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Abstract

We consider the estimation of the average treatment effect in the treated as a function of baseline

covariates, where there is a valid (conditional) instrument.

We describe two doubly robust (DR) estimators: a locally efficient g-estimator, and a targeted

minimum loss-based estimator (TMLE). These two DR estimators can be viewed as generalisations

of the two-stage least squares (TSLS) method to semi-parametric models that make weaker assump-

tions. We exploit recent theoretical results that extend to the g-estimator the use of data-adaptive

fits for the nuisance parameters.

A simulation study is used to compare standard TSLS with the two DR estimators’ finite-

sample performance, (1) when fitted using parametric nuisance models, and (2) using data-adaptive

nuisance fits, obtained from the Super Learner, an ensemble machine learning method.

Data-adaptive DR estimators have lower bias and improved coverage, when compared to incor-

rectly specified parametric DR estimators and TSLS. When the parametric model for the treatment

effect curve is correctly specified, the g-estimator outperforms all others, but when this model is

misspecified, TMLE performs best, while TSLS can result in large biases and zero coverage.

Finally, we illustrate the methods by reanalysing the COPERS (COping with persistent Pain,

Effectiveness Research in Self-management) trial to make inference about the causal effect of treat-

ment actually received, and the extent to which this is modified by depression at baseline.

1 Introduction

There has been an increased interest in estimating the causal effect of treatment actually received

(in addition to the intention-to-treat effect) in randomised controlled trials (RCTs) in the presence

of treatment non-adherence (Wiles et al., 2014; Dodd et al., 2012; Zhang et al., 2014). An additional

challenge is posed by appreciable treatment effect heterogeneity, which is often itself of interest.

This is a a common issue with psychological interventions (Dunn and Bentall, 2007).
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In this work, we consider methods for estimating the dependence of a causal average treatment

effect on baseline covariates in RCTs with non-adherence. This is motivated by the COPERS

(COping with persistent Pain, Effectiveness Research in Self-management) trial. The intervention

introduced cognitive behavioural therapy approaches designed to promote self-efficacy to manage

chronic pain, with the primary outcome being pain-related disability. The research team was

interested in the causal effect of the received treatment, and whether this effect was modified by

a number of baseline variables. Here, we will focus on one possible effect modifier: depression at

baseline, measured by the Hospital Anxiety and Depression Scale (HADS).

Instrumental variable (IV) methods are often used to estimate the effect of treatment received

in RCTs where randomised treatment is unconfounded by design, but treatment received is not.

Assuming that randomised treatment is a valid instrument, and under some additional assumptions

reviewed in Section 2, it is possible to identify the average treatment effect in the treated, conditional

on baseline covariates V . In addition to investigating effect modification by a subset of baseline

covariates V , it can in other settings be beneficial to use a larger set W of baseline covariates for

adjustment in the analysis: (i) if the IV assumptions are more plausible conditional on baseline

covariates W , or (ii) to increase the statistical efficiency of the estimators.

A relatively simple method of estimation for this is the so-called two stage least squares (TSLS).

In its simplest form, i.e. when V is null, the first stage predicts the exposure based on an ordinary

least squares regression of the exposure on the IV and baseline covariates W , while the second

stage consists of regressing the outcome on the predicted exposure from the first stage and baseline

covariates W , also via ordinary least squares regression. The coefficient corresponding to the

predicted exposure in this second model is the TSLS estimator of the desired causal treatment

effect. TSLS is robust to the misspecification of the first stage model (Robins, 2000; Wooldridge,

2010) but may be inefficient, especially when the treatment-exposure relationship is non-linear

(Vansteelandt and Didelez, 2018). However, as we shall see later, where V is non-null and the

treatment effect varies by baseline covariates, TSLS relies on the outcome model (the second stage)

being correctly specified to obtain consistent effect estimates.

Doubly robust (DR) estimators are appealing in such settings, as they estimate consistently

the parameter of interest if at least one of the models, for either the exposure or the outcome is

correctly specified. In the context of linear IV models with V null, Okui et al. (2012) proposed a

locally-efficient estimating equations DR estimator for the causal effect of treatment in the treated,

often called a g-estimator. It augments the TSLS estimating equation by adding a model for the

instrument given the baseline covariates. This estimator is DR in the sense that it needs to specify

correctly either the outcome model or the instrument model. This estimator was generalised to

settings where V is non-null by Vansteelandt and Didelez (2018) and shown to be locally efficient.

Recently, Tóth and van der Laan (2016) proposed a targeted maximum likelihood estimator

(TMLE) for the treatment effect in a linear IV model. TMLE is a general approach for causal

inference problems yielding semi-parametric substitution estimators that are doubly robust (van der

Laan and Rose, 2011).

Although DR estimators offer partial protection in principle against model misspecification,
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concerns remain over their performance in practice, when all models are likely to be misspecified

(Kang et al., 2007). To further avoid problems of model misspecification, TMLE is usually coupled

with machine learning fits of nuisance models, in particular the Super Learner, a cross-validation

based estimator selection approach (van der Laan et al., 2007). TMLE and other DR estimators

possess a particular orthogonality property that leads to greater suitability with machine learning

fits. Estimators based on a single nuisance model can perform poorly when combined with machine

learning fits, since the estimator inherits the slow convergence (and hence high finite sample bias)

and non-regularity of the machine learning fits themselves, with the latter property making valid

statistical inferences extremely complex to obtain, as even the bootstrap is invalid (Benkeser et al.,

2017). Some DR estimators, such as TMLE, on the other hand, when combined with machine

learning fits, have faster convergence and make (asymptotic) analytic statistical inference tractable

via the sampling variance of the corresponding influence functions, under conditions on the con-

vergence of the machine learning algorithms used, which, although not guaranteed to hold by any

means, are considerably weaker than what would be required to achieve the same with non-DR

estimators (Farrell, 2015).

