive

probability under the alternative. Therefore, dTV (P,Q) > 0 for every P ∈ P0, Q ∈ P1.

Theorem 1 suggests that there exists a test whose maximum power is bigger than size,

but our Theorem 2 says this test cannot be a.s. continuous under P1.

The use of the LP metric, as opposed to the TV metric, leads us to search for

tests that are discontinuous under P1. For a sample with n iid observations Xi, the

test φ(X1, . . . , Xn) = I
{

1
n

∑n
i=1 I{Xi = x0} > 0

}
is discontinuous under P1. This test

has size equal to zero, and power equal to 1− (1− δ)n where δ = P[Xi = x0].

3.3 Exogeneity Tests Based on Bunching

The third example comes from Caetano (2015) who uses the idea of bunching in

a conditional distribution of Y given X to construct an exogeneity test that does not

require instrumental variables. It applies to regression models where the distribution

6The assumption that the CDF is continuously differentiable is not necessary in this section.
We impose this assumption because typical non-parametric density estimators assume a continuous
density. The testing impossibility of this section occurs regardless of whether the CDF is assumed
continuously differentiable or just continuous.
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of unobserved factors are assumed to be discontinuous with respect to an explanatory

variable. Of interest is the impact of a scalar explanatory variable X on an outcome

variable Y after controlling for covariates W . For example, suppose we are interested

in the effect of average number of cigarettes smoked per day X on birth weight Y ,

after controlling for mothers’ observed characteristics W . Conditional on (X,W ),

the distribution of mothers’ unobserved characteristics U is said to bunch at zero

smoking if it changes drastically when we compare non-smoking mothers to mothers

that smoke very little. If bunching occurs, then the variable X is endogenous because

we cannot separate the effect of smoking on birth weight from the effect of unobserved

characteristics on birth weight.

The population model that determines Y is written as Y = h(X,W ) + U , where

U summarizes unobserved confounding factors affecting Y . We are unable to infer

bunching on U unless h is assumed continuous on (X,W ). Bunching of U with

respect to X is evidence of local endogeneity of X at X = 0. Bunching at 0 implies

discontinuity of E[U |X = 0,W ] − E[U |X = x,W ] as x ↓ 0. Continuity of h makes

bunching equivalent to a discontinuity of E[Y |X = 0,W = w]− E[Y |X = x,W = w]

as x ↓ 0 for every w. Caetano (2015) proposes testing

∀w lim
x↓0

E[Y |X = 0,W = w]− E[Y |X = x,W = w] = 0 (3.5)

as a means of testing for local exogeneity of X at X = 0. We argue that h may have a

high slope on X, or even be discontinuous on X, which makes exogeneity untestable.

The observed data Z = (Z1, . . . , Zn), Zi = (Xi,Wi, Yi) is iid with probability P .

The support of (Xi,Wi) is denoted X ×W. The distribution of Y conditional on

(X,W ) is assumed to be continuous. The distribution of X has non-zero probability

at X = 0, but it is continuous otherwise. Assume ∃δ > 0 such that [0, δ) ⊂ X.

Let G denote the space of all functions g : X ×W → R that are bounded and

infinitely many times continuously differentiable wrt x over {X \ {0}} ×W. The size

of the discontinuity at X = 0 may take any value in R. The family of all possible

distributions is denoted as

P = {P : Zi ∼ P, ∃g ∈ G s.t. EP [Yi|Xi = x,Wi = w] = g(x,w)}. (3.6)

Under local exogeneity of X, the function τP (w) = EP [Yi|Xi = 0,Wi = w] −
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lim
x↓0

EP [Yi|Xi = x,Wi = w] must be equal to 0 ∀w ∈ W. In practice, it is convenient

to conduct inference on an aggregate of τP (w) over w ∈ W instead of on the entire

function τP (w). Examples of aggregation include the average of |τP (W )|, the square

root of the average of τP (W )2, or the supremum of |τP (w)| over w ∈ W. For the

sake of brevity, we choose the second option. For a distribution P ∈ P, define

µ(P ) = [EP (τP (W )2)]
1/2

. Local exogeneity corresponds to the test of µ(P ) = 0

versus µ(P ) 6= 0.

The parameter µ(P ) is weakly identified in the class of models P. Just as in the

RDD case, any conditional mean function E[Yi|Xi = x,Wi = w] with a discontinuity

at x = 0 is well-approximated by a sequence of continuous conditional mean functions

E[Yi|Xi = x,Wi = w]. Assumption 1 is verified using the same argument as in the

RDD case.

Corollary 6. Assumption 1 is satisfied for P0,m ∀m ∈ R, and Theorems 2 and 3

apply to the case of the local exogeneity test. Namely, (i) a.s. continuous tests φm(Z)

on the value of the aggregate discontinuity m have power limited by size; and (ii)

confidence sets on the value of the aggregate discontinuity m and with finite expected

length have zero confidence level.

The inference procedures suggested by Caetano (2015) rely on nonparametric local

polynomial estimation methods. As in the RDD case, these procedures yield tests

that are a.s. continuous in the data and confidence intervals of finite expected length.

Corollary 6 implies lack of control of size and zero confidence level.

3.4 Weak Convergence and Robustness

The fourth application gives further motivation to using the LP metric to study

impossible inference. It relates the weak topology induced by the LP metric to the

theory developed by Peter J. Huber, who is the most prominent researcher in the

area of robust statistics. We refer the reader to Huber and Ronchetti (2009) for more

details. We start this section with a discussion of robust statistical procedures. We

then apply the LP metric to an example of a robust hypothesis test in time series

macroeconomic models.

Several statistical procedures are susceptible to small model departures. This

perception has led researchers to propose alternative procedures that are less sensitive

to the break-down of usual assumptions. Huber studies different ways of defining a
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set of model departures Pε. One possibility is to assume that the actual distribution

of the data is a mixture of a distribution in P with a distribution from a more general

set of models M. In other words, P may be contaminated with probability ε:

Pε = {H ∈M; ∃F ∈ P and ∃G ∈M; H = (1− ε)F + ε G} , (3.7)

where M is larger than the original P. Estimators or tests are said to be robust if

they have minimax properties over the set of model departures Pε. To highlight the

importance of robust procedures, we briefly discuss two examples.

The first example of a robust procedure is in point-estimation. The researcher has

a sample of n iid observations Zi ∈ Rl, i = 1, . . . , n. The set of joint probability dis-

tributions P is indexed by a parameter θ and admits marginal densities p (Zi; θ) with

respect to the same dominating measure (e.g. Lebesgue). The maximum likelihood

estimator (MLE) then minimizes∑n

i=1
− ln p (Zi; θ) .

This estimator θ̂ solves

∑n

i=1
−
∂p
(
Zi; θ̂

)
∂θ

.
1

p
(
Zi; θ̂

) = 0.

