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Abstract. Benchmarks are central to the improvement of named entity recogni-

tion and entity linking solutions. However, recent works have shown that manu-

ally created benchmarks often contain mistakes. We hence investigate the auto-

matic generation of benchmarks for named entity recognition and linking from

Linked Data as a complement to manually created benchmarks. The main ad-

vantage of automatically constructed benchmarks is that they can be readily gen-

erated at any time, and are cost-effective while being guaranteed to be free of

annotation errors. Moreover, generators for resource-poor languages can foster

the development of tools for such languages. We compare the performance of

11 tools on benchmarks generated using our approach with their performance on

16 benchmarks that were created manually. In addition, we perform a large-scale

runtime evaluation of entity recognition and linking solutions for the first time

in literature. Moreover, we present results achieved on the Portuguese version of

our approach on four different tools. Overall, our results suggest that our auto-

matic benchmark generation approach can create varied benchmarks that have

characteristics similar to those of existing benchmarks. Our experimental results

are available at http://faturl.com/bengalexp.

1 Introduction

Benchmarking is of central importance for the objective assessment and development

of approaches all around computer science. For example, developments in the database

area suggest that benchmarks such as TPC-H were instrumental for increasing the

performance of relational databases [34]. Recently, benchmarking campaigns such as

BioASQ [29] have led to an improvement of the F-measure achieved by bio-medical

question answering systems by more than 5%. While the manual creation of NER and

EL benchmarks has the advantage of yielding benchmarks which reflect human process-

ing, it also exhibits significant disadvantages: (1) Annotation mistakes: Human annota-

tors have to read through every sentence in the corpus and often (a) miss annotations

or (b) assign wrong resources to entities for reasons as various as fatigue or lack of

background knowledge (and this even when supported with annotation tools). For ex-

ample, [11] was able to determine that up to 38,453 of the annotations in commonly

used benchmarks (see GERBIL [31] for a list of these benchmarks) were erroneous.

http://arxiv.org/abs/1710.08691v2
http://faturl.com/bengalexp


A manual evaluation of 25 documents from the ACE2004 benchmark revealed that

195 annotations were missing and 14 of 306 annotations were incorrect. Similar find-

ings were reported for AIDA/CONLL [27] and OKE2015 [20]. (2) Volume: Manually

created benchmarks are usually small (commonly < 2, 500 documents, see Table 2).

Hence, they are of little help when aiming to benchmark the scalability of existing so-

lutions (especially when these solutions using caching). (3) Lack of updates: Manual

benchmark generation approaches lead to static corpora which tend not to reflect the

newest reference knowledge graphs, also called knowledge bases (KBs). For exam-

ple, several of the benchmarks presented in GERBIL [31] link to outdated versions of

Wikipedia/DBpedia. (4) Popularity bias: Manual benchmarks are often biased towards

popular resources [8]. (5) Lack of availability: The lack of benchmarks for resource-

poor languages inhibits the development of corresponding NER and EL solutions.

We argue that automatic methods are a viable and supplementary approach for the

generation of benchmarks for NER and EL, especially as they address some of the

weaknesses of the manual benchmark creation process. The main contribution of our

paper is thus a novel approach for the automatic generation of benchmarks for NER and

EL dubbed BENGAL. Our approach relies on the abundance of structured data in RDF

on the Web and is based on verbalizing such data to generate automatically annotated

natural-language statements. Our automatic benchmark creation method addresses the

drawbacks of manual benchmark generation aforementioned as follows: (1) It alleviates

the human annotation error problem by relying on data in RDF which explicitly con-

tain the entities to find. (2) BENGAL is able to generate arbitrarily large benchmarks.

Hence, it can enhance both the measurement of both the accuracy and the scalability of

approaches.(3) Moreover, BENGAL can be updated easily to reflect the newest termi-

nology and reference KBs. Hence, it can generate corpora that reflect the newest KBs.

(4) BENGAL suffers less of a bias towards popular resources as it can choose entities

to include in the benchmark generated following a uniform distribution. (5) BENGAL

can be ported to any token-based language. This is exemplified by porting BENGAL to

Brazilian Portuguese, a language with a limited number of NER and EL benchmarks.

The rest of this paper is structured as follows: We begin with an overview of the

state of the art in benchmarking NER and EL. Then, we explain our approach and show

how verbalized RDF can be used to create NER, EL and even relation extraction (RE)

benchmarks. In Section 4, we compare the features of our generated benchmarks as

well as the results achieved by 11 state-of-the-art NER and EL frameworks with the

features and results of manually crafted benchmarks. We discuss the insights provided

by our evaluation and possible extensions of BENGAL in Section 5.