Chernozhukov et al. (2016) further develop these ideas, and suggest the use of machine learning

for estimating the nuisance parameters for a wide class of estimating equation DR estimators, to

which the g-estimator presented by Vansteelandt and Didelez (2018) belongs.

We implement these two IV estimators, g-estimation and TMLE, with and without machine

learning fits, and compare their performance with that of standard TSLS, in terms of mean bias,

root mean squared error (RMSE) and confidence interval (CI) coverage using a simulation study.

We also contrast the methods in the case study.

This paper is organised as follows. In the next section, we define the causal parameters of

interest and the assumptions for the IV methods. In Section 3.1 we review the standard TSLS,

while in Section 3.2, we introduce the g-estimator proposed by Vansteelandt and Didelez (2018).

Section 3.3 briefly justifies the use of so-called double machine learning methods (data-adaptive DR

estimators), and introduces the Super Learner. The TMLE estimator proposed by Tóth and van der

Laan (2016) is described in Section 3.4. In Section 4 we present a simulation study, comparing the

performance of these estimators. The proposed methods are then applied to the COPERS RCT in

Section 5. We conclude with a discussion.

2 Linear instrumental variables models

Let W be a set of baseline variables, Z be the randomised treatment indicator, A be the exposure

of interest, the actual treatment received, presumed to be binary. Let Y be the continuous outcome

of interest, and U be the set of all unobserved common causes of A and Y . For simplicity, but

without loss of generality, assume that we are only interested in effect modification by a single

baseline variable V ∈W .

We use a subscript 0 to denote the true probability distributions, models and parameters. Let

the vector of the observed data for the i-th individual be Oi = {Wi, Zi, Ai, Yi} ∼ P0, where P0 is
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Figure 1: DAG depicting a valid conditional instrument Z for exposure A in the presence of possible
effect modifiers W and unobserved confounders U , when the outcome is Y .

W

Z A

U

Y

the true underlying distribution from which an independent identically distributed random sample

of size n is drawn. The causal relationships between these variables are encoded by the directed

acyclic graph (DAG) shown in Figure 1.

Let the counterfactual or potential outcome Y (a) be the outcome that would occur if A were

set to a ∈ {0, 1}. As usual, we assume that no interference and counterfactual consistency hold

(Rubin, 1978; VanderWeele, 2009). Following Abadie (2003); Vansteelandt and Didelez (2018), we

write the conditional version of the IV assumptions (Angrist et al., 1996), as follows:

(i) Conditional unconfoundedness: Z is conditionally independent of the unmeasured con-

founders, conditional on measured covariates W , i.e. Z ⊥⊥ U |W .

(ii) Exclusion restriction: Conditionally on W , A and the confounder U , the instrument Z and

the response Y are independent, i.e. Z ⊥⊥ Y |W,U,A,

(iii) Instrument relevance: Also referred to as first stage assumption: Z is associated with A

conditional on W , i.e. Z 6⊥⊥ A|W .

A special case is the simple RCT, where randomised treatment is often assumed to be an

unconditional valid IV.

In addition, we assume the following conditional mean model for the outcome:

E[Y |A,W,Z,U ] = ω0(W,U) +Am0(W ), (1)

where ω0(W,U) and m0(W ) are unknown functions and m0(W ) represents the causal treatment

effect given covariates W .

Now by the technical assumption of counterfactual consistency, the conditional mean model (1),

together with the conditional IV assumptions, implies (Vansteelandt and Didelez, 2018),

E[Y |A,W,Z] = E[Y (0)|A,W,Z] +Am0(W ). (2)

While this model can be motivated from model (1), it is often used explicitly as the departure point

for causal treatment effect estimation. In fact, Vansteelandt and Didelez (2018) show that these

two IV models imply the same restrictions on the observed data distribution. Let M denote the

statistical model for P0 implied by the IV assumptions and either model (1) or (2). This is often

called the linear IV model. Note that in model M, the treatment effect in the treated does not

depend on Z. This is known as the ‘no effect modification’ by Z assumption (Hernán and Robins,
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2006).

The causal effect of interest, the average treatment effect in the treated, conditional on V ∈W

taking the value v, can be written as a function of v as

ATT(v) = E[Y (1)− Y (0) | A = 1, V = v] = E[m0(W )|A = 1, V = v]. (3)

Since ATT(v) is the conditional expectation of m0(W ) given A = 1 and V = v, we will first focus

on estimating m0(W ).

Rearranging equation (2) and marginalising over A, we can see that

E[Y −Am0(W )|Z,W ] = E[Y (0)|Z,W ]

= E[Y (0)|W ],

the last equality holding by the conditional unconfoundedness assumption. ModelM thus implies

E[Y |Z,W ] = my0(W ) +m0(W )E[A|Z,W ], (4)

where my0(W ) = E[ω0(W,U)|W ] or my0(W ) = E[Y (0)|W ], depending on whether model (1) or

(2) is assumed. Therefore, for a binary IV, we have

E[Y |Z = 1,W ]− E[Y |Z = 0,W ] = m0(W ) (E[A|Z = 1,W ]− E[A|Z = 0,W ])

showing that underM and the IV assumptions, m0(W ) is identified by

m0(W ) =
E[Y | Z = 1,W ]− E[Y | Z = 0,W ]

E[A | Z = 1,W ]− E[A | Z = 0,W ]
. (5)

Estimation of the conditional expectations in equation (5) would typically involve specifying

models for the mean exposure E[A|Z,W ] and the mean outcome E[Y |Z,W ]. Let µ0(Z,W ) de-

note E[Y |Z,W ] under P0, which according to equation (4) is a function of my0(W ), m0(W ) and

E[A|Z,W ]. We denote by Ay the model for my0(W ), Am the model for m0(W ), and Aa the model

for E[A|Z,W ].

3 Doubly robust estimation for the linear instrumental vari-

able model

The methods presented below make different assumptions about the treatment effect model. As we

shall see in Section 3.1 and 3.2, TSLS and the g-estimator assume m0(W ) is a known parametric

function of V , smooth in ψ, with the true ψ0 an unknown parameter of finite dimension d.