Under the usual regularity conditions, θ̂ is consistent, asymptotically normal, and

efficient within the class of regular estimators.

A common choice for M is the set of distributions with symmetric, thick-tailed

densities. It is well-known that optimal procedures derived under Gaussian distri-

butions (sample drawn from P) break down if there is a probability ε of observing

outliers (sample drawn from M). Huber (1964) suggests M-estimators. To give a

specific example of a robust M-estimator, consider the regression model

Yi = X ′iθ + Ui,

where we observe Zi = (Yi, Xi) but do not observe the zero-mean normal errors Ui.

The MLE minimizes ∑n

i=1
(Yi −X ′iθ)

2
,
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where the MLE θ̂ satisfies ∑n

i=1
Xi

(
Yi −X ′i θ̂

)
= 0.

More generally, a M-estimator θ̂ minimizes∑n

i=1
ρ (Yi −X ′iθ) ,

and satisfies ∑n

i=1
Xi ψ

(
Yi −X ′i θ̂

)
= 0

for choices of functions ρ and ψ. In the MLE case above, ρ(u) = u2 and ψ(u) = u.

A M-estimator θ̂ is said to be asymptotically minimax optimal among a class of

estimators if it minimizes the maximal asymptotic variance over distributions in Pε.
The M-estimator associated with the functions

ρk (u) =

{
u2/2 if |u| ≤ k

k |u| − u2/2 if |u| > k
and ψk (u) = max {−k,min (k, u)} (3.8)

are known to be asymptotically minimax optimal for model contamination. The

constant k depends on the deviations ε in (3.7). As ε→ 0, the truncation parameter

k → ∞. As the model departure is small, the M-estimator approaches the MLE

estimator. If ε→ 1, the parameter k → 0. As the contamination is arbitrarily large,

the M-estimator approaches the least absolute deviation (LAD) estimator.

The second example of a robust procedure is in hypothesis testing. Consider the

problem of testing a simple null P0 against a simple alternative P1. Assume both P0

and P1 have densities p0 and p1 with respect to the Lebesgue measure. For a sample

X = (X1, ..., Xn), the likelihood ratio (LR) test rejects the null if and only if

∏n

i=1

p1 (Xi)

p0 (Xi)
> cα,

where cα is the 1−α quantile of the distribution of the left-hand side under the null.

The Neyman-Pearson Lemma asserts that the LR test is optimal, as it maximizes

power within the class of tests with correct size α.

Similarly to model departures in the point-estimation example above, we consider

the possibility that the null and alternative hypotheses are misspecified. The ε-
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contaminated null and alternatives are

Pi,ε = {H ∈M;∃F ∈ Pi and ∃G ∈M;H = (1− ε)F + ε G} , (3.9)

for i = 0, 1. The new sets P0,ε and P1,ε allow for local departures for arbitrary

distributions in M. A minimax optimal hypothesis test maximizes the minimal power

over P1,ε inside the class of tests with correct size over P0,ε.

Huber (1965) shows that the minimax test to these model departures rejects the

null if and only if ∏n

i=1
πk

(
p1 (x)

p0 (x)

)
> cα,

where

πk (w) = max {k1,min (k2, w)} ,

for constants k = (k1, k2) that depend on the size of the departure ε. As ε → 0,

the constant k1 approaches zero, and k2 diverges to infinity. Hence, as the departure

decreases, the robust test approaches the usual LR test.

In the two examples of robust procedures given above, arbitrarily small model

departures (ε → 0) do not affect the solution to the minimax problem. That is, as

ε approaches zero, the robust estimator converges to the MLE, and the robust test

converges to the LR test. These limiting solutions are the same solutions as if we

ignore model departures (ε = 0). These inference procedures target a parameter

which is a functional of the underlying distribution P ∈ Pε, and these functionals

vary smoothly wrt ε as ε → 0. Robustness is associated with smoothness of the

functional, but such smoothness may not always occur in other settings.

Our work on impossible inference and the different metrics connects to Huber’s

work on robustness when we look at the following definition of model departure. For

a metric space (M, d), the set of model departures is defined as an ε-neighborhood of

P:

Pε = {H ∈M;∃F ∈ P s.t. d (F,H) ≤ ε} .

The set Pε is closed.7 The set
⋂
ε>0 Pε is also closed and coincides with P, the

closure of P. Hence, the set P is the minimal set of the Huber-type model departures

7In fact, take an arbitrary convergent sequence Hn → H, such that Hn ∈ Pε ∀n. To show
H ∈ Pε, pick an arbitrary F ∈ P. It is true that d(Hn, F ) ≤ ε ∀n. Therefore, d (F,H) ≤ d (F,Hn) +
d (Hn, H) ≤ ε+ d (Hn, H). Taking the limit as n→∞ gives d (F,H) ≤ ε.
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Pε containing P.

The minimal set of model departures crucially depends on a choice for the metric d.

Aside from the Lévy-Prokhorov (LP) and the Total Variation (TV) metrics, there are

many choices of metrics for spaces of probability measures: Kolmogorov, Hellinger,

and Wasserstein, among others. See Gibbs and Su (2002) for a review. Which metric

shall we choose? The choice of the metric on the space of models M induces a

topology V on that space. Parameters of interest are functionals µ : (M,V)→ (R,U)

where U is the topology on the R space. Robustness is about the continuity of the

functional µ which crucially depends on the choices of topologies V and U . For the

real line, it seems reasonable to work with the usual topology which is the smallest

topology involving all open sets of the form (a, b). However, there are many choices

of topologies for the set of measures M.

The set of continuous functionals µ grows, the finer the topology is on the domain

of µ. Let us consider a simple example to illustrate this point. Take two topological

spaces, (R,V) and (R,U), and a function ψ (x) = x. Continuity of this simple function

requires ψ−1(U) ∈ V for every open set U ∈ U . Take U = (0, 1), then ψ−1 (U) = (0, 1).

If we choose the coarsest topology V= {∅,R}, then even this simple function is not

continuous. It seems reasonable to require all linear functions to be continuous. If the

topology V is generated by all open sets of the form (a, b), then all linear functions

are continuous. Of course, other nonlinear functions may be continuous as well; e.g.,

ψ (x) = x2. This example makes the point that continuity depends very much on the

topology V associated to the domain of the function. If a function is continuous for

a topology V , then it is also continuous for a finer topology. This goes back to the

discussion of robustness as continuity of a functional µ.

If we choose a fine topology, then many statistical procedures will be deemed

robust because many functionals will be continuous. If we choose a coarse topology,

then fewer statistical procedures will be robust. But if a statistical procedure is

robust in the coarse topology, it is also robust in the fine topology. Among the

commonly-used notions of distance in measure spaces, the notion of distance behind

weak convergence or convergence in distribution is the weakest. The LP metric is a

notion of distance that metrizes weak convergence (Dudley (1976), Theorem 8.3). It

seems sensible that, if we were to choose one metric, we would choose a metric that

metrizes weak convergence. After all, if a functional is continuous wrt the topology

induced by the LP metric, it is also continuous wrt the stronger topologies induced
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by the Kolmogorov or TV metrics.

