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Abstract

We present ten different strength-based statistical models that we use to model soccer
match outcomes. The models are of three main types: Bradley-Terry, Independent Poisson
and Bivariate Poisson, and their common aspect is that the parameters are estimated via
weighted maximum likelihood, the weights being a match importance factor and a time
depreciation factor giving less weight to matches that are played a long time ago. We
compare their predictive performance via the Rank Probability Score and the log loss at
the level of both domestic leagues and national teams, and find that the best models are
the Independent and Bivariate Poisson models with the fewest number of parameters per
team. We compare the best model’s predictive performance to the bookmakers’ prediction
over seventeen seasons of the English Premier League and for the EURO2016. We conclude
the paper by giving our strength-based rankings for the current Premier League season as
well as for European national teams at the beginning of 2018.

Key words: Bivariate Poisson model, Bradley-Terry model, Game forecasting, Independent
Poisson model, Predictive performance, Weighted likelihood

1 Introduction

Football, or soccer, is undeniably the most popular sport worldwide. Predicting which team
will win the next World Cup or the Champions League final are issues that lead to heated
discussions and debates among football fans, and even attract the attention of casual watchers.
Or put more simply, the question of which team will win the next match, independent of its
circumstances, excites the fans. Bookmakers have made a business out of football predictions,
and they use highly advanced models taking into account numerous factors (like a team’s current
form, injured players, the history between both teams, the importance of the game for each team,
etc.) to obtain the odds of winning, losing and drawing for both teams.

One major appeal of football, and a reason for its success, is its simplicity as game. This
stands somehow in contrast to the difficulty of predicting the winner of a football match. A
help in this respect would be a ranking of the teams involved in a given competition based on
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their current strength, as this would enable football fans and casual watchers to have a better
feeling for who is the favourite and who is the underdog. However, the existing rankings, both
at domestic leagues level and at national team level, fail to provide this, either because they are
by nature not designed for that purpose or because they suffer from serious flaws.

Domestic league rankings obey the 3-1-0 principle, meaning that the winner gets 3 points,
the loser 0 points and a draw earns each team 1 point. The ranking is very clear and fair, and
tells at every moment of the season how strong a team has been since the beginning of the
season. However, given that every match has the same impact on the ranking, it is not designed
to reflect a team’s current strength. A very recent illustration of this fact can be found in the
German Bundesliga, where Borussia Dortmund had a tremendous start in the current season
2017-2018 with 19 out of 21 points after the first 7 rounds. In the next 7 rounds they only scored
3 points and were in a small crisis. In Round 15, Dortmund, ranked 6" with 22 points, received
Werder Bremen, ranked 17" with only 11 points but who had the momentum on their side with
2 wins in the previous 3 matches. The ranking thus clearly favoured the home-team Dortmund,
who however lost 1-2 to Bremen, a not so surprising result if one takes into account the recent
performances of both teams.

Contrary to domestic league rankings, the FIFA /Coca-Cola World Ranking of national soccer
teams is intended to rank teams according to their recent performances in international games.
Bearing in mind that the FIFA ranking forms the basis of the seating and the draw in international
competitions and its qualifiers, such a requirement on the ranking is indeed necessary. However,
the current FIFA ranking fails to reach these goals in a satisfying way and is subject to many
discussions (Cummings (2013); Tweedale (2015); The Associated Press (2015)). It is based on the
3-1-0 system, but each match outcome is multiplied by several factors like the opponent team’s
ranking and confederation, the importance of the game, and a time factor. We spare the reader
those details here, which can be found on the webpage of the FIFA /Coca-Cola World Ranking
(http://www.fifa.com/fifa-world-ranking/procedure/men.html). In brief, the ranking is
based on the weighted average of ranking points a national team has won over each of the
preceding four rolling years. The average ranking points over the last 12 month period make up
half of the ranking points, while the average ranking points in the 13-24 months before the update
count for 25% leaving 15% for the 25-36 month period and 10% for the 37-48 month period before
the update. This arbitrary decay function is a major criticism of the FIFA ranking: a similar
match of eleven months ago can have approximately twice the contribution as a match played
twelve months ago. A striking example hereof was Scotland: ranked 50t in August 2013, it
dropped to rank 63 in September 2013 before making a major jump to rank 35 in October 2013.
This high volatility demonstrates a clear weakness in the FIFA ranking’s ability of mirroring a
team’s current strength.

In this paper, we intend to fill the gap and develop a ranking that does reflect a soccer team’s
current strength. To this end, we consider and compare various existing and new statistical mod-
els that assign one or more strength parameters to each soccer team and where these parameters
are estimated over an entire range of matches by means of maximum likelihood estimation. We
shall propose a smooth time depreciation function to give more weight to more recent matches.
The resulting ranking represents an interesting addition to the well-established rankings of do-
mestic leagues and can be considered as promising alternative to the FIFA ranking of national
teams.