To illustrate the methods, we consider throughout a situation where interest lies in the main

effect modification by a single variable V ∈ W , i.e. E[m0(W )|A = 1, V ] = ψc + ψvV . Under this

working model for the effect modification by V , the parameter of interest is ψ = (ψc, ψv), where ψc
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represents the main causal treatment effect, and ψv is the effect modification by V . In this case,

d = 2.

The TSLS and g-estimation require the specification of a parametric model for m0(W ), so in

what follows, these methods presume that this working model is the true model, i.e m0(W ) takes

the parametric form

m(W,ψ) = ψc + ψvV. (6)

In contrast, the TMLE method does not assume a parametric model for m0(W ), but instead

obtains an initial estimate for m0(W ) using machine learning, which is then updated according

to the TMLE algorithm (see details in Section 3.5). This updated estimate is then projected

onto a user-supplied parametric working model for the treatment effect curve on V , mψ(V ;ψ).

Importantly, the working parametric model is not assumed to be the true model for m0(W ). Using

the working model mψ(V ;ψ) = ψc + ψvV , TMLE also estimates ψ = (ψc, ψv).

3.1 TSLS

Estimation of the expectations in equation (5) is often done via an approach known as two-stage

least squares (TSLS). The first stage fits a linear treatment selection model, that is a model for A

conditional on the instrument and the baseline covariates of interest, and then, in a second stage,

a regression model of the outcome on the predicted treatment received and baseline covariates is

fitted. We write

E[A|Z,W ] = ma0(Z,W ) (7)

E[Y |Z,W ] = my0(W ) +m0(W )ma0(Z,W ), (8)

In principle, there are many parametric choices for the second stage models, Ay and Am. For TSLS

to be consistent, the first stage model Aa must be the parametric linear regression implied by the

second stage, that is, it must include all the covariates and interactions that appear in the second

stage model.

For example, if we assume that Am : m(W ;ψ) = ψc +ψvV , and Ay : my(W ;β) = β>W , where

abusing notation we assume the vector of ones is the first column of W , then the first-stage would

involve two equations, as follows

E[A|Z,W ] = αzZ + αzvZV + αvV +
∑

Wi∈W\V

αwiWi

E[AV |Z,W ] = λzZ + λzvZV + λvV +
∑

Wi∈W\V

λwiWi (9)

where again, W includes 1 to allow for an intercept. Because estimation of these two first-stage

models is done separately without acknowledging that the model for A should imply the model for

AZ, the resulting TSLS estimator may be inefficient (Vansteelandt and Didelez, 2018).

Vansteelandt and Didelez (2018) show that the second stage of the TSLS, equation (8), can be

6



written as the solution to an estimating equation

0 =

n∑
i=1

ey(Zi,Wi) {Yi −my0(Wi;β)−m0(Wi;ψ)ma0(Zi,Wi;α0)} , (10)

with ey(Zi,Wi) any conformable index vector function of dimension dim(β) + d. The estimators β̂

and ψ̂ obtained solving equation (10), after substituting α̂ for α0 (the estimator from the first stage),

are consistent asymptotically normal (CAN) , under Ay ∩ Am , i.e. even when Aa is misspecified

(Robins, 2000; Wooldridge, 2010). Moreover, in the specific settings where the treatment effect

model Am is linear in the covariates and the instrument is independent of W , TSLS is also robust

to misspecification of Ay. We refer the interested reader to Vansteelandt and Didelez (2018),

Appendix B Proposition 5, for the proof.

This means that for estimators which are DR in the more general settings, with either a non-

linear Am or where Z depends on W , methods beyond TSLS need to be considered.

3.2 G-estimation

Okui et al. (2012) propose an estimator for ψ = (ψc, ψv), constructed by augmenting the estimating

equation (10), by multiplying the summand by Zi − E[Z|Wi]. The model Az for the conditional

distribution of the IV E[Z|W ] := P0(Z = 1|W ) is often called the instrument propensity score, and

it is assumed to be a known mass function g0(W ; γ), smooth on a finite dimensional parameter γ.

More specifically, the IV g-estimator of the causal parameter ψ0 is obtained as a solution to the

following estimating equation (Okui et al., 2012)

0 =
∑
n

(e(Zi,Wi; γ0)− E[e(Zi,Wi; γ0)|Wi]) {Yi −my0(Wi;β0)−m0(Wi;ψ)Ai} , (11)

where e(Z,W ) is any conformable vector function (i.e. of the appropriate dimension).

This can be made (locally) efficient by choosing (Vansteelandt and Didelez, 2018)

e(Z,W ; γ0) = σ−20 (Z,W )

 1

V

[ma0(Z,W ;α0)−
Eg(W ;γ0)[σ

−2
0 (Z,W )ma0(Z,W ;α0)|W ]

Eg(W ;γ0)[σ
−2
0 (Z,W )|W ]

]
(12)

and σ2
0(Z,W ) = Var{Y −Am(W ;ψ)|Z,W}.

This estimator (denoted by IV-g) can be made feasible by replacing α0, β0 and γ0 by their corre-

sponding consistent estimators α̂, β̂ and γ̂, and setting σ2
0 equal to 1 (as it is just a proportionality

constant). It has been shown to be CAN under Am ∩ {Az ∪ Ay}, and hence consistent whenever

the model for m0(W ) is correctly specified, and either the instrument propensity score or outcome

model are correctly specified (Okui et al., 2012). The addition of the instrument propensity score

model is particularly helpful when the dependence between Z and the baseline covariates is known,

as would be the case in a randomised trial, thus guaranteeing robustness against misspecification

of the outcome model.

Moreover, the IV-g estimator is efficient when Ay, Aa and Az are correctly specified (Vanstee-
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landt and Didelez, 2018), a property referred to as ‘locally efficiency’.

