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Abstract
A core assumption of explainable AI systems is that expla-
nations change what users know, thereby enabling them
to act within their complex socio-technical environments.
Despite the centrality of action, explanations are often orga-
nized and evaluated based on technical aspects. Prior work
varies widely in the connections it traces between informa-
tion provided in explanations and resulting user actions. An
important first step in centering action in evaluations is un-
derstanding what the XAI community collectively recognizes
as the range of information that explanations can present
and what actions are associated with them. In this paper,
we present our framework, which maps prior work on in-
formation presented in explanations and user action, and
we discuss the gaps we uncovered about the information
presented to users.
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Introduction & Background
Artificial intelligence systems are increasingly involved in
high-stakes decision making, such as healthcare, financial,
and educational systems [32, 9, 26, 14]. Many have called
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for explainable AI (XAI)—AI systems that provide explana-
tions for their reasoning or responses in a way that humans
can understand [32, 9, 26]. Through the explanations, de-
velopers and researchers aim to create systems that sup-
port user trust [26, 36, 20, 41, 24], transparency [26, 24, 29,
3], and control and agency [3, 40, 21, 13, 33, 8, 19, 38].

Explanation systems are often organized and evaluated
based on technical aspects. For example, many papers [2,
6, 7, 35, 4] organize and address explainability based on
families of methods that are either inherently explainable
(e.g. rule-based models, decision trees) or help with post-
hoc explainability (e.g. Partial Dependency Plots, counter-
factuals, sensitivity analysis). Some have noted the overall
lack of papers evaluating XAI methods and quantifying their
relevance [37], and those proposing models often focus on
technical quantiative measures [2, 4, 35], such as accuracy
when performing a task [4, 35, 37], F1, and sensitivity [4].

While technical aspects are important for verifying algo-
rithmic correctness, they don’t speak to the core assump-
tion of XAI systems: explanations change what users know,
thereby enabling them to act in response to AI decisions [33,
38, 12]. The terms actionability and actionable insight
are used to reference explanations’ abilities to enable prag-
matic action via the information they provide [28, 34, 11, 27,
42, 44, 39]. However, Liao, Gruen, and Miller [30] note the
gap in delivering satisfying user experiences. Researchers
are increasingly calling for greater consideration of users’
actions when designing and evaluating XAI systems [28,
19]. Similarly, Ehsan et al. [17] propose incorporating social
transparency—making visible socio-organizational factors
that govern AI to help users more effectively take action.

Not only is there no consensus on what kinds of informa-
tion can and should be presented to users, but there is
also a relative lack of connection between types of expla-

nations and what the resulting user actions are expected
to be. Several papers [32, 26, 15, 43, 5, 1, 9] attempt to
categorize information that explanations communicate, but
many don’t elaborate expected user actions. Others make
a connection with user action by evaluating explanations on
users’ ability to act on unexpected behaviors [11], change
an outcome [36, 27, 10], or achieve a desired result [39, 18,
22]. But these evaluate specific technical solutions.

We argue that the evaluation of the effectiveness of expla-
nations be tied directly to the actions a user can take in re-
sponse. Establishing action as a new heuristic for judging
explanations is key to forcing designers to consider the ex-
planation’s integration with users’ broader system factors.
However, the lack of consensus on information that XAI
systems present and what corresponding user actions one
should want or expect can make the design and evaluation
of XAI systems challenging.

We help reorient the evaluation of explanations by creat-
ing a framework that attempts to tie information presented
by XAI systems to user action. We use existing literature
to synthesize 10 categories of information that can be pre-
sented by XAI systems. For each category, we explicitly list
actions users can take in response. Through our frame-
work, we provide a more unified starting place to examine
the relationship between information provided in explana-
tions, user actions, and ultimate XAI interaction goals of
trust, transparency, control, and agency.

Creating the Framework
Using existing XAI literature, we consolidated a framework
mapping the kinds of information in explanations to asso-
ciated actions. Papers focused on cataloging technical
methodologies as opposed to information in explanations
were excluded. After reading the abstracts in the search



results, the authors selected 30 survey papers for deeper
reading. Of these, 11 met the inclusion criteria: [1, 9, 26,
31, 25, 32, 16, 30, 4, 45, 23]. We iteratively developed the
categories in our framework. We began with the categories
listed out by the ICO & Turing Institute [1], cataloguing in-
formation types and any actions mentioned as intended or
potentially resulting from the information provided. If a pa-
per included a type of information that could not be clearly
classified, we redefined our framework’s categories, and
then re-classified all information types and corresponding
actions. Our framework isn’t exhaustive, but a starting point.

The Framework
Our Framework, displayed in Figure 1, has 10 categories of
information that are thematically grouped. Explanations with
information on Model Exposure (pink) categories com-
municate how the model relates to the AI’s decision to the
user. Explanations with providing information on Model Ac-
countability (orange) communicate about the creation, ver-
ification, and implications of the AI model. Finally, explana-
tions providing information on Model Context (purple) com-
municate how the model aligns with externally produced
information and its assumptions about users’ context.

To the right of each category we list actions users can take
in response. Jørnø & Gynther [28] and Fanni et al. [19] ar-
gue that an actor’s “action capabilities” encompass mental
actions or choices, which can impact physical actions or
interactions. Thus, actionability can manifest as mental or
physical actions. Consequently, we define three classes of
actions. (1) Mental State Actions are changes in users’
mental state that impact what they understand or believe
about the system and how they can act in response. (2) XAI
Interactions are the interactions users have with the XAI
interface features, such as clicking buttons or toggles to
request more information. Finally, (3) External Actions

are actions users can take in response to and outside of
the XAI system, such as reaching out to another person
for help or ceasing to use the system. We acknowledge
Mental State Actions are not traditionally considered part
of “actionability“. However, they constitute responses that
potentially influence XAI Interactions and External Actions.
For example, deciding on the continued usage of a system
is neither an XAI Interaction nor an External Action but can
impact both. Consequently, Mental State Actions are an
important part of actionability that need to be considered.

While the user has a broad range of explanation types and
resulting Mental State Actions, there are surprisingly limited
potential XAI Interactios or External Actions. There are only
7 distinct XAI Interactions and 6 distinct External Actions.
Further, the distribution of papers presenting explanations
with information types across the typology revealed several
gaps. Almost every paper (12 total) mentioned explana-
tion(s) with Individual-Centered, Modus Operandi, Compar-
ison, and Model Fairness information. However, only about
half (4-6) of papers mentioned explanations with Model Per-
formance and Model Input Environment information. Ex-
planation examples with information on Model Implications,
Model Responsibility, Externally Produced Knowledge, and
Usage Assumptions were mentioned in no more than 2 pa-
pers. This may indicate a need for AI creators to expand the
kinds of information and actions they can provide to users.

Conclusions
A core underlying assumption is that explanations are use-
ful to users and that usefulness consequently manifests
itself in the potential for action, both mental and physical.
Through the examination and synthesis of existing litera-
ture, our framework contributes a first step in developing
transferable evaluations centered on assessing explana-
tions based on users’ actions, and we uncovered several



gaps in the literature around the kinds of information pro-
vided by explanations. Addressing the gaps may result in
a richer design space of XAI systems that afford a greater
range of actionability to users. The framework places ac-
tionability as the locus of successful XAI systems and sug-
gests new opportunities to evaluate the effectiveness of
explanations as an increase in the action potential of users.



Figure 1: The Framework maps 10 categories of information XAI systems contain to actions distinguished by how users interact with their environment.
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