The present paper is organized as follows. We shall present in Section 2 no less than 10
different strength-based models whose parameters are estimated via maximum likelihood. More
precisely, via weighted maximum likelihood as we introduce two types of weight parameters:
the above-mentioned time depreciation effect and a match importance effect for national team
matches. In Section 3 we describe the exact computations behind our estimation procedures as
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well as two criteria according to which we define a statistical model’s predictive performance.
Two case studies allow us to compare our 10 models at domestic league and national team
levels: we investigate the English Premier League seasons from 2000-2017 (Section 4) as well as
European national team matches between 2000 and 2016 (Section 5). Regarding national teams,
we focus on European teams playing each other in order to have a balanced picture. Teams
from different continents play different amounts of matches and the strength levels vary between
continents. The FIFA ranking itself gives different weights to different continents, but these
weights seem arbitrary, so we prefer not to take them up and just focus on European teams
and inner-European matches. We illustrate the predictive strength of the best strength-based
model for national teams by comparing our best model’s prediction of the EURO2016 to the
bookmaker’s prediction (Section 5.2). On basis of the best-performing models, we then provide
in Section 6 our new ranking for the current Premier League season as well as our ranking of
European national teams at the beginning of 2018. We conclude the paper with final comments
and an outlook on future research in Section 7.

2 The statistical strength-based models

2.1 Time depreciation and match importance factors

Our strength-based statistical models are of three main types: Bradley-Terry type models, inde-
pendent Poisson models and bivariate Poisson models. Each model assigns strength parameters
to all teams involved and models match outcomes via these parameters. Maximum likelihood
estimation is employed to estimate the strength parameters, and the teams are ranked according
to their resulting overall strengths. More precisely, we shall consider weighted maximum like-
lihood estimation, where the weights introduced are of two types: time depreciation (domestic
leagues and national teams) and match importance (only national teams).

2.1.1 A smooth decay function based on the concept of Half period

A feature that is common to all considered models is our proposal of decay function in order
to reflect the time depreciation. Instead of the step-wise decay function employed in the FIFA
ranking, we rather suggest a continuous depreciation function that gives less weight to older
matches with a maximum weight of 1 for a match played today. Specifically, the time weight for
a match which is played x; days back is calculated as

Wi () = (;) Half period 7 (1)

meaning that a match played Half period days ago only contributes half as much as a match
played today and a match played 3x Half period days ago contributes 12.5% of a match played
today. Figure 1 shows a graphical comparison of our continuous time decay function versus
the arbitrary FIFA decay function. In the sequel, wiime,; Will serve as weighting function in
the likelihoods associated with our various models. This idea of weighted likelihood or pseudo-
likelihood to better estimate a team’s current strength is in line with the literature on modelling
(mainly league) football scores, see Dixon and Coles (1997).

2.1.2 Match importance

While in domestic leagues all matches are equally important, the same cannot be said about
national team matches where for instance friendly games are way less important than matches
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Figure 1: Comparison of the FIFA ranking decay function versus our exponential smoother (1).
The continuous depreciation line uses a Half Period of 500 days.

played during the World Cup. Therefore we need to introduce importance factors. The FIFA
weights seem reasonable for this purpose and will be employed whenever national team matches
are analyzed. The relative importance of a national match is indicated by wyype,; and can take the
values 1 for a friendly game, 2.5 for a confederation or world cup qualifier, 3 for a confederation
tournament (e.g. UEFA EURO2016 or the Africa Cup of Nations 2017) or the confederations
cup, and 4 for World Cup matches.

2.2 The Bradley-Terry type models

Bradley-Terry (BT) models (Bradley and Terry, 1952) have been designed to predict the outcome
of pairwise comparisons. Assuming that two individuals 7 and j possess strength parameters s;
and s;, the probability of ¢ winning over j is given by Si‘:‘sj in BT models. Wang and Vandebroek
(2013) modelled soccer match outcomes by means of an adapted BT model. We shall first describe
their original idea and then propose two extended BT-type models.

2.2.1 Original Bradley-Terry model

The standard BT model only allows two possible outcomes (home win or home loss) whereas in
football the probability of a draw must be modeled as well. The draw probability is modeled
similarly to Davidson (1970) in such a way that the probability of a draw increases as the
strengths of both teams are more similar. The adapted BT model also takes a home effect into
account. Wang and Vandebroek (2013) have opted for a multiplicative home effect, following an
analysis of 10 recent Italian Serie A seasons that revealed that home advantage is proportional
to the strength of the home team. A different viewpoint, which we shall not follow here, was
developed in Bassett (1997) who suggested an additive home constant.

From now on we denote the home team as team H and the away team as team A. A total
of M team strengths need to be estimated when M teams are analyzed. If we call P;g the
probability of a home win in match i, P;p the probability of a draw in match ¢ and P;4 the



probability of an away win in match ¢, then the outcome probabilities are
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with home effect represented by h, draw effect by d, and 5;y and ;4 respectively stand for
the strength parameters of home and away team in match ¢ € {1,..., N}, N denoting the total
number of matches in the considered time period. A home effect h > 1 inflates the strength of
the home team and increases its modeled probability to win the match. This is typically the
case since playing at home gives the benefit of familiar surroundings, the support of the home
crowd and the lack of traveling. Matches on neutral ground are modeled by dropping the home
effect h. The draw effect is best understood by assuming similar strengths in the absence of a
home effect. In that case P,y is similar to P;4 and the relative probability of P;p compared to
a home win or loss is approximately equal to d. All parameters are non-negative.