Since the IV g-estimator is CAN, its asymptotic variance is the variance of its influence function,

denoted D(ψ) (Newey, 1990), i.e. Var(ψ) = E[D(ψ)>D(ψ)]. D(ψ) can be written as

Di(ψ) = M(Zi,Wi, Ai)
−1K(Zi,Wi)

 1

Vi

 {Yi −my(Wi;β)} −

 ψc

ψv

 (13)

with

K(Z,W ) = ma0(Z,W ;α0)− Eg(W ;γ0)[ma0(Z,W ;α0)|W ] (14)

and

M(Z,W,A) = AK(Z,W )

 1 V

V V 2

 (15)

Finally, the variance can be estimated by the sample variance of the estimated influence function,

obtained by replacing α0, β0 and γ0 by their corresponding consistent estimators α̂, β̂ and γ̂,

V̂(ψ̂) = n−1Varn(D̂(ψ̂)),

where we have used the subscript n to denote the sample variance on a sample of size n.

This variance estimator ignores the nuisance parameter estimation. Robust standard errors can

be obtained via the bootstrap or a sandwich estimator.

3.3 Data-adaptive estimation for the IV-g estimator

The IV-g estimator presented thus far is restricted to using parametric working models for the

nuisance parameters. In this section, we will relax this restriction by using instead machine learning

methods to obtain data-adaptive estimates of the nuisance functionals and plugging these fits into

the estimating equation (11). Unlike fixed parametric models where the functional form is chosen

by the analyst, these methods use an algorithm, often called a learner, to find the best fitting

estimator. In fact, we need not restrict ourselves to a single learner, instead we use meta-learning

or ensemble approaches, in particular the Super Learner (SL) (van der Laan et al., 2007). The

SL uses cross validation to find the optimal weighted convex combination of multiple candidate

estimators specified by the user in the SL library. The library can include parametric and non-

parametric estimators. The SL has been shown to perform asymptotically as well as the best learner

included in its library, so that adding additional algorithms improves the performance of the SL.

The finite sample performance of the SL has been demonstrated extensively in simulations (van der

Laan et al., 2007; Porter et al., 2011; Pirracchio et al., 2015).

Machine learning estimation approaches for DR estimators for the IV model have been studied

recently. Chernozhukov et al. (2016) give sufficient conditions to guarantee that using data-adaptive

fits for the nuisance functionals in a DR estimator results in valid inferences. Briefly, the score

function S of the DR estimator needs to be Neyman orthogonal to the nuisance parameters i.e.

the path-wise (or Gateaux) derivative of the score function exists and vanishes at the true value of
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the nuisance parameters. Then, as long as the data-adaptive estimators for all nuisance functionals

converge to their respective truths, and the product of their convergence rates is faster than n−
1
2 ,

the DR estimator will be CAN. Convergence rates for these data-adaptive estimators depend on

the smoothness and number of covariates included (Györfi et al., 2006).

Under sufficient regularity conditions, and if Aa is estimated using parametric models, the

arguments used in Chernozhukov et al. (2016) Section 4.2 can be applied to show that the IV-g

estimator is still CAN when using data-adaptive fits for Ay and Az as long as:

‖ĝ(W )− g0(W )‖P0,2
×
(
‖m̂a(W )−ma0(W )‖P0,2

+ ‖m̂y(W )−my0(W )‖P0,2

)
< O(n−

1
2 ), (16)

where ‖◦‖P0,2
denotes the L2 norm defined by P0. We refer the interested reader to Chernozhukov

et al. (2016) for the technical details.

The IV-g estimator implemented here estimates Am and Ay jointly using parametric models

that include only main terms for both, but uses data-adaptive fits for Aa and the instrument

propensity score. Thus the rates in condition (16) are not quite sufficient. We conjecture that in

addition we need that ‖m̂a(Z,W )−ma0(Z,W )‖P0,2
< O(n−

1
4 ).

The use of data-adaptive fits for nuisance functionals has been extensively exploited within the

TMLE literature which we review next.

3.4 Targeted minimum loss estimation (TMLE)

Targeted minimum loss estimation (TMLE) is a general approach for causal inference, which has

been adopted on a wide range of causal problem (Gruber and van der Laan, 2010; van der Laan

and Rose, 2011; Zheng and van der Laan, 2012; van der Laan and Gruber, 2012; Petersen et al.,

2014).

TMLE is a semi-parametric, double-robust estimation approach, that combines estimates of the

nuisance functional and outcome mechanism in a way that guarantees a consistent estimator of

the target parameter if either the nuisance parameters or the outcome mechanism are estimated

consistently. If both are estimated consistently, TMLE is efficient (van der Laan and Rose, 2011).

These initial estimates can be obtained by specifying parametric models or, most commonly via

machine learning, in particular the Super Learner (van der Laan et al., 2007). The use of data-

adaptive estimates reduces bias, and improves the chances of achieving efficiency, and accurate

statistical inference.

TMLE estimators for the linear IV model have been recently proposed by Tóth and van der

Laan (2016). We describe below in more detail the linear non-iterative TMLE, which we denote

by IV-TMLE.

3.5 IV-TMLE

Let Ψ : P 7→ R2 be the target parameter mapping, from the space of all possible models for the true

distribution of the data P0 to R2, defined by the treatment effect modification working parametric
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model mψ = ψc + ψvV , Ψ(P0) = (ψc, ψv) = ψ0 as the solution to

E

 1

V

 {m0(W )− (ψc + ψvV )}

 = 0.

We note that Ψ only depends on P0 through m0 and the distribution of the covariates PW,0. We

denote this relevant part by Q0 = Q0(P0) = (m0, QW ), with QW = PW,0, while underM, m0(W )

depends on µ0(Z,W ) and ma0(Z,W ), so that Q0 = (µ0(Z,W ),ma0(Z,W ), QW ).