2 Related Work

The work present herein is mostly related to works on NER and EL benchmarks. Ac-

cording to GERBIL [31], the 2003 CoNLL shared task [27] is the most used bench-

mark dataset for recognition and linking. The ACE2004 and the MSNBC [5] news

datasets were used by Ratinov et al. [22] to evaluate their seminal work on linking

to Wikipedia. Another often-used corpus is AQUAINT, e.g., used by Milne and Wit-

ten [13]. The applied human-driven annotations allow for NER, EL and co-reference



resolution [17] where annotators manually disambiguated pre-recognized entities. De-

tailed dataset statistics on some of these benchmarks can be found in Table 2.

A recent uptake of publicly available corpora [24,26] based on RDF has led to the

creation of many new datasets. The Spotlight corpus and the KORE 50 dataset were pro-

posed to showcase the usability of RDF-based annotations [12]. The multilingual N3

collection [24] was introduced to widen the scope and diversity of NIF-based corpora.

It has shown its usability for the evaluation of disambiguation tools [30] and ensemble-

learning based NER tools [25]. Another recent observation is the shift towards microp-

ost documents like tweets. For example, the Microposts2014 corpus [4] was created to

evaluate NER and ML on smaller pieces of text. The Open Knowledge Extraction chal-

lenge [20] released open, manually created datasets containing NIF-based annotations

for RDF entities and classes.

Semi-automatic approaches to benchmark creation are commonly crowd-based. They

commonly use one or more recognizers to create a first set of annotations and then hand

over the tasks of refinement and/or linking to crowd workers to improve the quality.

Examples of such approaches include [32] and CALBC [23]. Oramas et al. [21] intro-

duced a voting-based algorithm which analyses the hyperlinks presented in the input

texts retrieved from different disambiguation systems such as Babelfy [14]. Each en-

tity mention in the input text is linked based on the degree of agreement across three

state-of-the-art EL systems.

Brümmer et al. [2] presents an automatic approach which converts abstracts from

DBpedia (dbo:abstract) to benchmarkable datasets. For any given abstract, they gather

the first paragraph of the corresponding Wikipedia page and use the text to extract

entities through their own Wikipedia links. However, the approach is not guaranteed to

return complete not correct annotations. BENGAL is the first automatic approach that

makes use of structured data and can be replicated on any KB for EL benchmarks. In

contrast to the approaches reviewed by van Erp et al. [8], our framework is not biased

towards popular resources as it chooses entities following a uniform distribution.

3 The BENGAL approach

BENGAL is based on the observation that more than 30 billion facts pertaining to more

than 3 billion entities are available in machine-readable form on the Web (i.e., as RDF

triples). The basic intuition behind our approach is hence as follows: Given that NER

and EL are often used in pipelines for the extraction of machine-readable facts from

text, we can invert the pipeline and go from facts to text, thereby using the information

in the facts to produce a gold standard that is guaranteed to contain no errors. In the

following, we begin by giving a more formal overview of RDF. Thereafter, we present

how we use RDF to generate NER and EL benchmarks automatically and at scale.

3.1 Preliminaries and Notation

RDF. The notation presented herein is based on the RDF 1.1 specification. An RDF

graph G is a set of facts. Each fact is a triple t = (s, p, o) ∈ (R∪B)×P × (R∪B∪L)
where R is the set of all resources (i.e., things of the real world), P is the set of all



predicates (binary relations), B is the set of all blank nodes (which basically express

existential quantification) and L is the set of all literals (i.e., of datatype values). We

call the set R ∪ P ∪ L ∪ B our universe and call its elements entities. A fragment of

DBpedia1 is shown below. We will use this fragment in our examples. For the sake of

space, our examples are in English. However, note that we ported BENGAL to Brazilian

Portuguese so as to exemplify that it not biased towards a particular language.

:AlbertEinstein dbo:birthPlace :Ulm .
:AlbertEinstein dbo:deathPlace :Princeton .
:AlbertEinstein rdf:type dbo:Scientist .
:AlbertEinstein dbo:field :Physics .
:Ulm dbo:country :Germany.
:AlbertEinstein rdfs:label "Albert Einstein"@en.

Listing 1.1: Example RDF dataset.