The strength parameters are estimated using maximum likelihood estimation on match out-
comes. Let y;; be 1 if the result of game 4 is j and y;; = 0 otherwise, for j = H,D, A as
explained above. Under the common assumption that matches are independent, the likelihood
for N matches corresponds to

P

Pip =

Py =

N
L= H H P?jij'wtypewi.w“med (2)

i=1je{H,D,A}

with wyype,; and wyime; the weights described in Section 2.1. The model parameters p (here,
the M team strengths and the parameters h and d) are replaced with exp(p) in the estimation
procedure to make sure that the estimated parameters are positive.

2.2.2 Bradley-Terry model with Goal Difference weights

The basic BT model of the previous section does not use all of the available information. It only
takes the match outcome into account, omitting likely valuable information present in the goal
difference. A team that wins by 8-0 and loses the return match by 0-1 is probably stronger than
the opponent team. Our first extension of the BT model modifies the basic BT model in the
sense that matches are given an increasing weight when the goal difference grows. The likelihood
function is calculated as

N

] [ W iffs i W Wi i
L — H Piyj” goalDif fscaled,i type,i tzm,e,z'

i=1j5€{H,D,A}

This formula slightly differs from (2) through the goal difference weight

' )1 if draw
Wgoal Dif fscaled,i = logz(goalszfl + 1) else,

with goalDif f; the absolute value of the goal difference in match i (both outcomes 2-0 and 0-2
thus give the same goal difference of 2). This way, a goal difference of 1 receives a goal difference
weight of 1 and every additional increment in goal difference results in a smaller increase of
the goal difference weight. A goal difference of 7 goals receives a goal difference weight of 3.
Parameter estimation is achieved in the same way as in the basic BT model.



2.2.3 Bradley-Terry model with home and away strengths

Our second extension of the basic BT model contains separate team strength parameters for home
and away teams instead of a single home effect parameter common to all teams. This way, the
home team strength is not influenced by performances on the road and the away team strength
is not influenced by results in home matches. A team is modeled as if it were a separate team
playing at home or away from home. The draw effect is modeled as in the basic BT model, and
parameter estimation follows again via maximum likelihood; we omit the expression here as it is
highly similar to (2). The strength of a team on neutral ground is modeled in the same fashion
as we define the overall strength of a team, namely by combining the home and away strengths.
All three Pythagorean means were considered for this purpose (the arithmetic, geometric and
harmonic means). An analysis of more than 100 seasons of Premier League data (1892-2014)
revealed that the geometric mean is best suited for the combination of team strengths. The
absolute difference in ranks between the ranking based on each of the Pythagorean means of the
modeled team strengths (two for each team) and the actual final league ranking based on the
2-point-for-win-system was used to identify the preferred approach.

2.3 The Independent Poisson models

Poisson models were first suggested by Maher (1982) to model football match results. He assumed
the number of scored goals by both teams to be independent Poisson distributed variables. Let
G;g and G;4 be the random variables representing the goals scored by the home team and the
away team in match 4, respectively. With those assumptions the probability function can be
written as

2\ Y
P(Gig =2,Gia=y) = ;,LI exp(—Aim) - ?;;4 exp(—Aia), (3)

where \;g and \;4 stand for the means of G;y and G, 4, respectively.

Being a count-type distribution, the Poisson is a natural choice to model soccer matches. It
bares yet another advantage when it comes to predicting matches. If G; = G;g — G;4, then
the probability of a win of team H over team A, the probability of a draw as well as the win
of team A are respectively computed as P(G; > 0), P(G; = 0) and P(G; < 0). The Skellam
distribution, the discrete probability distribution of the difference of two independent Poisson
random variables, is used to derive these probabilities given \;zy and A;4. This renders the
prediction of future matches via the Poisson model particularly simple.

2.3.1 Independent Poisson model with 1 strength parameter

Attributing again a single strength parameter to each team, denoted as before by 8;y and ;4
for match i, we define the Poisson means as \;g = ¢ X h x Bin and Aia = C X gl‘: with h the
home effect, ¢ a common intercept, and under the constraint that all parameters are positive like
in the BT models. Matches on neutral ground are modeled by dropping the home effect h. With
this in hand, the overall likelihood can be written as

N )\qu /\giA Wtype,i Wtime,i
L= <2H exp(—)\iH) B 2 eXp(—)\iA)) s
! gia!

where ¢g;z7 and g;4 stand for the actual home and away goals scored in match ¢. Maximum
likelihood estimation yields the values of the strength parameters. It is important to notice that
the Poisson model uses two observations for each match (the goals scored by each team) while



using the same number of parameters (number of teams + 2). The BT approach, except for the
model with Goal Difference Weight, only uses a single observation for each match.

2.3.2 Independent Poisson model with 2 strength parameters or Maher’s original
model

In the previous section we have defined a slightly simplified version of Maher’s original model.
Maher assumed the scoring rates to be of the form \;g = ¢ x h X 21,;;[ and \;4 = ¢ X gfg, with
0iH, 0i A, d;g and d; 4 standing for offensive and defensive capabilities of both teams. The overall
strength of a team is again a combination of both strength parameters, obtained in the same
way as for the BT model with home and away strength parameters.