The TMLE algorithm starts by obtaining initial estimates of µ0(Z,W ), ma0(Z,W ), and the

instrument propensity score g0(W ). We denote these initial estimates by writing a hat over the

object.

The next step in the construction of a TMLE requires the specification of a loss function L(P ),

such that E[L(P0)] = minP∈PP0(L(P )), i.e. the expectation of the loss function is minimised at

the true probability distribution. For the linear-fluctuation IV-TMLE, we use the square error

loss function L(P ) = E[D∗(Ψ(P ))>D∗(Ψ(P ))], where D∗(Ψ(P0)) is the efficient influence function

(EIF) under the linear IV modelM and the working model mψ = ψc +ψvV , which can be written

as (see Tóth and van der Laan (2016) for the details):

D∗(Ψ(P0)) = c ζ−2(W ){ma0(Z,W )− E0(ma0(Z,W )|W )}{Y −ma0(Z,W )m0(W )−my0(W )}

− c ζ−2{(ma0(Z,W )− E0[ma0(Z,W )|W ])m0(W )} (A−ma0(Z,W )) +DW (QW ),

where DW (QW ) = c {m0(W )−mψ(V )} and

c = Var(V )−1

E[V 2]− E[V ]V

V − E[V ]

 .

The term ζ2(W ) is associated with instrument strength, and can be written as

ζ2(W ) = Varg0(W )[ma0(Z,W )|W ] = ma0(1,W )2Var(Z|W ) = ma0(1,W )2g0(W )(1− g0(W )). (17)

Now, we proceed to the targeting step, using a linear fluctuating model that updates the initial

fit for m0. For this, initial fits for my(W ), ma(W ) and µ0(Z,W ) are used in model (4) to define

the initial estimate for m0, m̂(W ). The linear fluctuating model is now:

m∗(ε)(W ) = m̂(W ) + h(W )T ε, (18)

where the so-called clever covariate is defined as

h(W ) = Var(V )−1

E[V 2]− E[V ]V

V − E[V ]

 ζ−2. (19)
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With these choices for L and the fluctuating model, ε can be found by solving the EIF equation,

1

n

n∑
i=1

D∗{m∗(ε)(W )} = 0.

This is equivalent to solving for ε a system of d linear equations:

1

n

n∑
i=1

ĥ(W ){m̂a(Z,W )−Eĝ(W )[m̂a(Z,W )|W ]}
{
Y −A

(
m̂(W ) + ĥ(W )>ε

)
− m̂y(W )

}
= 0, (20)

where ĥ(W ) is obtained by plugging in the initial fits m̂a(Z,W ) and ĝ(W ) into equation (19). The

TMLE estimator of m0(W ), denoted by m∗, is now obtained by substituting ε∗, the solution to

equation (20) into equation (18). Finally, we project m∗ onto the working model mψ by OLS,

obtaining (ψ∗c , ψ
∗
v), the TMLE estimator of the causal parameter of interest.

Tóth and van der Laan (2016) showed that this approach yields an estimator which is consistent

when (i) the initial estimators of ma0 and g0(W ) are consistent, (ii) the initial estimators of m0

and g0(W ) are consistent, or (iii) the initial estimators of m0 and my0 are consistent.

3.6 Comparison of the two estimators

Recall that the IV-g estimator assumes a parametric model for m0(W ), e.g. m0(W ;ψ) = ψc+ψvV

(equation (6)), while the IV-TMLE obtains a first estimate of m0(W ) which can include all other

covariates in W not only V , and then after updating this through the TMLE procedure projects

the targeted estimator onto a user-supplied working parametric model, e.g. mψ(W ) = m(W ;ψ) =

ψc + ψvV , which is not assumed to be correctly specified.

The IV-g estimator gains efficiency from assuming equation (6) when equation (6) holds. Sup-

pose however that the Am model (6) is misspecified (e.g. that the treatment effect curve depends

on more covariates, not just V , or that the relationship is not linear). Interestingly, the IV-g es-

timator will continue to be a consistent estimator of the parameters ψc, ψv, whenever the mean

exposure model ma0(Z,W ) is correctly specified and Cov({ma0(Z,W )− E(ma0(Z,W )|W )} , A|W )

is constant in W . This is because the IV-g estimator solves

E [{ma0(Z,W )− E(ma0(Z,W )|W )} {Y −my0(W )−Am(W ;ψ)}] = 0 (21)

This is equivalent to

0 = E [{ma0(Z,W )− E(ma0(Z,W )|W )} {Y −my0(W )−Am(W ;ψ)}]

= E [{ma0(Z,W )− E(ma0(Z,W )|W )} {my0(W ) +Am0(W )−my0(W )−Am(W ;ψ)}]

= E [{ma0(Z,W )− E(ma0(Z,W )|W )} {A (m0(W )−m(W ;ψ))}]

so that,

m(W ; ψ̃) = plim m(W ; ψ̂) =
E [(ma0(Z,W )− E(ma0(Z,W )|W )Am0(W )]

E [(ma0(Z,W )− E(ma0(Z,W )|W )A]
(22)

11



This converges to E[m0(W )] if Cov({ma0(Z,W )− E(ma0(Z,W )|W )} , A|W ) is constant, and con-

tinues to hold in large samples, when ma0(Z,W ) ,my0(W ) and the instrument propensity score

g0(W ) are replaced by their consistent estimators respectively.

If however Cov({ma0(Z,W )− E(ma0(Z,W )|W )} , A|W ) is not constant in W , then the IV-g

estimator under a misspecified Am converges to a weighted average of the true estimand of interest.

3.6.1 Weak instrument instability for IV-TMLE

The other difference between these estimators is the reliance (or not) on the exposure model.

In particular, the clever covariate h(W ) used to define the IV-TMLE estimator depends on the

inverse of Varg0(W ) (ma0(Z,W )|W ). This captures the strength of the instrument in predicting

the exposure given W , and the variance of the IV-TMLE estimators become very large when

this is very small. To stabilise the estimators, we choose the maximum of the estimated value of

Varĝ(W ) (m̂a(Z,W )|W ), and 0.025 when constructing the clever covariate for a given data set. Such

corrections are not necessary for the IV-g estimator.