Another question is whether we should be stricter with robustness and look for an

even weaker topology than the weak topology induced by the LP metric. In perfect

analogy to the real line example, the weak topology is the coarsest topology that

guarantees continuity for all functionals of the form

µ (P ) =

∫
g dP , for g bounded and continuous. (3.10)

It seems reasonable, after all, to require µ to be continuous when g is a bounded and

continuous function. If we choose a weaker topology, then not even µ of this form

will be continuous.

In hypothesis testing, robustness over a minimal set of model departures moti-

vates testing P0 against P1 instead of testing P0 against P1. Allowing for robustified

hypotheses P0 and P1 potentially protects us against numerical approximation errors,

misspecified models, measurement errors, optimization frictions, among other devia-

tions from the set of models we are testing. Robustness of inference procedures for µ

that are as simple as (3.10) requires a topology no weaker than the topology induced

by the LP metric. Therefore, we use the LP metric to define the closure of a set for

robust hypothesis testing. We give three examples to strengthen the argument of why

the LP metric may be a sensible choice.

The first example of robust hypothesis testing using the LP metric compares

extremely simple discrete distributions under both null and alternative. Take X to

be a Bernoulli random variable and Xn = X + 1/ (1 + n) for n ∈ N. Let PX denote

the distribution of X. The minimal TV distance between P0 =
{
PXn for n ∈ N

}
and

P1=
{
PX
}

is equal to one. According to Theorem 5 of Kraft (1955), there exists

a test for P0 vs P1 with nontrivial power. For example, we can take a test which

rejects the null if we observe the values 0 or 1, but fails to reject the null otherwise.

This test has size equal to zero and power equal to one. Should we take the values

0 and 1 as evidence against the null? Or should we think instead that the null could

have led to those same values for all practical purposes? In this example, we note

that P1⊂P0, where the closure is defined wrt the LP metric.8 Hence, the minimal

TV distance between P0 and P1 is equal to zero. After we robustify the null set to

8In fact, Fn (x) = P (Xn ≤ x) = P (X ≤ x− 1/n), Fn (x) → P (X < x) = F (x−), F (x−) 6=
F (x) ⇔ x ∈ {0, 1} where {0, 1} are the only discontinuity points of F , so PX is a limit point of P0.
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P0 it becomes impossible to find any test with power greater than size (Corollary 1).

However, if we define the closure of P0 wrt the TV metric, say PTV0 , the minimal TV

distance between PTV0 and P1 is nonzero, which means it is still possible to powerfully

distinguish these sets.

The second example of robust hypothesis testing using the LP metric uses the

Multinomial approximation to continuous distributions. Take P0 as the collection of

Multinomial distributions, with each support being a finite subset of rational numbers.

Let P1 be the set of continuous distributions. The minimal TV distance between P0

and P1 is one, and it is possible to powerfully distinguish these sets. Robustness

leads us to ask whether observing rational numbers is indeed evidence of the null

hypothesis, or simply a matter of rounding or measurement error. The closure P0

wrt the LP metric contains continuous distributions, and the minimal TV distance

between P1 and P0 is zero. After we robustify the null set to P0, it becomes impossible

to powerfully test these hypotheses.

Both in the Bernoulli and Multinomial examples, it becomes clear that the LP

closure of the null set robustifies the testing procedure. The next step is to check the

TV distance between the robustified null and alternative sets as a way to search for

robust tests with nontrivial power. The use of the TV metric in the second step is

justified by a corollary of Theorem 5 of Kraft (1955). Corollary 1 demonstrates that

a necessary and sufficient condition for the existence of tests with non-trivial power

is that the null set is not dense in the set of all distributions with respect to the TV

metric.

The third and final example of robust hypothesis testing wrt to the LP metric

is of practical relevance to macroeconomists. Macroeconometrics often uses linear

time series processes. This is motivated by the Wold Representation Theorem which

asserts that every covariance-stationary process xt can be written as an MA process

plus some deterministic term:

xt = B (L) εt,

where L is the lag operator, B (l) =
∑q

i=0 bi l
i, and εt is an uncorrelated error sequence.

A caveat is that the order q needs to be too large to be useful for many applications.

The features of MA processes with infinite lag order are well captured by ARMA

models

A (L)xt = B (L) εt,
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with small orders for A (L) and B (L), where A (l) =
∑p

i=0 ai l
i. The closure of

the set of stationary ARMA(p,q) models with finite order (p, q) does not necessarily

contain only stationary models. The simplest example happens when A (l) = 1 − al
and B (l) = 1. The process is stationary when |a| < 1, but it is non-stationary when

a = 1. This observation led to ARIMA models, which better capture the persistence

in time series.

Starting in the 1990s, applied researchers begun to realize that ARIMA models

themselves have limitations. This led to the development of other stochastic pro-

cesses, including error duration models, Markov switching models, Threshold models,

structural breaks, and fractionally integrated processes, among others. This is a vast

literature and includes papers by Hamilton (1989), Parke (1999), and Bai and Perron

(1998), just to name a few.

A number of authors point out that these different model extensions may not be

too far from each other. For example, Perron (1989) shows that integrated processes

with drift and stationary models with a broken trend can be easily confused; Parke

(1999) points out that the error-duration model encapsulates fractionally integrated

series; Granger and Hyung (1999) and Diebold and Inoue (2001) find that linear

processes with breaks can be misinterpreted as long memory models. In these papers

and most of the related econometrics literature, the focus is on the autocovariance of

the stochastic process.

Our discussion of robust hypothesis testing suggests looking at the closure of

ARMA processes to distinguish these models from each other. For example, take

the problem of testing the null that the process is covariance-stationary, against the

alternative that it is an error-duration model or a Compound Poisson model. The

existence of a test with nontrivial power requires us to look for the TV distance

between these sets of processes. However, the ability to approximate theses processes

in the TV distance is often based on quite stringent assumptions. For example, see

Barbour and Utev (1999) for the TV approximation of Compound Poisson processes.

The problem of searching for tests for covariance-stationary vs error-duration or

Compound Poisson becomes much easier if we focus on the LP metric. To solve

this problem, we rely on Bickel and Bühlmann (1996), whose work has been largely

ignored in the econometrics literature. They characterize the closure of AR and MA

processes wrt the TV and the Mallows metric (also known as the Wasserstein metric).

The TV metric is stronger than the Mallows metric, which in turn is stronger than the
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LP metric. Indeed, convergence under the Mallows metric implies weak convergence

and convergence in second moments; see Bickel and Freedman (1981) and Bickel and

Bühlmann (1996). As a result, the closure of stochastic processes wrt the LP metric is

larger than the closure wrt the Mallows metric. It turns out that error-duration and

Compound Poisson models are in the closure wrt the LP metric. In other words, the

robustified null set wrt the LP metric contains the alternative set, and the minimal

TV distance between these sets is zero. Hence, all tests for the robustified null have

power no larger than size.