2.4 The Bivariate Poisson models

A potential drawback of the Independent Poisson models lies precisely in the independence
assumption. Of course, some sort of dependence between the two playing teams is introduced
by the fact that the strength parameters of each team are present in the Poisson means of both
teams, however this may not be a sufficiently rich model to cover the interdependence between
two teams.

Karlis and Ntzoufras (2003) suggested a bivariate Poisson model by adding a correlation
between the scores. The home and away scores are modelled as G;g = X;g + X;c and
Gia = X;a + Xic, where X;p, X;4 and X;co are independent Poisson distributed variables
with parameters A\;g, A\ja and \;c, respectively. The joint probability function of the home and
away score is then given by

AT \Y min(z,y) 2\ [y Aic k
P(Gig=2,Gia=y) = ;H'iy'“‘lexp(—()\u{ + Xia + X)) Z <k) </€> k! ()\) ., (4)

P iHAA

which is the formula for the bivariate Poisson distribution with parameters A\;g, A\ja and \;o. It
reduces to (3) when A\;c = 0. This parameter thus can be interpreted as the covariance between
the home and away scores and might reflect the game conditions. The strength parameters \; g
and \;4 are similar as in the Independent model, but we attract the reader’s attention to the
fact that the means for the home and away scores are now given by \;g + A\;c and A4 + Ao,
respectively.

Letting G; again stand for the goal difference, we can easily see that the probability func-
tion of the goal difference for the bivariate case is the same as the probability function for the
Independent model with parameters \;z and \; 4, since

P(Gl :.”L') = P(GlH _GiA :SC)
= P(Xig + Xic — (Xia + Xic) =2) = P(Xjg — Xj4 = @),

implying that we can again use the Skellam distribution for predicting the winner of future
games.

2.4.1 Bivariate Poisson with constant covariance

The first bivariate Poisson models that we consider are parsimonious in terms of parameters since
we assume constant covariance over all matches. The first model, termed Bivariate Poisson 00

with 1 strength parameter, defines \; = c¢xhXx ﬂ"H and \;4 = ¢cX g““ and is a modified version of

the simplest Karlis and Ntzoufras (2003) proposal The second model, termed Bivariate Poisson



00 with 2 strength parameters, corresponds to that version by Karlis and Ntzoufras (2003) and is
defined via \;jg = ¢ X h X O“Z and \;4 = c X ;“‘ where each team has an offensive and defensive
strength parameter. In both cases the covariance is governed by \;c = bc for some constant
covariance parameter bo. Again all parameters should be positive and we apply the same weight
factors as in the previous sections for the weighted maximum likelihood estimation.

2.4.2 Bivariate Poisson with non-constant covariance

Karlis and Ntzoufras (2003) added other team-specific parameters, apart from the offensive and
defensive strength parameters. These new parameters are used to model the influence of the
teams on the game conditions. In this regard we can investigate three new models, one where
the home team influences the game conditions, one where the away team does and one model
where both teams influence the conditions of the game. Let vy be 1 if the home team has
influence on the covariance and 0 if not, and let 74 be defined analogously. Then we consider
the covariance as

)\iC = bc X b;yg X bzﬁ (5)

where b;y and b;4 are the covariance-influencing parameters for the home and away team, re-
spectively. This means that, if for instance vy = 1 and y4 = 0, we only allow the home team
to affect the covariance. If yg = 4 = 0 we are in the case of constant covariance between the
home and away score, hence this corresponds to the Bivariate Poisson 00 model with two strength
parameters. With an obvious notation, we term the three other possible models based upon (5)
as Bivariate Poisson 10, Bivariate Poisson 11 and Bivariate Poisson 01, respectively. Each model
has offensive and defensive strength parameters per team as well as the covariance-influencing
parameter b;, and the estimation procedure runs along the same lines as for the Bivariate Poisson
00 models.

One can think of many other ways to model dependent football scores. The dependence
between the home and away scores can for instance be modelled by all kinds of copulas or adap-
tations of the Independent model. Incorporating them all in our analysis seems an impossible
task, which is why we opted for the very prominent Karlis-Ntzoufras proposal. Notwithstand-
ing, we mention some important contributions in this field: Dixon and Coles (1997) added an
additional parameter to adjust for the probabilities on low scoring games (0-0, 1-0, 0-1 and 1-1),
McHale and Scarf (2011) investigated copula dependence structures, and Boshnakov et al. (2017)
recently proposed a copula-based bivariate Weibull count model.

3 Parameter estimation and model selection

In this section we shall briefly describe two crucial statistical aspects of our investigation, namely
how we compute the maximum likelihood estimates and which criteria we apply to select the
model with the highest predictive performance.

3.1 Computing the maximum likelihood estimates

Parameters in the BT, Independent and Bivariate Poisson models are estimated using maximum
likelihood estimation. To this end, we have used the optim function in R (R Development Core
Team, 2018) by specifying as preferred method the BFGS (Broyden-Fletcher-Goldfarb-Shanno
optimization algorithm). We have opted for this quasi-Newton method because of its robust
properties. Since all model parameters need to be positive by definition of our statistical model,



we have applied the exp transformation to all parameters during the likelihood calculation. All
optimized parameters are initialized at 0 (1 in the estimation procedure after applying the exp
transformation).