4 Simulation Study

We perform a small factorial simulation study to assess the finite sample performance of the alter-

native methods, under the different combinations of Ay, Aa or Am being in turn correctly specified

or not, while the instrument model is always correct. We write 1(Ak 6= mk0) as an indicator

function, for scenarios where the assumed model indexed by k is misspecified.

We generate the RCT data, with two-sided non-adherence, i.e. both randomly allocated groups

have a non-zero probability of receiving the opposite treatment. We begin by generating five inde-

pendent standard normal variables W1, . . . ,W4 and V . These are the observed baseline covariates,

of which one is the effect modifier V . We also generate a standard normal unobserved confounder U .

We generate randomised treatment also independently of the other variables, Z ∼ Bern(0.6), and

then simulate the binary treatment received A as a function the baseline variables, the unobserved

confounder, and the instrument:

logit(Pr(A = 1|Z,W,U)) = (1.5Z+0.03V+0.01W1+0.01W2+0.01W3+0.01W4−1(Aa 6= ma0)(5ZW1+0.03U).

Notice that we are generating A in such a way that the condition necessary for the IV-g estimator

to converge to the parameter of interest when Am is wrong is no longer satisfied.

12



The continuous outcome Y is then simulated as follows:

my(W ) = (1− 1(Ay 6= my0))(0.5 + 0.5V + 0.01W1 + 0.01W2 + 0.01W3 + 0.01W4)

+ 1(Ay 6= my0)exp{0.05 + 0.05V + 0.001W1 + 0.001W2 + 0.001W3 + 0.001W4

− 0.2V (W1 +W2 +W3 +W4)}

m(W ) = 0.5 + 0.5V + 1(Am 6= m0)3(W1 +W2 +W3 +W4)

Y ∼ N(my(W ) +m(W )A+ U, 1),

We simulate RCTs with two different sample sizes, n = 500 and n = 10, 000, and generate 1,000

replicates for each scenario. We perform analyses with TSLS, IV-g and IV-TMLE. The latter two

are implemented with and without the use of SL.

Parametric TSLS, IV-g and TMLE are fitted using the main terms only. For TSLS the first stage

are as per equation (9), while for IV-g and TMLE, these are logistic models. The IV propensity score

is also a logistic model. The SEs of the parametric IV-g and TMLE are obtained by bootstrapping

(percentile 95% CI using 1999 bootstrap samples).

For SL fits in IV-g, since A and Z are binary, we use a library including glm (generalised

linear models), step (stepwise model selection using AIC), svm (support vector machines), gam

(generalised additive models). For the glm, step and gam learners, linear and second-order terms

are used.

For the IV-TMLE, we use the same library as above for g(W ) and ma(W ), while for E[Y |Z,W ]

and my(W ), we include only glm, step, svm and polymars (multivariate adaptive polynomial spline

regression), in order to preserve the linear structure of model (4).

The methods described in Chernozhukov et al. (2016) require the use of sample splitting in

order to guarantee valid inference when using machine learning for fitting the nuisance models.

We do not perform such sample splitting for the IV-g or the TMLE estimators, other than that

already being used for the cross validation embedded in the Super Learner. A limitation with this

pragmatic approach, in that the variance estimator based on the (E)IF ignores the fact that these

factors are not independent from each other, as we have used the data to both obtain the fits

and then evaluate the (E)IF. van der Laan and Luedtke (2015) suggest using cross-validation. For

example, if using 10-fold cross-validation we can estimate the variance,

V̂ =
1

10

10∑
k=1

1

np

∑
i∈N(k)

D(ψ)>D(ψ)(Oi),

where p is the proportion of observations in each validation sample N(k), and D(ψ) is the IF (or

the EIF) of the parameter of interest.

We compute the mean bias of the estimates, coverage of 95% confidence intervals (CI), and root

mean square error (RMSE).
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4.1 Results from the simulation

Figure 2 shows the mean bias (top) and CI coverage rate (bottom) corresponding to scenarios with

sample size of n = 500. The corresponding results when n = 10, 000 appear in Figure 3.

As expected, when all models are correctly specified, all methods show close to zero bias for both

of the target parameters, already with small (n = 500) sample size, with coverage levels close to the

nominal (between 92.5 and 97.5%) for TSLS and IV-g. While the bootstrap CI corresponding to

parametric TMLE resulted in over-coverage (99%), the SL IV-TMLE shows some under-coverage,

which improves at large (n = 10, 000) sample. This is a consequence of the variance estimator used

here ignoring the fact that the data have been used to both obtain the fits and then evaluate the

EIF (instead of using sample splitting). The RMSE were indistinguishable across the methods.

This pattern held both when the methods were implemented using parametric models, and when

with the SL.

TSLS performs well when Am is correctly specified regardless of the other models, but performs

very poorly when Aa and Am are misspecified (bias 200 times the size of the effect and 0 coverage).

Under those misspecified scenarios when the double robust properties were expected to provide

protection, these small levels of bias, and good coverage has generally held. Adding a misspecified

treatment effect model Am has doubled RMSE across the methods, but has not affected bias or

coverage, and this held true when a misspecified Ay model was used, as long as the exposure model

Aa was still correctly specified. However, when the exposure model was misspecified (the last two

columns of the Figures), the estimators started showing sensitivity. When the treatment effect

model Am and the exposure model Aa were both misspecified, all of the parametric estimators

considered showed high levels of bias. When implementing the IV-g and IV-TMLE methods using

the Super Learner, the bias and coverage, and consequently the RMSE, returned to the levels

reported under correct specification. An exception is the coverage for the IV-g estimator of ψc,

which remained very low (<50%). This is mostly due to the substantial remaining bias, stemming

from the fact that the estimator converges to a weighted average of the true m0(W ) when the

parametric Am is mis-specified (equation (22)). When Ay is also misspecified, we observe essentially

the same levels of bias, RMSE and coverage, as under the previously described scenario. Across

the scenarios, the effect of sample size was not significant in the reported bias, RMSE and coverage

levels, except for the scenarios when Am and Aa were misspecified. Here, the IV-g estimator with

parametric implementation reported extremely high bias, RMSE and Monte Carlo errors. With

large sample size, the bias was smaller, although still substantial, and the Monte Carlo errors

reduced to close to zero.