Benchmarks. We define a benchmark as a set C of annotated documents Di. Each

document Di is a sequence of characters si1 . . . sin. Each subsequence sij . . . sik (with

j < k) of the document Di which stands for a resource r ∈ R is assumed to be

marked as such. We model the marking of resources by the function m : C × N ×
N → R and write m(Di, j, k) = r to signify that the substring sij . . . sik stands

for the resource r. In case the substring sij . . . sik does not stand for a resource, we

write m(i, j, k) = ǫ. Let D0 be the example shown in Listing 1.2. We would write

m(D0, 0, 14) = :AlbertEinstein.

Albert Einstein was born in Ulm.

Listing 1.2: Example sentence.

Verbalization. To the best of our knowledge, there are two main works on verbaliz-

ing SPARQL2, i.e., SPARTIQULATION [7] and SPARQL2NL [18]. Our approach to

verbalizing RDF is based on SPARQL2NL because it is extensible by virtue of being

bottom-up, i.e., of specifying reusable rules to verbalize atomic constructs (e.g., RDF

triples) and to combine their verbalization into sentences. In contrast, SPARTIQULA-

TION [7] assumes the structure of the sentence to be generated is described in a tem-

plate and fits the verbalization of the components into the template. The notation and

formal framework for verbalization in BENGAL is also based on SPARQL2NL [18].

Let W be the set of all words in the dictionary of our target language. We define the

realization function ρ : R ∪ P ∪ L → W ∗ as the function which maps each entity to a

word or sequence of words from the dictionary. Formally, the goal of the verbalization

is to devise the extension of ρ to conjunctions of RDF triples. This extension maps all

triples t to their realization ρ(t) and defines how these atomic realizations are to be

combined. We denote the extension of ρ by the same label ρ for the sake of simplicity.

1
http://dbpedia.org

2 SPARQL is the query language for RDF data. The specification can be found at

https://www.w3.org/TR/rdf-sparql-query/.

http://dbpedia.org
https://www.w3.org/TR/rdf-sparql-query/


We adopt a rule-based approach to devise the extension of ρ, where the rules extending

ρ to RDF triples are expressed in a conjunctive manner. This means that for premises

P1, . . . , Pn and consequences K1, . . . ,Km we write P1 ∧ . . .∧Pn ⇒ K1 ∧ . . .∧Km.

The premises and consequences are explicated by using an extension of the Stan-

ford dependencies.3 We rely especially on the constructs explained in Table 1. For

example, a possessive dependency between two phrase elements e1 and e2 is repre-

sented as poss(e1, e2). For the sake of simplicity, we sometimes reduce the construct

subj(y,x) ∧ dobj(y,z) to the triple (x,y,z) ∈ W 3.

Table 1: Dependencies (Dep.) used by BENGAL.

Dependency Explanation

cc Stands for the relation between a conjunct and a given conjunction (in most cases

and or or). For example in the sentence John eats an apple and a pear,

cc(PEAR,AND) holds. We mainly use this construct to specify reduction and re-

placement rules.

conj
∗ Used to build the conjunction of two phrase elements, e.g.

conj(subj(EAT,JOHN), subj(DRINK,MARY)) stands for John eats

and Mary drinks. conj is not to be confused with the logical conjunction ∧,

which we use to state that two dependencies hold in the same sentence. For example

subj(EAT,JOHN) ∧ dobj(EAT,FISH) is to be read as John eats fish.

dobj Dependency between a verb and its direct object, for example

dobj(EAT,APPLE) expresses to eat an/the apple.

nn The noun compound modifier is used to modify a head noun by the means of another

noun. For instance nn(FARMER,JOHN) stands for farmer John.

poss Expresses a possessive dependency between two lexical items, for example

poss(JOHN,DOG) expresses John’s dog.

subj Relation between subject and verb, for example subj(BE,JOHN) expresses John

is.

3.2 Approach

BENGAL assumes that it is given (1) a RDF graph G ⊆ (R ∪ B) × P × (R ∪ B ∪
L), (2) a number of documents to generate, (3) a minimal resp. maximal document

size (i.e., number of triples to use during the generation process) dmin resp. dmax,

(4) a set of restrictions pertaining to the resources to generate and (5) a strategy for

generating single documents. Given the graph G, BENGAL begins by selecting a set

of seed resources from G based on the restrictions set using parameter (4). Thereafter,

it uses the strategy defined via parameter (5) to select a subgraph of G. This subgraph

contains a randomly selected number d of triples with dmin ≤ d ≤ dmax. The subgraph

is then verbalized. The verbalization is annotated automatically and finally returned as

a single document. Each single document then may be paraphrased if this option is

3 For a complete description of the vocabulary, see http://nlp.stanford.edu/software/dependencies_manual.pdf.

http://nlp.stanford.edu/software/dependencies_manual.pdf


chosen in the initial phase. This process is repeated as many times as necessary to reach

the predefined number of documents. In the following, we present the details of each

step underlying our benchmark generation process.