3.2 Measures of predictive performance

The studied models are built to perform three way outcome prediction (home win, draw or home
loss). Each of the three possible match outcomes is predicted with a certain probability but
only the actual outcome is observed. The predicted probability of the outcome that was actually
observed is thus a natural measure of predictive performance. The ideal predictive performance
metric is able to select the model which approximates the true outcome probabilities the best.

We consider two such metrics in our analysis. The first is the log loss criterion. The average
log loss for N matches is defined as log loss = —+ Zfil > je(m,p,a} Yij - 10g(Pij) where P
represents the modeled probabilities and y;; is 1 if the result of game ¢ is j and y;; = 0 otherwise.
The smaller the log loss, the better the predictive performance of the considered model. The log
loss criterion is typically used as the performance metric in Data Science competitions when the
goal is to predict probabilities for a set of possible outcomes.

The second metric is the Rank Probability Score (RPS) of Epstein (1969). It represents the
difference between cumulative predicted and observed distributions via the formula

N
1
9N Z ((Pirr — Yirr)® + (Pia — yiA)2)
i=1

where we keep the same notations as above. It has been shown in Constantinou and Fenton
(2012) that the RPS is more appropriate as soccer performance metric than other popular metrics
such as the RMS and Brier score. The reason is that, by construction, the RPS works at an
ordinal instead of nominal scale, meaning that, for instance, it penalizes more severely a wrongly
predicted home win in case of a home loss than in case of a draw.

4 Case study 1: Premier League

4.1 Data collection and comparison of the predictive models

The engsoccerdata package (Curley, 2015) contains results of all top 4 tier football leagues in
England since 1888. The dataset contains the date of the match, the teams that played, the
tier as well as the result. The number of teams equals 20 for each of the seasons considered
(2000-2017). Matches are predicted for every season separately and on every match day of the
second half of the season, using the first season half for training the models. So a total of 3230
matches are predicted. Accordingly, every season is analyzed separately from previous years.
This avoids the issue of assigning strengths to promoted teams and takes team changes during
the summer transfer season into account. Matches are predicted in blocks corresponding to each
round, and after every round the parameters are updated. In all our models, the Half Period is
varied between 20 and 600 days in steps of 20. We compare our models also to a simple method
which we call the Majority method. Based only upon the percentage of home wins, draws and
home losses in the season that is currently being evaluated, this method assigns to every game
the same probabilities, regardless of the teams that are playing. It is therefore fair to say that
models that perform worse than the majority method are valueless.

Table 1 summarizes the analysis by comparing the best performing models of each of the
considered classes, i.e. the model with the optimal Half Period. As we can see, the Independent



Table 1: Comparison table for the best performing models of each of the considered classes
with respect to the RPS criterion and the log loss criterion. All of the second season half
English Premier League matches in the period between the seasons 2000-2001 and 2016-2017 are
considered.

Number of Half Period Lowest Half Period Lowest

Model Class teamspecific best model best model
RPS log loss

parameters RPS log loss
Bradley-Terry 1 HP = 540 0.2019895 HP = 600 0.9948099
BT Goal Difference 1 HP = 360 0.2025017 HP = 440 1.0012263
BT Home & Away 2 HP = 600 0.2147502 HP = 600 1.0844735
Independent Poisson 1 HP = 200 0.1978573 HP = 240 0.9766120
Independent Poisson 2 HP = 240 0.1987503 HP = 300 0.9785288
Bivariate Poisson 00 1 HP = 180 0.1981067 HP = 240 0.9776285
Bivariate Poisson 00 2 HP = 240 0.1985977 HP = 380 0.9815752
Bivariate Poisson 10 3 HP = 260 0.1995125 HP = 400 0.9881019
Bivariate Poisson 01 3 HP = 240 0.1995247 HP = 300 0.9861578
Bivariate Poisson 11 3 HP = 280 0.1996435 HP = 200 0.9906929
Majority method 0 HP = 0.2255210 HP = o0 1.0387409

Poisson model with 1 strength parameter per team is the best according to both log loss and RPS,
followed by the bivariate Poisson model with just one parameter per team. So, parsimony in
terms of parameters to estimate is important. We also clearly see that all Poisson-based models
outperform the BT models according to both criteria. This was to be expected since Poisson
models use the goals as additional information. Considering the win margin in the BT model
does not improve its performance. It is also noteworthy that the best two models have among
the lowest Half Periods. Finally we remark that the BT model with home and away parameters
does worse than the Majority method according to the log loss criterion.

4.2 Comparison with the bookmaker’s prediction

The website http://www.football-data.co.uk/ hosts an excel file with match data and odds
of each English Premier League season since the season 2000-2001. Decimal odds are available
for thirteen major betting companies. Nine bookmakers (Bet365, Bet & Win, Gamebookers,
Interwetten, Ladbrokes, Sportingbet, StanJames, VCBet and William Hill) contained odds for
at least half of the matches, the other four were discarded. Decimal odds are translated to out-
come probabilities assuming fixed overround margins on all three outcomes. If the observed odds
are [2,3,3.5] for a home win, a draw and a home loss respectively, the transformed probabilities
become [%, %, 3—15] / (% + % + %) ~ [0.447,0.298,0.255]. The average bookmaker predictive per-
formance is calculated by transforming the odds of nine major bookmaker firms to bookmaker
probabilities.