4 Simulations

In this section, we provide Monte Carlo simulations to illustrate the impossibility

of testing within the context of RDD. We find that the Wald test fails to control

size uniformly under the null hypothesis. We use a data-generating process (DGP)

based on an empirical example. Lack of size control occurs even for DGPs that are

consistent with the data. Moreover, the simulations also show that the Wald test has

very little power after artificially controlling size. In this section, we focus on the

RDD case for brevity, and we expect similar findings for the RKD and Exogeneity

Test cases.

Our DGP is based on the incumbency data of Lee (2008). Lee studies incumbency

advantage in the US House of Representatives. Districts where a party’s candidate

barely wins an election are on average comparable to districts where that party’s

candidate barely loses the election. The forcing variable X is the margin of victory

of the Democratic party in percentage of votes. The target parameter is the effect

of the Democrats winning the election at time t (incumbency) on the probability of

the Democrats winning the election at time t + 1. Lee’s data have been used for

simulation studies by several other econometrics papers, for example, Imbens and

Kalyanaraman (2012), Calonico, Cattaneo, and Titiunik (2014), and Armstrong and

Kolesar (2015). We use the same DGP as Imbens and Kalyanaraman (2012) which
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assumes the model in Equation (4.1).

Y =



0.48 + 1.27X + 7.18X2 + 20.21X3

+21.54X4 + 7.33X5 + U if X ∈ (−0.99, 0)

0.52 + 0.84X − 3X2 + 7.99X3

−9.01X4 + 3.56X5 + U if X ∈ [0, 0.99]

(4.1)

whereX is distributed as Beta(2, 4), U is zero-mean Gaussian with standard-deviation

0.1295, and X is independent of U . Figure 2 depicts the conditional mean function

of Equation 4.1.

Figure 2: Conditional Mean Function Based on Lee’s Data

Notes: conditional mean function of Equation 4.1. The forcing variable X is the margin of victory
of the Democratic party in percentage of votes in time t. The outcome variable Y is equal to one if
Democrats win in time t+ 1, but it is equal to zero otherwise.

Our simulation study uses variations of Equation (4.1) that are governed by two

parameters: τ ∈ R and M ∈ R+.

Y =



0.48 + τΛ (4MX/τ) + 1.27X + 7.18X2 + 20.21X3

+21.54X4 + 7.33X5 + U if X ∈ (−0.99, 0)

0.48 + τΛ (4MX/τ) + 0.84X − 3X2 + 7.99X3

−9.01X4 + 3.56X5 + U if X ∈ [0, 0.99)

(4.2)

where Λ (·) is the Logistic CDF function.
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The conditional mean function of both Equations 4.1 and 4.2 are differentiable on

either side of the cutoff. The first is discontinuous at X = 0 with discontinuity of size

0.04, while the second is continuous at X = 0. For τ = 0.04, Equation 4.2 approxi-

mates Equation 4.1 as M →∞. The parameter M is the derivative of mΛ (4MX/m)

at X = 0. As the slope M grows large, the continuous conditional mean function

of Equation 4.2 approximates a discontinuous function with discontinuity of size τ

Figure 3 illustrates this approximation, as well as the proof of Corollary 3 in Section

3.1.

Figure 3: Approximating a Discontinuous Conditional Mean Function (τ = 0.04)

(a) M = 0 (b) M = 0.5

(c) M = 2 (c) M = 8

Notes: the discontinuous conditional mean function E[Yi|Xi] (solid line) is approximated by a se-
quence of continuous conditional mean functions (dotted lines). The solid line is the E[Y |X] of
Model 4.1, and the dotted line is the E[Y |X] of Model 4.2 for τ = 0.04 and M ∈ {0, 0.5, 2, 8}. The
figure illustrates that model 4.2 approximates the DGP based on Lee (2008) as the slope at X = 0
grows large.

The parameter of interest is m, the size of the jump discontinuity at X = 0. The

null hypothesis is m = 0 which is the set of models in Equation 4.2 with τ ∈ R and

M ∈ R+. The alternative hypothesis is m 6= 0 which is the set of models with τ 6= 0

and M =∞. Section 3.1 shows that any model in the alternative is well-approximated

in the LP metric by models under the null. The power of a.s. continuous tests is less

than or equal to size.

32



The Monte Carlo experiment simulates 10,000 draws of an iid sample with 500

observations. The range of (τ,M) values for Model 4.2 in the experiment is consistent

with the magnitudes of Lee’s DGP. The maximum slope magnitude of the conditional

mean graph in Figure 2 is 1.97, and we set M ∈ {0, 2, . . . , 10}. The value of m for

Lee’s DGP is 0.04, and we vary τ in {0, 0.01, .04, 0.08}. We conduct a size and a

power analysis. In the size analysis, we simulate rejection probabilities of the Wald

test under each (τ,M)-model. The estimates of m and standard errors are obtained

by the robust bias-corrected method of Calonico, Cattaneo, and Titiunik (2014) and

implemented using the STATA package rdrobust. For each model (τ,M), the critical

value of the test comes from the simulated distribution of the statistic under model

(τ, 0). This ensures exact size of the test under the smoothest model under the null

(M = 0).

Table 1: Rejection Probability Under the Null - Size 5%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0500 0.0540 0.0557 0.0592 0.0585 0.0580
.02 0.0500 0.0665 0.0678 0.0649 0.0694 0.0685
.03 0.0500 0.0910 0.0942 0.0938 0.0941 0.1016
.04 0.0500 0.1005 0.1067 0.1071 0.1121 0.1139
.05 0.0500 0.1114 0.1264 0.1334 0.1464 0.1434
.06 0.0500 0.1292 0.1632 0.1680 0.1819 0.1819
.07 0.0500 0.1258 0.1617 0.1832 0.1906 0.2026
.08 0.0500 0.1320 0.1888 0.2142 0.2266 0.2427

Notes: the entries of the table display the simulated rejection probability of the Wald test under
various choices of (τ,M) for Model 4.2. Critical values of the test vary by row but are constant
across columns. For each (τ,M)-model, the critical value of the test comes from the simulated
distribution of the statistic under model (τ, 0). The estimates of m and standard errors for the Wald
test are obtained by the robust bias-corrected method of Calonico, Cattaneo, and Titiunik (2014)
and implemented using the STATA package ‘rdrobust’.

The nominal size of the Wald tests in Table 1 is 5%, and it increases with τ and

M . For the maximum slope of M = 2 observed from the model in Equation 4.1, the

size of the test varies between 5.4% and 13.2%, depending on the choice of the model

under the null. The true value of M is unknown, and a more conservative upper

bound on the slope M = 10 distorts the size of the test to as high as 24%.