Seed Selection Given that we rely on RDF, we model the seed selection by means of a

SPARQL SELECT query with one projection variable. Note that we can use the wealth

of SPARQL to devise seed selection strategies of arbitrary complexity. However, given

that NER and EL frameworks commonly focus on particular classes of resources, we

are commonly confronted with the condition that the seeds must be instances of a set of

classes, e.g., :Person, :Organization or :Place. The SPARQL query for our

example dataset would be as follows:

SELECT ?x WHERE { {?x a :Person.} UNION {?x a :Organization.}
UNION {?x a :Place.} }

Listing 1.3: Example seed selection query.

Subgraph Generation Our approach to generating subgraphs is reminiscent of SPARQL

query topologies as available in SPARQL query benchmarks such as DBPSB, BSBM,

FEASIBLE and FedBench.As these queries (especially the DBPSB4 and FEASIBLE5

queries) describe real information needs, their topology must stand for the type of in-

formation that is necessitated by applications and humans. We thus distinguish between

three main types of subgraphs to be generated from RDF data: (1) star graphs provide

information about a particular entity, most commonly a resource (e.g, the short biogra-

phy of a person); (2) path graphs describe the relation between two entities (e.g., the

relation between a gene and a side-effect); (3) hybrid graphs are a mix of both and com-

monly describe a specialized subject matter involving several actors (e.g., a description

of the cast of a movie).

Star Graphs. For each si ∈ S, we simply gather all triples of the form t = (si, p, o) ∈
R×P×(R∪L). Note that we do not consider blank nodes as they cannot be verbalized

due to the existential quantification they stand for. The triples are then added to a list

L(si) sorted in descending order according to a hash function h. After randomly select-

ing a document size d between dmin and dmax, we select d random triples from L(si).
For the dataset shown in Listing 1.1 and d = 2, we would for example get Listing 1.4.

:AlbertEinstein :birthPlace :Ulm .
:AlbertEinstein :deathPlace :Princeton .

Listing 1.4: Example dataset generated by the star strategy.

Symmetric Star Graphs. As above with t ∈ {(si, p, o) ∈ G ∨ (o, p, si) ∈ G}.

Path Graphs. For each si ∈ S, we begin by computing list L(si) as in the symmetric

star graph generation. Then, we pick a random triple (si, p, o) or (o, p, si) from L(si)
that is such that o is a resource. We then use o as seed and repeat the operation until

we have generated d triples, where d is randomly generated as above. For the example

dataset shown in Listing 1.1 and d = 2, we would for example get Listing 1.5.

4
http://aksw.org/Projects/DBPSB

5 http://aksw.org/Projects/Feasible

http://aksw.org/Projects/DBPSB
http://aksw.org/Projects/Feasible


:AlbertEinstein :birthPlace :Ulm .
:Ulm :country :Germany .

Listing 1.5: Example dataset generated by the path strategy.

Hybrid Graphs. This is a 50/50-mix of the star and path graph generation ap-

proaches. In each iteration, we choose and apply one of the two strategies above ran-

domly. For example, the hybrid graph generation can generate:

:AlbertEinstein :birthPlace :Ulm .
:AlbertEinstein :deathPlace :Princeton .
:Ulm :country :Germany .

Listing 1.6: Example dataset generated by the hybrid strategy.

Summary Graph Generation. This last strategy is a specialization of the star graph

generation where the set of triples to a resource is not chosen randomly. Instead, for

each class (e.g., :Person) of the input KB, we begin by filtering the set of properties

and only consider properties that (1) have the said class as domain and (2) achieve a

coverage above a user-set threshold (60% in our experiments) (e.g., :birthPlace,

:deathPlace, :spouse). We then build a property co-occurence graph for the

said class in which the nodes are the properties selected in the preceding step and the

co-occurence of two properties p1 and p2 is the instance r of the input class where

∃o1, o2 : (r, p1, o1) ∈ K ∧ (r, p2, o2) ∈ K . The resulting graph is then clustered (e.g.,

by using the approach presented in [19]). We finally select the clusters which contain

the properties with the highest frequencies in K that allow the selection of at least d

triples from K . For example, if :birthPlace (frequency = 10), :deathPlace

(frequency = 10) were in the same cluster while :spouse (frequency = 8) were in its

own cluster, we would choose the pair (:birthPlace, :deathPlace) and return

the corresponding triples for our input resource. Hence, we would return Listing 1.4 for

our running example.