The resulting RPS and log loss values are, respectively 0.1917733 and 0.9569953. This means
that our best-performing model, the Independent Poisson model with 1 strength parameter, lies
only 3.17% respectively 2.05% above the bookmaker scores, which is quite remarkable given the
additional information that these gold standard predictions take into account. It underlines
that our parsimonious model, based on sound statistical estimation, is able to achieve very good
predictions.
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5 Case study 2: National teams

As for the Premier League, we shall first compare our various models in terms of log loss and
RPS, and analyze which model has the best predictive performance. For the sake of illustration,
we then use this best-performing model to make a post-hoc analysis of the UEFA EURO2016
tournament by comparing our predictions to the bookmaker ratings. We will achieve this goal by
simulating repeatedly all matches of the tournament, hence our predictions are based on 100.000
simulations of the EURO2016.

5.1 National teams data collection and comparison of the predicting
models

National team match results were scraped from the website http://eu-football.info/. The
platform contains a complete archive of all European national football team results since 1872
where at least one of the playing teams was FEuropean. The website also contains historical results
of all European and domestic club competitions. Results are organized by national team and are
extracted by parsing through all the national team pages using the R package rvest (Wickham,
2015). We predicted the outcome of 3868 games between two European teams in the period
from 2000 to 2016. The last game in our analysis is played on 2016-11-14. The parameters are
estimated by maximum likelihood on a period of four years. The half period is varied from 100
to 1500 days in steps of 100.

The results of our model comparison are provided in Table 2. This time we notice differences
between the log loss and RPS rankings. Both rankings agree on preferring Poisson-like models
over BT-type models. However, while the RPS criterion favors the Bivariate Poisson model with
2 strength parameters followed by the Bivariate Poisson model with 1 strength parameter and the
Independent Poisson model with 1 strength parameter, the log loss criterion ranks the Bivariate
Poisson model with 2 strength parameters only third, its 1-parameter competitor being classified
first. Quite remarkably, the difference between the Bivariate and Independent Poisson models
with 1 strength parameter is very small in both performance metrics. This is due to the small
covariance we find in the bivariate model: it lies nearly all the time under 0.1. If we add up the
log loss and RPS scores, the Bivariate Poisson model with 1 strength parameter turns out to be
the best, which is why we consider it in the next section when simulating the EUR0O2016.

5.2 Predicting the EURO2016: simulation details and comparison to
the bookmaker ranking

The UEFA EURO2016 tournament was played in France by 24 teams. Six groups of four teams
were drawn on December 12, 2015 in Paris. The first two ranked teams progress to the knockout
rounds as well as the four best third ranked teams of the six groups. Four knockout stages were
played to select a winner. Portugal, who could not win any of its group matches, won the final
against host team and tournament favorite France. On their way to the final, Portugal had to
defeat Poland and Wales in the quarter- and semi-finals, while France won against Iceland and
world champion Germany.

In all simulated matches with our Bivariate Poisson model, team strengths are converted to
the expected number of goals scored by both teams according to (4). The home effect is only
applied to France. During the simulations, we did not refit the Bivariate Poisson model after each
of the three group stage rounds nor after the first three of the four knockout stages. This allowed
us to simulate the entire tournament with the initial strengths of teams, and hence avoided
introducing a potential simulation-based estimation bias. This choice is further corroborated by
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Table 2: Comparison table for the best performing models of each of the considered classes with
respect to the average log loss criterion and the RPS criterion. All of the matches between the

FEuropean national teams in the period 2000-2016 are considered.
Number of Half Period Half Period

Model Class teamspecific best model Lowest best model Lowest
RPS log loss
parameters RPS log loss
Bradley Terry 1 HP = 1500 0.1729464 HP = 1400 0.8915426
BT Goal Difference 1 HP = 1500 0.1728042 HP = 1400 0.8973620
BT Home & Away 2 HP = 1500 0.1850369 HP = 1500 0.9998043
Independent Poisson 1 HP = 1400 0.1690249 HP = 1400 0.8612584
Independent Poisson 2 HP = 1500 0.1709804 HP = 1500 0.8691197
Bivariate Poisson 00 1 HP = 1100 0.1690129 HP = 1100 0.8609054
Bivariate Poisson 00 2 HP = 1100 0.1688754 HP = 1100 0.8646181
Bivariate Poisson 10 3 HP = 1200 0.1697885 HP = 1500 0.8778760
Bivariate Poisson 01 3 HP = 1300 0.1693430 HP = 1500 0.8779135
Bivariate Poisson 11 3 HP = 1400 0.1693875 HP = 1500 0.8838847
Majority method 0 HP=c0 0.2340603 HP = oo 1.0725820

the high Half Period of 1100 days, meaning that matches played four years ago are considered
about half as influential as matches played today. Consequently, the estimates of the outcomes
are not expected to be biased heavily by not refitting the model.