We summarise the results of the simulation study by comparing estimated RMSEs, Figure 4.

Under n = 10, 000, we conclude that both DR estimators have reported performance according

to their theoretical double-robust properties, and the TSLS method showed similar performance

to the parametric implementation of the IV-g method. Both DR methods have benefitted from

the data-adaptive estimation of the nuisance parameters: the performance of the estimators have

not been harmed in the correctly specified scenarios, and RMSE has been greatly reduced in the
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Figure 2: Performance (Bias and Coverage) of TSLS, TMLE and IV-g estimators, when the sample
size is (n = 500). Scenarios with correct or misspecified Aa and Ay vary by column. Settings where
the parametric Am is correct are plotted in blue, while Am mis-specified is plotted in red. The hollow
shapes correspond to estimates obtained with parametric models, while the solid shapes correspond
to SL. The true values of (ψc, ψv) are (0.5, 0.5), the bias is presented with its Monte Carlo error CIs.
Dotted line in the bias plot is the 0 line, the dashed lines in the coverage plot are the 92.5 and 97.5 %
coverage rates
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Figure 3: Performance (Bias and Coverage) of TSLS, TMLE and IV-g estimators, when the sample
size is (n = 10, 000). Scenarios with correct or misspecified Aa and Ay vary by column. Settings where
the parametric Am is correct are plotted in blue, while Am mis-specified is plotted in red. The hollow
shapes correspond to estimates obtained with parametric models, while the solid shapes correspond
to SL. The true values of (ψc, ψv) are (0.5, 0.5), the bias is presented with its Monte Carlo error CIs.
Dotted line in the bias plot is the 0 line, the dashed lines in the coverage plot are the 92.5 and 97.5 %
coverage rates.
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Figure 4: RMSE of TSLS, TMLE and IV-g estimators, when the sample size is (a) n = 500 (top) and (b) n = 10, 000.
Scenarios with correct or misspecified Aa and Ay vary by column. Settings where the parametric Am is correct are
plotted in blue, while Am mis-specified is plotted in red. The hollow shapes correspond to estimates obtained with
parametric models, while the solid shapes correspond to SL.
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scenarios when the DR properties did not provide protection against misspecification. When the

assumed model Am is correctly specified, IV-g outperforms all other methods, with the smallest

RMSE. In contrast, when Am is misspecified, IV-TMLE performs best.

5 Motivating example: the COPERS trial

We now illustrate the methods in practice by applying each in turn to the motivating example.

The COping with persistent Pain, Effectiveness Research in Self-management trial (COPERS) was

a randomised controlled trial across 27 general practices and community services in the UK. It

recruited 703 adults with musculoskeletal pain of at least 3 months duration, and randomised 403

participants to the active intervention and a further 300 to the control arm. The mean age of

participants was 59.9 years, with 81% white, 67% female, 23% employed, 85% with pain for at least

3 years, and 23% on strong opioids.

Intervention participants were offered 24 sessions introducing them to cognitive behavioural

(CB) approaches designed to promote self-management of chronic back pain. The sessions were

delivered over three days within the same week with a follow-up session 2 weeks later. At the end

of the 3-day course participants received a relaxation CD and self-help booklet. Controls received

usual care and the same relaxation CD and self-help booklet.

The primary outcome was pain-related disability at 12 months, using the Chronic Pain Grade

(CPG) disability sub-scale. This is a continuous measure on a scale from 0 to 100, with higher

scores indicating worse pain-related disability.

In the active treatment, only 179 (45%) attended all 24 sessions, and 322 (86.1%) received at

least one session. The control arm participants had no access to the active intervention sessions.

Participants and group facilitators were not masked to the study arm they belonged to.

The intention-to-treat analysis found no evidence that the COPERS intervention had an ef-

fect on improving pain-related disability at 12 months in people with long-established, chronic

musculoskeletal pain (−1.0, 95% CI −4.8 to 2.7).

Poor attendance to the sessions was anticipated, and so obtaining causal treatment effect es-

timates was a pre-defined objective of the study. The original report included a causal treatment

effect analysis using TSLS, using a binary indicator for treatment received (attending at least half

of the sessions), and assuming that randomisation was a valid instrument for treatment received

(Taylor et al., 2016). The IV model adjusted for the following baseline covariates: site of recruit-

ment, age, gender and HADS score and the CPG score at baseline. This IV analysis found no

evidence of a treatment effect on CPG at 12 months amongst the compliers ( −1.0, 95% CI −5.9

to 3.9).

The COPERS study also performed a number of subgroup analyses to investigate treatment

effect heterogeneity, but did not carry out IV analysis with effect modification. However, treatment

heterogeneity in the causal effect is still of interest.

For our re-analyses, the data set consists of 652 participants followed up for 12 months, 374 al-

located to active treatment, and 278 in the control (93% of those recruited). Thirty-five individuals
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(5%) have missing primary outcome data, and a further 4 ( <1%) have missing baseline depression

score, leaving a sample size of 613.

We focus on the causal effect of receiving at least one treatment session as a function of depres-

sion at baseline measured using the Hospital Anxiety and Depression Scale (HADS).