Verbalization The verbalization strategy for the first four strategies consists of ver-

balizing each triple as a single sentence and is derived from SPARQL2NL [18]. To

verbalize the subject of the triple t = (s, p, o), we use one of its labels according to Ell

et al. [6] (e.g., the rdfs:label). If the object o is a resource, we follow the same ap-

proach as for the subject. Importantly, the verbalization of a triple t = (s, p, o) depends

mostly on the verbalization of the predicate p. If p can be realized as a noun phrase,

then a possessive clause can be used to express the semantics of (s, p, o). For example,

if p can be verbalized as a nominal compound like birth place, then the triple can

be verbalized as shown in equation 1. In case p’s realization is a verb, then the triple

can be verbalized as in equation 2.

ρ(s, p, o) ⇒ poss(ρ(p), ρ(s)) ∧ subj(BE, ρ(p)) ∧ dobj(BE, ρ(o)) (1)

ρ(s, p, o) ⇒ subj(BE, ρ(p)) ∧ dobj(BE, ρ(o)) (2)

In our running example, verbalizing (:AlbertEinstein,dbo:birthDate,:Ulm)

would thus lead to Albert Einstein’s birth place is Ulm., as birth



place is a noun. In the case of summary graphs, we go beyond the verbalization of

single sentences and merge sentences that were derived from the same cluster. For ex-

ample, if p1 and p2 can be verbalized as nouns, then we apply the following rule:

ρ(s, p1, o1) ∧ ρ(s, p2, o2) ⇒conj(poss(ρ(p1), ρ(s)) ∧ subj(BE1, ρ(p1)) (3)

∧ dobj(BE1, ρ(o1)) ∧ poss(ρ(p2), ρ(pronoun(s)))

∧ subj(BE2, ρ(p2)) ∧ dobj(BE2, ρ(o2))

Note that pronoun(s) returns the correct pronoun for a resource based on its type

and gender. Therewith, we can generate Albert Einstein’s birthplace is

Ulm and his death place is Princeton.

Paraphrasing With this step, BENGAL avoids the generation of a large number of

sentences that share the same terms and the same structure [33]. Additionally, this step

makes the use of reverse engineering strategies for the generation more difficult as it

increases the diversity of the text in the benchmarks. Our paraphrasing is largely based

on [1] and runs as follows: (1) change the structure of the sentence, (2) change the

voice from active to passive and (3) look for synonyms based on the context. For each

document, we run the paraphrasing sequentially on all sentences. For steps (1) and (2),

BENGAL relies on syntactic structure analysis [10] combined with POS tagging [28].

We first determine the location of the verb in the sentence. In most cases, the subject

and object of the verb are then swapped and the verb rendered in the passive voice. We

however refrain from using the passive if the verb is a form of to be as the sentences

would not sound natural. Instead, we make use of the symmetry of to be and swap

subject and object (see second sentence in Listing 1.7). We also refrain from changing

sentences that describe type information (e.g., see the first sentence Listing 1.7)

Original: Albert Einstein is a scientist. His birth date is
March 12, 1879. His field is Physics. Albert Einstein died
in April 16, 1955. This scientists’ birth places are Ulm,
Baden - Wurttemberg, German Empire and Kingdom of
Wurttemberg.

Paraphrase: Albert Einstein is a scientist. March 12, 1879 is
his birth date. Physics is his area. This physicist passed
away in April 16, 1955. This scientists’ birth places are
Ulm, Baden - Wurttemberg, German Empire and Kingdom of
Wurttemberg.

Listing 1.7: Example Paraphasing.

For step (3), BENGAL looks for synonyms of the noun phrases in the sentence us-

ing a dictionary (i.e., WordNet6 in our current implementation). Synonyms are selected

based on their synsets. Each word is queried along with its POS-tag to avoid ambigu-

ity. If one word returns more than a given number of synonyms (5 in our experiments)

we assume it to be ambiguous and maintain the original. For example, we do not alter

the verb get due to the plurality of its meanings. In the same vein, we do not retrieve

6 https://wordnet.princeton.edu/

https://wordnet.princeton.edu/


multi-word expressions as synonyms. For example, we would not replace the verb die

by kick the bucket. Therewith, we avoid reducing the readability of the sentence.

Verb phrases such as pass away are however retrieved and used to replace verbs such

as die (see third sentence in Listing 1.7). The paraphrasing in BENGAL also addresses

the replacement of named entities. Here, the approach makes use of alternative surface

forms [3] for resources (see third sentence in Listing 1.7). Furthermore, the paraphras-

ing module replaces pronouns by surface forms (see last sentence in Listing 1.8, where

“It” is replaced by the surface form “Pettus”) if these pronouns are used very frequently

(in our implementation, more than 3 times).