Articles 16-19 of the rules (UEFA.com, 2016) for the UEFA EURO2016 tournament were
used to determine the ranking of the teams based on the group match results. The rules were
also used to calculate the best four thirds of the six groups and pair the correct teams in the
knockout rounds. Knockout matches that end in a draw after ninety minutes are extended by
two 15-minute periods. The simulation study handles this by simulating a new match with the
expected goals scored set to one third of the main part of the match. Penalty shootouts are
simulated by assigning a random winner.

The UEFA EURO2016 tournament was simulated 100,000 times. A bar chart of the tour-
nament win frequency of the participating teams is shown in Figure 2. France is -also due to
the home effect- the main favorite to win the tournament according to the simulation study. It
wins in about 22% of the simulations, while Germany wins in 13.7%. Spain and Belgium are
expected to win the tournament with a probability close to 10% and are followed by England
that is ascribed a win probability of about 9%. Ukraine and Portugal, the actual winner, are the
main outsiders according to the simulation study.

Bookmaker odds are assumed to be the gold standard and the quality of our predicted ranking
is judged by the similarity with the bookmaker ranking. Bookmaker odds were collected from the
website talksport.com on June 7, 2016. The ranks of the simulation study are strongly correlated
with the bookmaker ranks (p = 0.892). Looking at the actual outcome, we see that our model
performs as well as the bookmakers in predicting Portugal as winner of the EURO. France, the
favorite of our model and of the bookmakers, nearly fulfilled the expectations as they only lost
the final against the Portuguese. According to the last FIFA ranking before the start of the
EURO2016, France was only ranked 10" among European countries, underlining the fallacies of
the FIFA ranking to reflect the current strengths of national teams.
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Figure 2: Comparison of winning probabilities of the bookmakers on June 7, 2016 and the prob-
abilities of our simulation study based on all matches played up till the start of the EURO2016
tournament.



6 Rankings

We have determined in the previous sections which strength-based models have the best pre-
dictive power at both domestic leagues and national teams levels. On basis of the respective
best-performing models, we now provide the ranking of the current Premier League season and
the ranking of European national teams at the beginning of 2018.

Table 3 contains two rankings for the English Premier League on February 1 2018, after 25
rounds. The right-hand side shows the official ranking where every match has the same impor-
tance, while the left-hand side showcases our current-strength ranking based on the Independent
Poisson model with Half Period 200, the best-performing model according to the RPS criterion.
Both rankings have Manchester City in a dominating position, which is not surprising. A clear
difference is the ranking of Liverpool, second according to our ranking but only fourth in the
official ranking. This reflects well the current strong performance of Liverpool, who even beat
Manchester City in round 23, but who had a difficult start into the season with only a nineth
place after the first nine rounds. Liverpool is thus a striking example of the usefulness of our new
ranking. Another notable difference is Huddersfield Town who had a strong start in the season
with 7/9 points but who struggle recently.

Table 4 displays a comparison between our strength-based model (left-hand side) and the
official FIFA /Coca-Cola ranking (right-hand side) on January 1 2018 (to be precise, the last
calculation of the FIFA ranking was done on December 21 2017). Our ranking is based on the
Bivariate Poisson 00 model with Half Period 1100, chosen according to the RPS. We attract
the reader’s attention to the fact that “Position” in the FIFA ranking means the world-wide
position, which explains the missing numbers such as 2, 4, 10, etc. A first notable difference
lies in the readability of the two rankings: while one can understand the values of the strength
parameters as ratios leading to the average number of goals that one team will score against the
other, the same cannot be said about the FIFA points which do not allow making predictions.
In our ranking, the current strong performance of Spain is underlined. A major difference occurs
with Russia: ranked 16" in our ranking, it is only the 33" European team in the FIFA ranking
(worldwide 64). This difference is due to the fact that Russia is hosting the World Cup 2018 and
hence plays friendly games instead of the qualifiers, a fact that is penalized much more severely
in the FIFA ranking than in our ranking.

7 Conclusion and outlook

We have compared 10 different statistical strength-based models according to their predictive
performance. Our analysis clearly demonstrates that Poisson-type models outperform Bradley-
Terry type models, and that the best models are those that assign the fewest parameters to
teams. At domestic team level, the Independent Poisson model with one strength parameter per
team was found to be the best in terms of both RPS and log loss criteria, while the Bivariate
Poisson model with one strength parameter per team was overall the best at national team level.
However, the difference between that model and the Independent Poisson with one strength
parameter is very small, which is explained by the fact that the covariance in the bivariate
Poisson model is close to zero. This is well in line with recent findings of Groll et al. (2017) who
used the same Bivariate Poisson model in a regression context. Applying it to the European
Championships 2004-2012, they got a covariance parameter close to zero. Besides in the context
of regression models, bivariate Poisson models have also been used in a dynamic way. Such
dynamic bivariate Poisson models were applied to analyze English Premier League matches by
Crowder et al. (2002) and Koopman and Lit (2015).

Our final conclusion is that the Independent Poisson model with one strength parameter
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Table 3: Ranking of the Premier League teams on February 1 2018 according to the Independent
Poisson model with Half Period 200 compared to the official Premier League ranking at that date.