In the power analysis, we study rejection probabilities for models with M =∞ and

τ ∈ {0, 0.01, . . . , 0.08}. These models fall under the alternative because m = τ when

M = ∞. For each (τ,∞)-model, we would like the test to have correct size under
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the least favorable null model. Table 1 suggests that the least favorable model under

the null is the one with the highest slope M . Figure 3 shows that null models can

approximate any alternative (τ,∞)-model arbitrarily well. If we restrict the slope at

X = 0 to be at most M , the worst-case model under the null for the alternative

(τ,∞)-model is the (τ,M)-model. To evaluate the rejection probability under a

(τ,∞)-model, the critical value of the test comes from the simulated distribution

of the statistic under a (τ,M)-model for various choices of (τ,M). That way, the test

has correct size when m = 0 under all possibilities of least favorable (τ,M)-models.

Table 2: Rejection Probability Under the Alternative - Size 5%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0610 0.0508 0.0504 0.0501 0.0504 0.0500
.02 0.0763 0.0527 0.0524 0.0505 0.0513 0.0501
.03 0.1020 0.0574 0.0532 0.0525 0.0526 0.0527
.04 0.1204 0.0646 0.0571 0.0556 0.0536 0.0524
.05 0.1583 0.0770 0.0618 0.0597 0.0573 0.0544
.06 0.2013 0.0899 0.0682 0.0638 0.0605 0.0569
.07 0.2192 0.1023 0.0732 0.0677 0.0642 0.0590
.08 0.2781 0.1179 0.0839 0.0707 0.0654 0.0631

Notes: the entries of the table display the simulated rejection probability of the Wald test under
Model 4.2 with various τ and M = ∞, so that the size of the discontinuity is m = τ . Critical
values of the test vary by row and column. For each (τ,M)-entry, the critical value comes from the
simulated distribution of the statistic under a null (τ,M)-model. The estimates of m and standard
errors for the Wald test are obtained by the robust bias-corrected method of Calonico, Cattaneo,
and Titiunik (2014) and implemented using the STATA package ‘rdrobust’.

The power of the tests in Table 2 increases with the size of discontinuity τ , but it

decreases with the slope M of the least favorable model under the null. Intuitively,

the higher M is, the harder it becomes to distinguish a (τ,M)-model from a (τ,∞)-

model. For the empirically relevant values of τ = 0.04 and M = 2, we see that the

power of the test is 6.5% barely above its size. More conservative upper bounds on

the slope of the model under the null essentially makes power equal size. Section A.8

in the Appendix contains versions of these tables for nominal levels of 1% and 10%,

as well as the simulated critical values used.

5 Conclusion

When drawing inference on a parameter in econometric models, some authors pro-
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vide conditions under which tests have trivial power (impossibility type A). Others

examine when confidence regions have error probability equal to one (impossibility

type B). The motivation behind these negative results is that the parameter of interest

may be nearly unidentified across models. Impossible inference relies on models being

indistinguishable with respect to some notion of distance. Some authors distinguish

models using the Total Variation (TV) metric and others rely on the Lévy-Prokhorov

(LP) metric, which is a weaker notion of distance. Having models that are distin-

guishable in the TV metric is a necessary and sufficient condition for the existence

of tests with nontrivial power. Impossible inference in terms of a weaker notion of

distance is often easier to prove, it is applicable to the widely-used class of almost

surely continuous tests, and it is useful for robust hypothesis testing.

Impossibility type A is stronger than type B. Dufour (1997) focuses on models in

which tests based on bounded confidence regions fail to control size, but they could

still have nontrivial power. Take the simultaneous equations model when instrumen-

tal variables may be arbitrarily weak. Moreira (2002, 2003) and Kleibergen (2005)

propose tests that have correct size in models where the type B impossibility applies.

Furthermore, these tests have good power when identification is strong, being efficient

under the usual asymptotics. Their power is not trivial, exactly because not every

model under the alternative is approximated by models under the null.

The choice of the LP versus the TV metric connects our work to the work of Peter

J. Huber on robust statistics. It leads us to look at the closure of model departures

under the LP metric. In particular, robust hypothesis testing requires a nonzero TV

distance between the closure of the null and alternative sets under the LP metric. For

example, it is impossible to find a robust test that powerfully distinguishes covariance-

stationary models from error-duration and Compound Poisson models because the

closure of the former contains the latter. This closure is quite rich, and we wonder

what sort of hypotheses are testable. It is impossible to test the population mean, so

a possibility may be quantiles such as value at risk (VaR). Peskir (2000) and Shorack

and Wellner (2009) provide sufficient conditions for convergence of empirical processes

under dependence. It would be interesting to build on these conditions to establish

the class of processes in which quantile testing is possible. We leave this for future

work.
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A Appendix

A.1 Proof of Corollary 1

We introduce some notation before the proof.

The density of P ∈ P wrt a σ-finite measure µ is p. The set of densities of all

distributions in P is denoted p. Similarly, the null and alternative sets of densities

are p0 and p1, and their union equals p. Define co(p′) to be the convex hull of an

arbitrary subset p′ ⊆ p in a similar fashion as in Equation (2.1).

The Total Variation (TV) metric between two distributions P,Q ∈ P with densities

p, q ∈ p is defined as

dTV (p, q) =
1

2

∫
|p− q| dµ. (A.1)

The proof of the equivalence of (a) and (b) is shown in three parts.

Part 1: (a)⇔ (a′) where

(a) : ∀q ∈ p1 ∃{pk}k ⊆ co(p0) such that dTV (pk, q)→ 0

(a′) : ∀q ∈ p1 ∃{pk}k ⊆ co(p0) and {εk}k ↓ 0 such that dTV (pk, q) < εk ∀k

Part 1, proof, (a)⇒ (a′) :

Fix q. For εk = dTV (pk, q) → 0, there exists a monotone subsequence εkj =

dTV (pkj , q) ↓ 0. Create new sequences p̃j = pkj and ε̃j = εkj/2 so that dTV (p̃j, q) < ε̃j.

Part 1, proof, (a)⇐ (a′) : straightforward.

Part 2: (a′)⇔ (b′) where

(a′) : ∀q ∈ p1 ∃{pk}k ⊆ co(p0) and {εk}k ↓ 0 such that dTV (pk, q) < εk ∀k

(b′) : ∀q ∈ p1 ∃{εk}k ↓ 0 such that ∀φ
∫
φq dµ < εk + sup

p∈p0

∫
φp dµ ∀k

Part 2, proof, (a′)⇒ (b′):

Fix q, (a’) says there exist sequences {pk}k ⊆ co(p0) and {εk}k ↓ 0 such that

dTV (pk, q) < εk ∀k. Fix k. Use Theorem 1 with {p1} = {q}. (a′) implies

∀φ
∫
φq dµ < εk + supp∈p0

∫
φp dµ.
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This is true for every k of a sequence εk that converges to zero given an arbitrary

q.