Original: Edmund Pettus Bridge is a bridge. It crosses Alabama
River. Its type is Through arch bridge. It was declared a
National Historic Landmark on March 11, 2013.

Paraphrased: Edmund Pettus Bridge is a bridge. It crosses
Alabama River. Through arch bridge is its type. Pettus was
declared a National Historic Landmark on March 11, 2013.

Listing 1.8: Example Paraphasing at Summary Generation

4 Experiments and Results

We generated 13 datasets in English (B1-B13) and 4 datasets in Brazilian Portuguese

(P1-P4) to evaluate our approach.7 B1 to B10 were generated by running our five sub-

graph generation methods with and without paraphrasing. The number of documents

was set to 100 while (dmin, dmax) was set to (1, 5). B11 shows how BENGAL can

be used to evaluate the scalability of approaches. Here, we used the hybrid generation

strategy to generate 10,000 documents. B12 and B13 comprise 10 longer documents

each with dmin set to 90. For B12, we focused on generating a high number of entities

in the documents while B13 contains less entities but the same number of documents.

We compared B1-B13 with the 16 manually created gold standards for English

found in GERBIL. The comparison was carried out in two ways. First, we assessed

the features of the datasets. Then, we compared the micro F-measure of 11 NER and

EL frameworks on the manually and automatically generated datasets. We chose to use

these 11 frameworks because they are included in GERBIL. This inclusion ensures that

their interfaces are compatible and their results comparable. In addition, we assessed

the performance of multi-lingual NER and EL systems on the datasets P1-P4 to show

that BENGAL can be easily ported to languages other than English.

4.1 English Dataset features

The first aim of our evaluation was to quantify the variability of the datasets B1–B13

generated by BENGAL. To this end, we compared the distribution of the part of speech

(POS) tags of the BENGAL datasets with those of that of the 11 benchmark datasets.

An analysis of the Pearson correlation of these distributions revealed that the manually

7 The datasets are available at http://hobbitdata.informatik.uni-leipzig.de/bengal/bengal_datasets.zip.

http://hobbitdata.informatik.uni-leipzig.de/bengal/bengal_datasets.zip


created datasets (D1–D16) have a high correlation (0.88 on average) with a minimum

of 0.61 (D10–D16).8 The correlation of the POS tag distributions between BENGAL

datasets and a manually created dataset vary between 0.34 (D7–B11) and 0.89 (D14–

B9) with an average of 0.67. This shows that BENGAL datasets can be generated to

be similar to manually created datasets (D14–B9) as well as to be very different to

them (D7-B11). Hence, BENGAL can be used for testing sentence structures that are

not common in the current manually generated benchmarks.

We also studied the distribution of entities and tokens across the datasets in our

evaluation. Table 2 gives an overview of these distributions, whereE is the set of entities

in the corpus C. The distribution of values for the different features is very diverse

across the different manually created datasets (see Figure 1). This is mainly due to (1)

different ways to annotate entities and (2) the domains of the datasets (news, description

of entities, microposts). As shown in Table 2 and Figure 1, BENGAL can be easily

configured to generate a wide variety of datasets with similar quality and number of

documents to those of real datasets. This is mainly due to our approach being able to

generate benchmarks ranging from (1) benchmarks with sentences containing a large

number of entities without any filler terms (high entity density) to (2) benchmarks which

contain more information pertaining to entity types and literals (low entity density).

Fig. 1: Average entities and tokens (|T |) per document for each dataset.

4.2 Annotator performance

We used GERBIL [31] to evaluate the performance of 11 annotators on the manually

created as well as the BENGAL datasets.9 We evaluated the annotators within an A2KB

(annotation to knowledge base) experiment setting: Each document of the corpora was

8 Our complete results can be found at https://goo.gl/ZnSgYF
9 Complete results: http://w3id.org/gerbil/experiment?id=201603140002

https://goo.gl/ZnSgYF
http://w3id.org/gerbil/experiment?id=201603140002


Table 2: Excerpt of the features of the datasets used in our evaluation. The datasets B4,

B6, B8 and B10 are paraphrased versions of B3, B5, B7 resp. B9 and share similar

characteristics.