Position | Team Strength | Team Points
1 | Manchester City 2.06 Manchester City 68
2 | Liverpool 1.58 Manchester United 53
3 | Manchester United 1.52 Chelsea 50
4 | Tottenham Hotspur 1.49 Liverpool 50
5 | Chelsea 1.42 Tottenham Hotspur 48
6 | Arsenal 1.21 Arsenal 42
7 | Leicester City 1.09 Burnley FC 35
8 | Burnley FC 0.98 Leicester City 34
9 | Bournemouth 0.95 Everton 31

10 | Everton 0.88 Bournemouth 28
11 | Crystal Palace 0.86 Watford 27
12 | West Ham 0.86 West Ham 27
13 | Southampton 0.84 Crystal Palace 26
14 | Watford 0.82 Brighton and Hove Albion 24
15 | Newcastle United 0.82 Huddersfield Town 24
16 | West Bromwich Albion 0.80 Newcastle United 24
17 | Swansea City 0.79 Stoke City 24
18 | Brighton and Hove Albion 0.76 Southampton 23
19 | Stoke City 0.67 Swansea City 23
20 | Huddersfield Town 0.66 West Bromwich Albion 20
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Table 4: Ranking of the European national teams on January 1 2018 according to the Bivariate
Poisson 00 model with Half Period 1100 compared to the Official FIFA /Coca-Cola World Ranking
on December 21 2017.

Position Team Strength | Position Team Points
T Spain 2.23 T Germany 1602(1601.91)
2 Germany 2.18 3 Portugal 1358(1357.89)
3  Belgium 2.08 5 Belgium 1325(1325.29)
4  France 2.01 6 Spain 1231(1230.83)
5 Portugal 1.84 7 Poland 1209(1208.96)
6 Poland 1.81 8  Switzerland 1190(1190.44)
7 England 1.68 9 France 1183(1183.3)
8 Denmark 1.63 12 Denmark 1099(1098.82)
9 Sweden 1.57 14 TItaly 1052(1052.49)
10 Croatia 1.56 15 England 1047(1046.98)
11 TItaly 1.55 17 Croatia 1018(1017.91)
12 Netherlands 1.55 18 Sweden 998(997.82)
13 Iceland 1.43 19 Wales 985(984.56)
14  Wales 1.40 20  Netherlands 952(952.49)
15  Slovakia 1.39 22 Iceland 910(909.55)
16 Russia 1.36 24 Northern Ireland 867(866.92)
17  Switzerland 1.36 28  Slovakia 817(816.92)
18  Serbia 1.32 29  Austria 815(815.41)
19  Scotland 1.27 32  Republic of Ireland 798(798.06)
20 Repupblic of Ireland 1.26 32 Scotland 798(797.76)
21  Ukraine 1.26 35 Ukraine 781(781.25)
22 Romania 1.23 36 Serbia 756(755.6)
23  Northern Ireland 1.23 37 Bosnia and Herzegovina  753(752.52)
24 Austria 1.22 41 Romania 737(736.67)
25  Czech Republic 1.22 42 Turkey 735(735.28)
26 Turkey 1.19 43 Bulgaria 719(718.88)
27 Bosnia and Herzegovina 1.17 46  Montenegro 681(681.41)
28 Montenegro 1.09 47  Greece 680(679.66)
29  Slovenia 1.08 48 Czech Republic 677(676.87)
30 Albania 1.07 53 Hungary 630(630.01)
31 Greece 0.97 59 Norway 573(573.29)
32  Hungary 0.95 62 Albania 553(552.62)
33  Finland 0.93 64 Russia 534(533.51)
34 FYR Macedonia 0.93 66 Finland 531(531.42)
35 Norway 0.93 69 Slovenia 522(521.72)
36 Bulgaria 0.90 76 FYR Macedonia 446(445.65)
37 Israel 0.86 83 Luxembourg 407(407.47)
38 Georgia 0.85 89 Estonia 397(396.53)
39 Belarus 0.74 90 Armenia 383(382.62)
40 Estonia 0.72 91 Cyprus 373(373.47)
41 Cyprus 0.71 92 Belarus 372(372.25)
42 Armenia 0.67 95 Faroe Islands 364(363.64)
43 Latvia 0.63 98 Israel 355(355.18)
44  Azerbaijan 0.62 104 Georgia 322(321.71)
45  Lithuania 0.60 117 Azerbaijan 281(281.31)
46  Moldova 0.60 132 Latvia 233(233.01)
47 Kazakhstan 0.59 137 Kazakhstan 220(220.1)
48 Faroe Islands 0.59 138 Andorra 215(214.8)
49 Luxembourg 0.58 149  Lithuania 179(178.96)
50 Malta 0.51 167 Moldova 111(110.7)
51 Andorra 0.41 177 Kosovo 97(97.49)
52  Liechtenstein 0.36 181 Liechtenstein 86(86.1)
53  Gibraltar 0.26 184 Malta 66(65.87)
54  San Marino 0.25 204 San Marino 11(11.09)
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per team is a simple, easy-to-compute, interpretable and strongly predictive model for soccer
games, both at domestic and national team level. Its best competitor is the Bivariate Poisson
model with one strength parameter. Both models lead to rankings that reflect well a soccer
team’s current strength. Further exploration of these models at national team level including all
teams worldwide is currently under investigation, with the aim of proposing an alternative FIFA
ranking.
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