Part 2, proof, (a′)⇐ (b′):

Fix q, get εk. Fix k. Use Theorem 1 with {p1} = {q}. (b′) implies there exists

pk ∈ co(p0) such that dTV (pk, q) < εk. Repeat this for every k to get a sequence

{pk}k ⊆ co(p0) such that dTV (pk, q) < εk ∀k.

Part 3: (b′)⇔ (b) where

(b′) : ∀q ∈ p1 ∃{εk}k ↓ 0 such that ∀φ
∫
φq dµ < εk + sup

p∈p0

∫
φp dµ ∀k

(b) : ∀φ and q ∈ p1,

∫
φq dµ ≤ sup

p∈p0

∫
φp dµ

Part 3, proof (b′)⇒ (b):

Fix q, get εk. Fix φ. It is true that∫
φq dµ < εk + supp∈p0

∫
φp dµ

Take limits on both sides.∫
φq dµ ≤ supp∈p0

∫
φp dµ

This is true for every q and every φ.

Part 3, proof (b′)⇐ (b):

Straightforward because for arbitrary φ, q, and {εk}k ↓ 0∫
φq dµ ≤ supp∈p0

∫
φp dµ

implies∫
φq dµ < εk + supp∈p0

∫
φp dµ.

�

A.2 Proof of Theorem 2

The proof of Theorem 2 follows the same lines as the proof of Theorem 1 by

Romano (2004) except for the fact that our Assumption 1 is stated in terms of the

LP metric and in terms of the convex hull of P0.

Pick an arbitrary Q ∈ P1. There exists a sequence of distributions {Pk}∞k=1 ⊆
co(P0) such that Pk

d→ Q. Convergence in distribution is equivalent to EPk
[g] →

EQ[g] for every bounded real-valued function g whose set of discontinuity points has
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probability zero under Q (Theorem 25.8, Billingsley (2008)). In particular, this is

true for g = φ for an arbitrary φ that is a.s. continuous under Q.

Take an arbitrary sequence εn → 0, and pick a subsequence {Pkn}n from the

sequence {Pk}k such that

− εn ≤ EQφ− EPkn
φ ≤ εn. (A.2)

Therefore,

EQφ ≤ EPkn
φ+ εn ≤ sup

P∈co(P0)

EPφ+ εn. (A.3)

Given εn → 0, it follows that, for ∀Q ∈ P,

EQφ ≤ sup
P∈co(P0)

EPφ. (A.4)

Consequently,

sup
Q∈P1

EQφ ≤ sup
P∈co(P0)

EPφ. (A.5)

It is clear that supP∈co(P0) EPφ ≥ supP∈P0
EPφ. It remains to show that these are

equal. Assume supP∈co(P0) EPφ > supP∈P0
EPφ. Pick ε > 0 small enough such that

supP∈co(P0) EPφ− ε > supP∈P0
EPφ. There exists Pε ∈ co(P0) such that

sup
P∈co(P0)

EPφ ≥ EPεφ > sup
P∈co(P0)

EPφ− ε > sup
P∈P0

EPφ. (A.6)

By definition, Pε =
∑N

i=1 αiPi for N ∈ N, Pi ∈ P0 ∀i, αi ∈ [0, 1] ∀i, and
∑N

i=1 αi = 1.

Then, EPεφ =
∑N

i=1 αiEPi
φ ≤ supP∈P0

EPφ, a contradiction. Therefore, supP∈co(P0) EPφ
= supP∈P0

EPφ, and

sup
Q∈P1

EQφ ≤ sup
P∈P0

EPφ. (A.7)

�

A.3 Proof of Theorem 3

The proof is a combination of proofs by Dufour (1997) and Gleser and Hwang

(1987).

Part (2.6):
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Fix m ∈ µ(P). Define φm = I{m 6∈ C(Z)}, and note that sup
P∈P(m)

EPφm =

sup
P∈co(P(m))

EPφm (see proof of Theorem 2). It follows that 1−α ≤ inf
P∈P(m)

P [m ∈ C(Z)] =

inf
P∈co(P(m))

P [m ∈ C(Z)]. Therefore, ∀P ∈ co(P(m)), P [µ(P ) ∈ C(Z)] ≥ 1− α.

By Assumption 2, there exists {Pk} in co(P(m)) such that Pk
d→ P ∗. Then,

1− α ≤ Pk [µ(Pk) ∈ C(Z)] = Pk [m ∈ C(Z)]→ P ∗ [m ∈ C(Z)] (A.8)

where the convergence follows by Portmanteau’s theorem because P ∗(∂{m ∈ C(Z)}) =

0 (Theorem 29.1 of Billingsley (2008)). This proves (2.6).

Part (2.7):

Pick a sequence mn ∈ µ(P) such that mn is unbounded. Without loss of generality,

assume mn ↑ ∞. We have that

1− α ≤ P ∗ [mn ∈ C(Z)] ≤ P ∗ [mn ≤ U [C(Z)]] . (A.9)

Taking the limit as n→∞,

1− α ≤ P ∗ [U [C(Z)] =∞] (A.10)

≤ P ∗ [U [C(Z)]− L[C(Z)] =∞] = P ∗ [D[C(Z)] =∞] . (A.11)

Part (2.8):

Assumption 2 gives a sequence {Pk}k in co(P) that converges in distribution to

P ∗. By assumption, P ∗ [∂{D[C(Z)] =∞]}] = 0, so Portmanteau’s theorem gives

Pk [D[C(Z)] =∞]] → P ∗ [D[C(Z)] =∞]] ≥ 1 − α. There exists a sequence δk ↓ 0

such that Pk [D[C(Z)] =∞]] ≥ 1− α− δk.
Fix ε > 0. The set Bε(P

∗)∩ co(P) contains infinitely many Pks from the sequence

above. For these Pks,

1− α− δk ≤ Pk [D[C(Z)] =∞]] (A.12)

≤ sup
P∈Bε(P ∗)∩co(P)

P [D[C(Z)] =∞]] (A.13)

= sup
P∈Bε(P ∗)∩P

P [D[C(Z)] =∞]] (A.14)
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where the last equality follows by the same argument seen in the proof of (2.6) above.

Taking the limit as k →∞ gives (2.8).

�

A.4 Proof of Lemma 1

Lemma 1. Let C(Z) be constructed as in Equation (2.9). Then,

inf
P∈P

P [µ(P ) ∈ C(Z)] = 1− sup
m∈µ(P)

α(m). (A.15)

Proof of Lemma 1. Suppose

sup
m∈µ(P)

sup
P∈P0,m

P (φm(Z) = 1) = α. (A.16)

Now, pick ε > 0. Then, there exists mε such that

α− ε/2 ≤ sup
P∈P0,mε

P (φmε(Z) = 1) ≤ α. (A.17)

There also exists Pε ∈ P0,mε such that

α− ε ≤ Pε(φmε(Z) = 1) ≤ α. (A.18)

Rearranging the expression above, we obtain

1− α + ε ≥ Pε(µ(Pε) ∈ C(Z)) ≥ 1− α. (A.19)

Therefore, we find that

inf
P∈P

P [µ(P ) ∈ C(Z)] = 1− α, (A.20)

as we wanted to prove.