ID Name Doc. |C| Tokens |T | Entities |E| |T |/|C| |E|/|C| |E|/|T |

D1 ACE2004 57 21312 306 373.9 5.4 0.01

D2 AIDA/CoNLL-Complete 1393 245008 34929 175.9 25.1 0.14

D8 IITB 104 66531 18308 639.7 176.0 0.28

D11 Microposts2014-Train 2340 40684 3822 17.4 1.6 0.09

D15 OKE 2015 Task 1 evaluation 101 3064 664 30.3 6.6 0.22

B1 BENGAL Path 100 100 1202 362 12.02 3.6 0.30

B2 BENGAL Path Para 100 100 1250 362 12.5 3.6 0.29

B3 BENGAL Star 100 100 3039 880 30.39 8.8 0.29

B5 BENGAL Sym 100 100 2718 725 27.18 7.25 0.26

B9 BENGAL Summary 100 100 2033 637 20.33 6.37 0.31

B11 BENGAL Hybrid 10000 10000 556483 165254 55.6 16.5 0.30

B12 BENGAL Hybrid Long 10 10 9162 2417 241.7 916.2 0.26

B13 BENGAL Star Long 10 10 7369 316 31.6 736.9 0.04

sent to each annotator. The annotator had to find and link all entities to a reference KB

(here DBpedia). We measured both the performance of the NER and the EL steps.

Table 3 shows the micro F1-score of the different annotators on chosen datasets.

The manually created datasets showed diverse results. We analyzed the results further

by using the F1-scores of the annotators as features of the datasets. Based on these

feature vectors, we calculated the Pearson correlations between the datasets to iden-

tify datasets with similar characteristics.10 The Pearson correlations of the F-measures

achieved by the different annotators on the AIDA/CoNLL datasets (D2–D5) are very

high (0.95–1.00) while the correlation between the results on the Spotlight corpus (D7)

and N3-Reuters-128 (D13) is around -0.62. The results on D1 and D12–D15 have a

correlation to the AIDA/CoNLL results (D2–D5) that is higher than 0.5. In contrast,

the correlations of D7 and D8 to the AIDA/CoNLL datasets range from -0.54 to -0.36.

These correlations highlight the diversity of the manually created datasets and suggest

that creating an approach which emulates all datasets is non-trivial.

Like the correlations between the manually created datasets, the correlations be-

tween the results achieved on BENGAL datasets and hand-crafted datasets vary. The

results on BENGAL correlate most with the results on the OKE 2015 data. The highest

correlations were achieved with the OKE 2015 Task 1 dataset and range between 0.89

and 0.92. This suggests that our benchmark can emulate entity-centric benchmarks.

The correlation of BENGAL with OKE is however reduced to 0.82 in D13, suggesting

that BENGAL can be parametrized so as to diverge from such benchmarks. A similar

observation can be made for the correlation D12 and ACE2004, where the correlation

increased with the size of the documents in the benchmark. The correlation between the

10 All values can be found at https://tinyurl.com/kjre3rh.

https://tinyurl.com/kjre3rh


results across BENGAL datasets varies between 0.54 and 1, which further supports that

BENGAL can generate a wide range of diverse datasets.

Table 3: Excerpt of micro F1-scores of the annotators for the A2KB experiments on

chosen datasets. N/A means that the annotator stopped with an error.
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D1 0.26 0.13 0.18 0.21 0.14 0.13 N/A 0.19 0.25 0.36 0.27

D2 0.68 0.45 0.54 0.47 0.39 0.51 N/A 0.34 0.67 0.43 0.36

D8 0.14 0.13 0.26 0.21 0.15 0.10 N/A 0.07 0.14 0.07 0.23

D11 0.38 0.31 0.45 0.39 0.36 0.32 0.07 0.25 0.40 0.36 0.32

D15 0.57 0.41 0.46 0.47 0.28 0.55 0.33 0.27 0.53 0.53 0.47

B1 0.65 0.47 0.69 0.70 0.39 0.50 0.45 0.49 0.61 0.45 0.61

B2 0.67 0.49 0.68 0.70 0.38 0.54 0.41 0.47 0.61 0.44 0.62

B3 0.62 0.48 0.57 0.65 0.27 0.47 0.35 0.38 0.53 0.36 0.43

B5 0.42 0.40 0.42 0.44 0.17 0.34 0.29 0.30 0.35 0.24 0.33

B9 0.51 0.39 0.57 0.52 0.26 0.43 0.39 0.30 0.46 0.44 0.51

B11 0.68 0.68 0.69 0.74 0.24 0.49 0.41 0.47 0.65 0.44 0.51

B12 0.83 N/A 0.79 0.84 0.40 0.73 N/A 0.50 0.79 0.23 0.28

B13 0.33 0.38 0.33 0.40 0.11 0.17 N/A 0.22 0.45 0.44 0.50

4.3 Annotator Performance on Brazilian Portuguese

We implemented BENGAL for Brazilian Portuguese relying on a Portuguese RDF ver-

balizer [15] and ran four multilingual NER and EL ( MAG [16], DBpedia Spotlight, Ba-