We argue that random allocation is a valid IV: the assumptions concerning unconfoundedness

and instrument relevance are justified by design. The exclusion restriction assumption seems plau-

sible with our choices for A, as only those participants receiving at least one training sessions would

know how to use the CB coping mechanisms and potentially to improve their disability. It is un-

likely that that random allocation has a direct effect, though since participants were not blinded to

their allocation, we cannot completely rule out some psychological effects of knowing one belongs

to the control or active group on pain and disability.

We perform each of the methods in turn, TSLS, IV-g and IV-TMLE to estimate ATT(v). As

Table 1 summarises, the use of DR methods, even after using Super Learner does not result in a

material change in the point estimates or SEs, compared to standard TSLS. All 5 estimators give the

same inference, namely, there is no evidence of an average treatment effect in the treated, and there

is no evidence of effect modification by baseline depression. The lack of statistical significance may

be due to small numbers of participants in the trial. While not statistically significant, the direction

of the treatment effect modification is interesting: the point estimates indicate the treatment may

benefit more those with higher depression symptoms at baseline (the ATT resulting in a reduction

in the disability score).

Table 1: ATT of the COPERS intervention on CPG, with all-or-nothing binary exposure A, main
effect ψc and effect modification by depression) ψv.

ψc SE ψv SE
TSLS 2.94 4.67 -0.58 0.57
IV-g 2.78 4.66 -0.53 0.54
IV-g SL 2.10 4.75 -0.45 0.54
IV-TMLE 3.16 4.74 -0.64 0.56
IV-TMLE SL 2.22 4.88 -0.51 0.58

6 Discussion

This paper compared the performance of two doubly robust estimators for the ATT dependent on

baseline covariates, in the presence of unmeasured confounding, but where a valid (conditional)

IV is available. These estimators were implemented with and without the use of data-adaptive

estimates of the nuisance parameters. We have demonstrated empirically through simulations

that the IV-g estimator has good finite sample performance when using data-adaptive fits for

the nuisance parameters, provided the parametric model assumed for the treatment effect curve

is correctly specified. The IV-TMLE offers greater flexibility, not relying on a correctly specified

parametric model, and performs very well under most scenarios. The price for this greater flexibility

is less efficiency, compared with that of the IV-g, when the (parametric) model for the treatment
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effect curve is correctly specified. As the simulations show, the use of data-adaptive fits for the

nuisance models greatly reduces bias, and improves coverage, resulting in much smaller RMSEs,

when compared with using parametric nuisance models, and thus data-adaptive fits should be used.

The methods were motivated and tested in the context of estimating the ATT with effect

modification in RCTs with non-adherence to randomised treatment with binary exposure and a

continuous outcome. However, the methods presented here are applicable to other settings. One

situation may be where the IV assumptions are believed to be satisfied only after conditioning

on baseline covariates, making this applicable to certain observational settings. Extensions to

situations with continuous exposure are also straight-forward if one is prepared to assume linearity

of the treatment effect curve (Tóth and van der Laan, 2016; Vansteelandt and Didelez, 2018).

We have focused on the ATT(v) as the estimand of interest, but Ogburn et al. (2015) have

shown that the same functional of the observed data can be used to identify under monotonicity

the local average treatment effects conditional on baseline covariates, LATE(v). In fact, much of

the previous literature regarding estimation of instrumental variable models with covariates has

assumed monotonicity. In particular, for the special case where V = W , previous methods include

full parametric specifications suitable when both the IV and exposure are binary by Little and

Yau (1998) and Hirano et al. (2000) and a semi-parametric model proposed by Abadie (2003).

In the case where V is null, Frölich (2007) characterised two distinct non-parametric estimation

methods, while Tan (2006) proposed a DR estimator which is consistent when either the instrument

propensity score and either the outcome or the exposure parametric models are correctly specified.

For the ATT(v), Robins (1994) and Tan (2010) proposed DR estimators in the case where for

V = W , and V is a strict subset of W respectively. The DR estimator presented by Okui et al.

(2012) and Vansteelandt and Didelez (2018) builds on the work of Tan (2010). For the special case

when V is null, Vansteelandt and Didelez (2018) proposed other DR estimators which are locally

efficient, and also constructed a bias-reduced DR IV estimator. Several authors have proposed

data-adaptive estimators for the linear IV model with no effect modification, beginning with a

TSLS where the first stage in fitted using LASSO with a data-adaptive penalty (Belloni et al.,

2012). The bias-reduced DR IV estimator has also been implemented when V is null using data-

adaptive fits for the conditional mean outcome in the unexposed Ay (Vermeulen and Vansteelandt,

2016). Chernozhukov et al. (2016) proposed two other IV DR data-adaptive estimators and gave

conditions under which data-adaptive fits can be used for Az, Aa and Ay. Comparing these DR

estimators to the those presented here would be a promising avenue for future research.

The present study has some limitations. Formal proof of the regularity conditions and rates

of convergence needed to obtain uniformly valid inferences when using data-adaptive techniques

for the IV g-estimator presented here are still lacking, and should be the subject of further study.

Similarly, the required convergence conditions for the IV-TMLE estimator have not been formally

reported. Another limitation is that we did not seek to quantify the rates of convergence attained

by algorithms included in the SL library. This is because in general the rates of convergence of

the individual machine learning algorithms depend on the number of included variables, and other

tuning parameters, making the assessment of rates of convergence complex. A potential promising
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solution for this could be to include the highly adaptive lasso (HAL) (Benkeser and Laan, 2016) in

the SL library, as this has been proven under sufficient regularity conditions to converge at rates

faster than n−
1
4 .

A number of extensions to the work presented here are of interest. The IV-g method imple-

mented here jointly estimates m0(W ) and my(W ), and thus used parametric models for both.

This is not necessary, and an alternative strategy where my(W ) is estimated beforehand and the

fitted values plugged in into the estimating equation (11) is possible, thus allowing the use of data-

adaptive fits for the model Ay. Future work could extend the bias-reduced DR estimator to the

linear IV model with effect modification, and compare this with IV-TMLE and a fully data-adaptive

version of the IV-g estimator.
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