�

A.5 Proof of Corollary 3

Fix m ∈ R. Pick an arbitrary Q ∈ P1,m, and let m′ = µ(Q) 6= m. Define
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g(x) = EQ[Yi|Xi = x]. Construct a sequence of functions gk : R→ R, k = 1, 2, . . . as

follows:

gk(x) = g(x) + (m′ −m)
[
Λ
(
k2(x− c)

)
− I{x ≥ c}

]
(A.21)

where Λ (·) is the cumulative distribution function (CDF) of the Logistic distribution.

The function gk is infinitely continuously differentiable on X \ {c}, so gk ∈ G ∀k,

and lim
x↓c

gk(x) − lim
x↑c

gk(x) = m. Moreover, as k → ∞, gk(x) → g(x) for every x 6= c.

Define Pk to be the distribution of (Xi , Yi − g(Xi) + gk(Xi)) when (Xi, Yi) ∼ Q. It

follows that µ(Pk) = m and Pk ∈ P0,m ∀k.

It remains to show that Pk
d→ Q, or equivalently, to show that

(Xi , Yi − g(Xi) + gk(Xi))
d→ (Xi, Yi) (A.22)

as k → ∞ where (Xi, Yi) ∼ Q. Note that (Xi , Yi − g(Xi) + gk(Xi)) = (Xi, Yi) +

(0, gk(Xi)− g(Xi)), so it suffices to show that gk(Xi)− g(Xi)
p→ 0 as k →∞.

Define Ak = {c− k−1 < Xi < c+ k−1}, and let Ack be the complement of Ak. Fix

ε > 0.

Q [|gk(Xi)− g(Xi)| > ε] (A.23)

= Q [ |gk(Xi)− g(Xi)| > ε | Ak] Q [Ak] (A.24)

+Q [ |gk(Xi)− g(Xi)| > ε | Ack] Q [Ack] . (A.25)

Part (A.24) vanishes as k → ∞ by the continuity property of probability measures

because Ak ↓ {c} and Q [{c}] = 0 by assumption.

For part (A.25), note that |gk(x)− g(x)| ≤ |m′−m|Λ (−k) for any x ∈ Ack because

Λ (k2(x− c)) is strictly increasing in x and symmetric around x = c, so |gk(x)− g(x)|
attains its maximum at x = c− k−1 and x = c+ k−1. Therefore,

(A.25) ≤ I {|m′ −m|Λ (−k) > ε} Q [Ack]→ 0 (A.26)

because Λ (−k)→ 0 as k →∞.

Therefore, Assumption 1 is satisfied for every m ∈ R. Theorem 2 applies, and

Corollary 2 applies with µ(P) = R.

�
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A.6 Proof of Corollary 5

Fix Q ∈ P1 with CDF FQ(x). The CDF FQ(x) has a jump discontinuity of size

δ > 0 at x = x0. Call fQ the derivative of FQ at x 6= x0, which is a continuous

function of x for every x 6= x0. The integral of fQ over R equals 1− δ. The side limits

of fQ at x0, fQ(x+0 ) and fQ(x−0 ), may be different from each other. Pick a sequence

εk ↓ 0. Construct a continuous “hat-shaped” function gk(x) : [x0 − εk;x0 + εk] → R
such that: (i) gk(x0 − εk) = fQ(x0 − εk); (ii) gk(x0 + εk) = fQ(x0 + εk); (iii) gk(x)

has constant and positive slope for x ≤ x0, and constant and negative slope for

x ≥ x0; (iv) gk(x) ≥ fQ(x); and (v)
∫

(gk(x)− fQ(x)) dx = δ. It is always possible to

construct such function for a small enough εk. Define fPk
(x) = fQ(x) + I{x0 − εk ≤

x ≤ x0 + εk} (gk(x)− fQ(x)). This is a continuous PDF function, and let it define

the distribution Pk. We have that the CDF FPk
converges to FQ as k →∞ at every

continuity point of FQ, so that Pk
d→ Q.

�

A.7 Proof of Corollary 6

Fix m ∈ R. Pick an arbitrary Q ∈ P1,m, and let m′ = µ(Q) 6= m. Define

g(x,w) = EQ[Yi|Xi = x,Wi = w], and τQ(w) = g(x,w)− limx↓0 g(x,w).

Construct a sequence of functions gk : X×W→ R, k = 1, 2, . . . as follows:

gk(x,w) = g(x,w) + (τQ(w)−m)
[
I{x > 0} − Λ

(
k2x
)]

(A.27)

where Λ (·) is the CDF of the Logistic distribution.

The function gk is infinitely many times continuously differentiable wrt x on {X \
{c}} ×W, so gk ∈ G ∀k. Also, gk(0, w) − lim

x↓0
gk(x,w) = m. Moreover, as k → ∞,

gk(x,w) → g(x,w) pointwise. Define Pk to be the distribution of (Xi , Wi , Yi −
g(Xi,Wi) + gk(Xi,Wi)) when (Xi,Wi, Yi) ∼ Q. It follows that µ(Pk) = m and

Pk ∈ P0,m ∀k.

It remains to show that Pk
d→ Q, or equivalently, to show that

(Xi , Wi , Yi − g(Xi,Wi) + gk(Xi,Wi))
d→ (Xi,Wi, Yi) (A.28)

as k →∞ where (Xi, Yi) ∼ Q. Note that (Xi , Wi , Yi − g(Xi,Wi) + gk(Xi,Wi)) =

(Xi,Wi, Yi) + (0, gk(Xi,Wi) − g(Xi,Wi)), so it suffices to show that gk(Xi,Wi) −
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g(Xi,Wi)
p→ 0 as k →∞.

Define Ak = {0 < Xi < k−1}, and let Ack be the complement of Ak. Fix ε > 0.

Q [|gk(Xi,Wi)− g(Xi,Wi)| > ε] (A.29)

= Q [ |gk(Xi,Wi)− g(Xi,Wi)| > ε | Ak] Q [Ak] (A.30)

+Q [ |gk(Xi,Wi)− g(Xi,Wi)| > ε | Ack] Q [Ack] . (A.31)

Part (A.30) vanishes as k → ∞ by the continuity property of probability measures

because Ak ↓ {∅} where ∅ denotes the empty set and has zero probability.