belfy, and PBOH [9]) frameworks thereon. In addition, we evaluated the performance of

these annotators on subsets of HAREM11 which is a manually created dataset12. While

the extension of BENGAL to Portuguese is an important result in itself, our results also

provide new insights in the NER and EL performance of existing solutions. Ammongst

other, our results suggest that existing solutions are mostly biased towards a high preci-

sion but often achieve a lower recall on this language. For example, both Spotlight’s and

Babelfy’s recall remain below 0.6 in most cases while their precision goes up to 0.9.

This clearly results from the lack of training data for these resource-poor languages.

In future work, we intend to quantify this phenomenon across other resource-poor lan-

guages and create datasets to push the development of tools to process these languages.

11 http://www.linguateca.pt/HAREM/
12 All Portuguese results can be found at http://faturl.com/bengalpt.

http://faturl.com/bengalpt


4.4 Scalability

An advantage of BENGAL is that it can be used to generate large data corpora. There-

with, BENGAL allows the evaluation of existing systems for scalability while circum-

venting technologies such as caching, which an approach based on running through the

same small benchmark several times would be confronted with. To showcase this fea-

ture of BENGAL, we created the dataset B11 with 10,000 documents using the hybrid

graph generation. Every document has between 3 and 20 sentences.13 We separated the

dataset in 5 equal parts that we used for 5 phases of the benchmarking. During the dif-

ferent phases, 1, 2, 4, 8, 2000 documents/sec were sent to the annotation systems. All

experiments were carried out on a Docker Swarm cluster of 3 servers, each running

Ubuntu 12.4 on 2xE5-2630v3 8-Cores (2.4GHz) with 256GB RAM.

Table 4: Runtimes of different NER/EL tools on B11 in seconds.

Phase FOX Stanford Balie Illinois Open NLP Spotlight

1 524.0 1.4 1.9 1.5 1.3 1.3

2 1540.3 1.9 3.3 2.1 1.6 1.6

3 2825.0 5.6 7.8 4.4 4.8 3.7

4 5019.7 149.3 309.0 165.9 101.3 133.0

5 9105.2 700.2 1174.8 747.5 555.1 702.6

Table 4 shows the behavior of six different NER tools in our experiments, which

are the first large-scale runtime evaluation of NER tools. As expected, the processing

time per document increases with the number of documents sent per time unit, with the

best performing tools needing approximately 0.8s per document on average when under

a small load (Phase I) and up to 10,000s per document on average when faced with a

batch of 2000 documents. This long time was caused by documents having to wait in a

queue if they can not be processed directly due to missing free resources. This clearly

suggest that load balancing strategies for NER tools should be taken into consideration

in future works. Interestingly, all tools based on single algorithms (FOX is an ensemble

learning framework) perform in a comparable fashion. While the scaling of other tools

will clearly be different from our experimental results, this experiment confirms that

BENGAL paves the way for scalability benchmarking experiments for NER and EL.

5 Discussion and Conclusion

We presented and evaluated BENGAL, an approach for the automatic generation of NER

and EL benchmarks. Our results suggest that our approach can generate diverse bench-

marks with characteristics similar to those of a large proportion of existing benchmarks

in several languages. Importantly, the precautions taken to limit the reverse engineer-

ing of BENGAL datasets (which is an obvious weakness of the approach) do not affect

13 The complete experimental results can be found at https://goo.gl/9mnbwC.

https://goo.gl/9mnbwC


the performance of the tools as revealed by the correlation of tool results on original

documents and their paraphrases being strongly correlated (between 0.95 and 1). In ad-

dition, BENGAL allows the study of aspects of frameworks (such as scalability) which

are hard to analyze with current benchmarks. Overall, our results suggest that BENGAL

benchmarks can ease the development of NER and EL tools by providing developers

with insights into their performance at virtually no cost. Hence, BENGAL can improve

the push towards better NER and EL frameworks. In future work, we will extend the

ability of BENGAL to generate long and complex sentences and increase the amount of

adjectives and adverbs in the generated documents.
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30. Usbeck, R., Ngomo, A.C.N., Röder, M., Gerber, D., Coelho, S.A., Auer, S., Both, A.:

AGDISTIS-graph-based disambiguation of named entities using linked data. In: Interna-

tional Semantic Web Conference. Springer (2014)
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