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1 MOTIVATION

News organizations today rely on AI tools to increase efficiency

and productivity across various tasks in news production and dis-

tribution. These tools are oriented towards stakeholders such as

reporters, editors, and readers. However, practitioners also express

reservations around adopting AI technologies into the newsroom,

due to the technical and ethical challenges involved in evaluating

AI technology and its return on investments [3]. This is to some

extent a result of the lack of domain-specific strategies to evaluate

AI models and applications. In this paper, we consider different

aspects of AI evaluation (model outputs, interaction, and ethics)

that can benefit from domain-specific tailoring, and suggest exam-

ples of how journalistic considerations can lead to specialized met-

rics or strategies. In doing so, we lay out a potential framework

to guide AI evaluation in journalism, such as seen in other disci-

plines [16, 38]. We also consider directions for future work, as well

as how our approach might generalize to other domains.

2 EXISTING AI EVALUATION APPROACHES

2.1 From Benchmarking to Human-Centered

Evaluation

Present strategies of evaluating AI models and applications range

from generalized quantitative evaluation on benchmark datasets,

to scoped qualitative or mixed-methods evaluation in specific con-

texts. In the former approach, model performance is measured on

human-validated metrics, over particular benchmark datasets e.g.,

for image captioning [8], code synthesis [7], action detection [43],

and so on. While these evaluations can be conducted rapidly and

at scale, the metrics and benchmark datasets themselves capture

model performance over generalizednotions of "quality" and decom-

posed tasks, which limits the their capability for measuring models

performance in real-world scenarios [37].

On the other end of this spectrum, human-centered and HCI-

based approaches rely on situated and contextual evaluation of AI

models and applications, such as via highly-scoped user studies

(e.g. [47]), longitudinal studies (e.g. [27]), and human-grounded

metrics (e.g. [18]). Recent work illustrates the importance of such

scoped approaches, showing how AI models that rank lower on

benchmark datasets still perform well in user studies within in-

teractive applications [23]. While these processes allow for more
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nuanced evaluation in light of a particular application or context,

they can be difficult to conduct in a manner that is continuous, it-

erative, and at scale, which would help to keep pace with model

releases, and ensuing novel interactional affordances or ethical is-

sues [13].

Frameworks for evaluating efficacy of AI models and applica-

tions within a specific domain (e.g. journalism, medicine, law) can

help strike a balance between these approaches. For instance, domain-

specific frameworks can guide crafting and validation of domain-

specific task benchmarks (e.g. measuring not just "coherence" or

"readability" [19] but "newsworthiness" of LLM-generated news

summaries) and draw on domain-specific ethics and values for con-

ducting ethics-based evaluations and audits (e.g. operationalizing

and auditing for professional values like "immediacy" in journal-

ism [10]). To this end, frameworks must identify domain-specific

aspects, such as tasks, values, and stakeholder needs, that bench-

marking must be scoped toward. They must also provide action-

able guidance for continuous evaluation in real-world settings (e.g.

newsrooms, hospitals). The next section highlights how this has

been approached in prior work, and how journalism could benefit

from such domain-specific AI evaluation frameworks.

2.2 Domain-specific Frameworks for

Evaluation

Priorwork on developing domain-specific evaluations ofAImainly

exists in the context of healthcare [32, 38, 42] and law [16]. Similar

to journalism, medical and law practitioners’ concerns for the de-

ployment of AI into real-world use cases stem from the lack of met-

rics for evaluating domain-specific quality and ethical alignment.

In the medical domain, researchers tackle this issue by proposing

a framework that can be incorporated in various stages of model

development and deployment, with an emphasis on assessing ethi-

cal dimensions of models including privacy, non-maleficence, and

explainability [38]. While parts of this framework can be applica-

ble to journalism, use-cases of AI and ethical concerns in journal-

ism differ from medicine given the public nature and the scope of

potential harm caused, calling for the development of journalism-

specific frameworks. Such frameworks for benchmarking can sup-

plement qualitative evaluationmethods, since they can capture cer-

tain aspects of real-world usage scenarios while allowing for iter-

ation and suggesting potential directions for re-design.

The Partnership on AI (PAI) has offered resources to guide AI

procurement and use in newsroom, which organize and categorize

useful AI tools, and suggest different ways of measuring the out-

comes they produce in deployment [33]. Our work builds in this

direction, but offers more specific guidelines on evaluating AI for

journalism for both researchers and practitioners, and with addi-

tional focus on human-AI interaction as a site of evaluation.

http://arxiv.org/abs/2403.17911v1
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3 BLUEPRINTS FOR AI EVALUATION IN

JOURNALISM

This section presents three considerations that evaluations of AI

in journalism can include and operationalize: (1) quality of model

outputs, based on editorial goals and news values (2) quality of in-

teraction with AI applications, based on needs and work processes

of stakeholders (3) ethical alignment, based on professional values

and newsroom standards. A useful framework would support prac-

titioners in evaluating AI models and applications along these di-

mensions, in a manner that is flexible, iterative, and provides feed-

back for future designs. To actualize these domain-specific metrics,

we believe methodologies that invite the collaboration between

practitioners and researchers, such as co-design and participatory

design, are necessary.