For part (A.31), note that |gk(x,w)− g(x,w)| ≤ |τQ(w) −m||1 − Λ (k) | for any

w and any x ∈ Ack because 1 − Λ (k2x) is strictly decreasing in x. For fixed w,

|gk(x,w)− g(x,w)| attains its maximum at x = k−1. Therefore,

(A.31) ≤ P {|τQ(Wi)−m||1− Λ (k) | > ε} Q [Ack]→ 0 (A.32)

because Λ (k)→ 1 as k →∞ and |τQ(Wi)−m| is bounded.

�

A.8 Simulations - RDD

This section contains additional results of the RDD simulation in the main text.

The size and power analyses in the main text use the 5% nominal level. This section

has the same analyses using 1% and 10% nominal levels. It also has the simulated

critical values under the various choices of null (τ,M)-models.
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Table 3: Rejection Probability Under the Null

(a) Nominal Size 1%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0100 0.0097 0.0108 0.0142 0.0108 0.0123
.02 0.0100 0.0130 0.0147 0.0120 0.0139 0.0132
.03 0.0100 0.0195 0.0192 0.0212 0.0210 0.0224
.04 0.0100 0.0231 0.0257 0.0232 0.0243 0.0276
.05 0.0100 0.0274 0.0323 0.0335 0.0373 0.0345
.06 0.0100 0.0339 0.0467 0.0523 0.0591 0.0577
.07 0.0100 0.0402 0.0546 0.0612 0.0702 0.0737
.08 0.0100 0.0451 0.0674 0.0827 0.0917 0.0968

(b) Nominal Size 10%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0999 0.1096 0.1111 0.1170 0.1159 0.1127
.02 0.0999 0.1253 0.1309 0.1270 0.1337 0.1254
.03 0.0999 0.1587 0.1618 0.1651 0.1629 0.1707
.04 0.0999 0.1733 0.1803 0.1818 0.1827 0.1901
.05 0.0999 0.1801 0.2049 0.2097 0.2244 0.2177
.06 0.0999 0.2126 0.2561 0.2635 0.2810 0.2805
.07 0.0999 0.2172 0.2596 0.2867 0.3022 0.3072
.08 0.0999 0.2244 0.2957 0.3238 0.3427 0.3594

Notes: the entries of each table display the simulated rejection probability of the Wald test under
various choices of (τ,M) for Model 4.2 in the main text. Critical values of the test vary by row but
are constant across columns. For each (τ,M)-model, the critical value of the test comes from the
simulated distribution of the statistic under model (τ, 0). The estimates of m and standard errors for
the Wald test are obtained by the robust bias-corrected method of Calonico, Cattaneo, and Titiunik
(2014) and implemented using the STATA package ‘rdrobust’.
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Table 4: Rejection Probability Under the Alternative

(a) Nominal Size 1%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0113 0.0104 0.0099 0.0100 0.0100 0.0101
.02 0.0159 0.0111 0.0105 0.0102 0.0101 0.0103
.03 0.0223 0.0111 0.0112 0.0109 0.0111 0.0105
.04 0.0286 0.0133 0.0114 0.0109 0.0114 0.0108
.05 0.0390 0.0188 0.0137 0.0125 0.0114 0.0111
.06 0.0668 0.0211 0.0149 0.0132 0.0124 0.0114
.07 0.0869 0.0237 0.0150 0.0139 0.0128 0.0132
.08 0.1165 0.0295 0.0184 0.0164 0.0132 0.0130

(b) Nominal Size 10%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.1150 0.1013 0.1004 0.1003 0.1001 0.1001
.02 0.1411 0.1058 0.1026 0.1025 0.1013 0.1013
.03 0.1695 0.1130 0.1060 0.1045 0.1031 0.1030
.04 0.2003 0.1239 0.1129 0.1078 0.1064 0.1038
.05 0.2389 0.1361 0.1182 0.1128 0.1116 0.1079
.06 0.3093 0.1543 0.1319 0.1203 0.1154 0.1109
.07 0.3335 0.1792 0.1438 0.1286 0.1192 0.1161
.08 0.4073 0.2085 0.1567 0.1342 0.1269 0.1200

Notes: the entries of the tables display the simulated rejection probability of the Wald test under
Model 4.2 in the main text with various τ and M =∞, so that the size of the discontinuity is m = τ .
Critical values of the test vary by row and column. For each (τ,M)-entry, the critical value comes
from the simulated distribution of the statistic under a null (τ,M)-model. The estimates of m and
standard errors for the Wald test are obtained by the robust bias-corrected method of Calonico,
Cattaneo, and Titiunik (2014) and implemented using the STATA package ‘rdrobust’.
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Table 5: Simulated Critical Values

(a) Nominal Size 1%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 3.0222 3.0074 3.0631 3.1741 3.0641 3.0927
.02 3.0669 3.1787 3.2466 3.1459 3.1743 3.2177
.03 3.0506 3.3975 3.4213 3.4238 3.3659 3.4641
.04 3.0810 3.5389 3.5381 3.4846 3.4706 3.5916
.05 3.0786 3.5443 3.6329 3.6819 3.7531 3.7461
.06 2.9715 3.5573 3.7476 3.8374 3.9043 3.8987
.07 2.9829 3.7526 3.9103 3.9917 3.9896 4.0030
.08 2.9536 3.7593 4.0283 4.1033 4.2614 4.2798

(b) Nominal Size 5%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 2.2543 2.2888 2.3158 2.3511 2.3279 2.3525
.02 2.2491 2.4041 2.4038 2.3951 2.4190 2.4311
.03 2.1983 2.5607 2.5687 2.5776 2.5385 2.6150
.04 2.2350 2.6669 2.6713 2.6819 2.7055 2.7515
.05 2.2390 2.7010 2.8138 2.8575 2.9340 2.8821
.06 2.2030 2.7688 2.9399 2.9920 3.0553 3.0453
.07 2.2713 2.8591 3.0370 3.0936 3.1734 3.2180
.08 2.2556 2.9023 3.1370 3.2685 3.3442 3.3817

(b) Nominal Size 10%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 1.8700 1.9312 1.9323 1.9577 1.9602 1.9437
.02 1.8801 2.0155 2.0295 2.0221 2.0558 2.0240
.03 1.8466 2.1393 2.1621 2.1594 2.1638 2.2066
.04 1.8822 2.2410 2.2767 2.2879 2.2917 2.3270
.05 1.9056 2.3180 2.4002 2.4403 2.4903 2.4722
.06 1.8316 2.3812 2.5359 2.5594 2.6196 2.6234
.07 1.8772 2.4403 2.5859 2.7054 2.7526 2.7885
.08 1.8651 2.4662 2.7184 2.8357 2.8925 2.9366

Notes: for each (τ,M)-entry, the critical value comes from the simulated distribution of the Wald
test statistic under a null (τ,M)-model (Equation 4.2 in the main text). The estimates of m and
standard errors for the Wald test are obtained by the robust bias-corrected method of Calonico,
Cattaneo, and Titiunik (2014) and implemented using the STATA package ‘rdrobust’.
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