3.1 Quality of Model Outputs

To evaluate the quality of AI model outputs, a suite of automatic

evaluation metrics and human assessments have been proposed

[28]. While some of these automatic evaluation metrics can be ap-

plied to assess output quality for specific journalistic tasks such

as text summarization [22, 25], machine translation [15, 34], and

object detection [26], many other journalistic tasks would bene-

fit from evaluation strategies that center more on human assess-

ments. These human assessment evaluationmethods are often gen-

eralized based on the modality of generation but are not domain-

specific. For example, for generated text, human assessments tend

to focus on clarity, fluency, accuracy, and coherence of the output

[19]. While these criteria translate well into the domain of journal-

ism, they overlook nuances specific to journalistic writing practice

or context, such as specificity or the provision of adequate context.

Similarly, for image generation, existing metrics focus mainly on

image fidelity, alignment, and counting [12, 36, 41], with a few ex-

ceptions that look at social biases, robustness, and generalization

[2, 9] but lack consideration of editorial judgments around e.g. im-

age framing.

To tailor evaluation strategies towards journalistic uses of AI, re-

searchers and practitioners can draw from news values that guide

editorial decision-making. The definitions of news values remain

fluid and subjective [35], but some of these can be evaluated in

model outputs, for instance, in the case of AI-generated news sum-

maries. These elements include controversy, surprise, timeli-

ness, negative or positive overtones, and news organization’s

agenda [17]. Additionally, the ability of AI tools to support creativ-

ity is also important for reporters. Examples of creativity support

includes producing varied but relevant outputs, and maintaining

professional tonality.

3.2 Interactions with AI Systems

Recent work has called attention to different aspects of in-situ in-

teractions with AI systems that may lend themselves well to auto-

mated evaluation metrics. These aspects include the ease, enjoy-

ment, and feelings of ownership that users experience when en-

gaged in tasks like question-answering, solving crossword puzzles,

and generating metaphors with AI [23]. Human-AI interaction can

also be evaluated by the long-term goals that a system facilitates,

such as promoting personal growth and emotional resilience

for users [6]; making connections outside users’ comfort zone [20];

and allowing customizationof applications or appropriation for

novel use-cases [1, 44].

Within journalism, the in-situ interactions and long-term pro-

cesses that a system could optimize will vary by stakeholders and

the tasks facilitated by AI. For instance, AI systems that provide

writing feedback to reporters may be evaluated based on the new

perspectives or angles they add to a reporter’s writing [30] (e.g.

bymeasuring semantic similarity between initial and post-feedback

writing). How interactions with AI are configured also impacts the

choice of metrics: minor errors in AI outputs (i.e. low accuracy)

may bemore acceptable to reporters engaged in brainstorming and

ideation with text or image models [31], than to readers who only

view a final product. Recent work also suggests a desire for long-

term skill development among reporters who use AI systems

[31], which could be evaluated based on periodic user surveys and

AI usage analytics over time. A shared criterion of interaction qual-

ity across stakeholders could be the enjoyment they experience

when engaged with an AI system, which applies both to reporters

who use specific tools in news production (e.g. [39, 46], or to read-

ers who rely on AI (e.g., when solving crossword puzzles [23]).

Datasets to evaluate these metrics will derive from users’ inter-

actions with AI systems, rather than solely model outputs like in

Section 3.1. Understanding the short and long-term goals of differ-

ent stakeholders, as well as the configurations of their interactions

with AI, can support the design of such interaction metrics.

3.3 Ethical Alignment of AI Systems

Different professions and institutions adhere to different ethical

principles and codes of conduct [10, 21]. Recent work suggests

that subjective and multivalent principles of journalistic prac-

tice (e.g. truth, independence, accountability) can be translated to

AI systems via value-sensitive design approaches and ethics-based

audits [11]. Evaluation practices can also measure adherence to

codes of conduct and style guides of different newsrooms to be

more sensitive to institutional needs (e.g. [14, 40, 45]). This transla-

tional exercise can also provide practitioners with an opportunity

to reflect on the inherent limitations of their existing codes and

guides [4, 5].

Challenges to general-purpose evaluations of ethics and values

hold for domain-specific evaluations as well: operationalizing and

evaluating ethics can be difficult because generative AI models can-

not produce consistent, causal explanations for their outputs [24].

Fine-tuned versions of the samemodel can also exhibit drastic vari-

ations in their adherence to ethical values. Journalism’s orientation

toward timeliness of communication also exacerbates these chal-

lenges. This further indicates the need for iterative and continuous

evaluations of AI models and applications [29]. It also indicates a

need for technical innovation to support operationalization and of

journalism-specific ethics and values in AI systems.

4 FUTURE DIRECTIONS AND CONCLUSION

In this position paper, we summarized current approaches for AI

evaluation, and made recommendations for additional journalism-

specific evaluation criteria across three different aspects of AI eval-

uation. The primary goal of this paper is to call for researchers and
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practitioners to come together and develop domain-specific frame-

works for evaluating AI systems, so the adaptation of AI tools into

newsrooms become easier and more equitable. Such frameworks

can enable the development of procurement guidelines for AI tools

in newsrooms, as seen in prior work [33]. We further hope this

approach can empower stakeholders to create newsroom-specific

custom evaluation datasets, for both short-term and longitudinal

assessments of the technology.
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