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Abstract— Contact can be conceptualized as a set of con-
straints imposed on two bodies that are interacting with one
another in some way. The nature of a contact, whether a point,
line, or surface, dictates how these bodies are able to move with
respect to one another given a force, and a set of contacts can
provide either partial or full constraint on a body’s motion.
Decades of work have explored how to explicitly estimate
the location of a contact and its dynamics, e.g., frictional
properties, but investigated methods have been computationally
expensive and there often exists significant uncertainty in the
final calculation. This has affected further advancements in
contact-rich tasks that are seemingly simple to humans, such
as generalized peg-in-hole insertions. In this work, instead of
explicitly estimating the individual contact dynamics between
an object and its hole, we approach this problem by investi-
gating compliance-enabled contact formations. More formally,
contact formations are defined according to the constraints
imposed on an object’s available degrees-of-freedom. Rather
than estimating individual contact positions, we abstract out
this calculation to an implicit representation, allowing the robot
to either acquire, maintain, or release constraints on the object
during the insertion process, by monitoring forces enacted on
the end effector through time. Using a compliant robot, our
method is desirable in that we are able to complete industry-
relevant insertion tasks of tolerances <0.25mm without prior
knowledge of the exact hole location or its orientation. We
showcase our method on more generalized insertion tasks, such
as commercially available non-cylindrical objects and open
world plug tasks.

I. INTRODUCTION

Robots interact with the world through physical contact.
Contact has been studied in the literature for decades
and can be conceptualized in a number of ways, but in
its most fundamental sense, contacts are interaction-based
constraints imposed on the relative motion between objects.
As humans, we often rely on contact to change the state of
our environment, whether it be removing keys from a bag
or cleaning a dirty dish. While seemingly simple, contact is
quite complex in that it requires accurate parameter estimation
in order to sufficiently predict its current state, i.e., static,
stick-slip, or slip conditions. Previous works have tried to
estimate various properties of contact during manipulation,
e.g., the location of the contact [1], frictional and curvature
properties [2], [3], slip conditions [4], modes [5], etc., but
have witnessed many bottlenecks.

Fundamentally, contacts define constraints and constraints
define the available degrees-of-freedom (DOF) of an object.
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Fig. 1. Object insertion can be conceptualized as the continual addition and
modulation through time of an object’s constrained degrees-of-freedom. By
continually modulating forces once constraints are detected, tight tolerance
insertion can be achieved without a priori knowledge of the object geometry
or exact hole pose for convex objects.

In free space, an object is able to move in 6-DOF, but a non-
cylindrical peg inserted into a slot is only able to translate
in 1-DOF. When there exists some degree of uncertainty in
the estimation of contact, the calculated constraints can be
non-representative of the system’s true state. For instance,
let’s assume there exists little uncertainty in the estimation of
point contact locations. Here, we can claim that the restricted
motion of an object with two point contacts may be similar
or even identical in nature to the constraints imposed on an
object with 100 edge point contacts on or near a single axis.
In a practical sense, this distinction is insignificant in the free
DOFs of the object, and merely adds needless computation.
Now, let’s be more practical and assume there does exist some
degree of uncertainty in our estimation of contact locations,
even in a single point out of the 100. This calculation may
estimate additional constraints placed on the object which are
not physically valid. Thus, instead of explicitly defining the
state of every contact between a robot and its environment,
which is quite computationally expensive and is gravely
subject to uncertainty, we in this work abstract out individual
contact properties and are conversely interested in contact
formations, or more generally, the constraints placed on an
object’s motion when in contact with its environment.
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Contact formations can be conceptualized as a grouping of
contact sets that constrain an object in similar ways [6]. For
instance, various contact scenarios could constrain either some
translational DOFs, e.g., sphere in tube, or all translational
DOFs, e.g. sphere in case. A set of all contact groupings that
constrain an object in a similar way would be considered in
a contact formation. Traditionally, acquiring and maintaining
contact formations on a real robot platform was difficult due
to an inability to practically modulate forces between two
bodies over time. Within the past decade, a great deal of work
has addressed the concept of dealing with uncertainty in robot
mechanics, specifically, the ability to adapt to external forces
as to continually maintain contact with an object. Compliant
manipulation frameworks, either in the form of active [7] or
passive architectures [8], [9], enable this ability – allowing
a system to kinematically adapt to uncertain environments
and maintain desired forces. This introduces the idea of
compliance-enabled contact formations, which we leverage
as to maintain a desired type of contact during the task.

Combining these ideas, this work investigates the appli-
cability of controlling tight tolerance insertion tasks via the
chaining of contact formations. Specifically, we leverage
a control approach that modulates forces in controlled
directions, and by continually adding forces along specific
axes until contact, i.e., constraints, we transition between
different contact formations until the task is successfully
completed (Fig. 1). This approach utilizes external contact
as a means of constraining the object’s potential motion
[10], which in turn limits uncertainty of the object’s current
configuration. While utilizing a compliant robot, this system
aids in both acquiring and maintaining a desired contact
configuration. Moreover, we show how in-hole jamming
is limited due to this compliance, functioning similarly in
concept to a remote center of compliance (RCC) device [11],
[12]. Retrofitted with a 6-axis force/torque sensor at the end
effector and an in-hand camera, we monitor the state of the
object and servo to its desired goal forces and axial alignment.
We can thus summarize our contributions:

1) Our algorithm is an object-agnostic procedure that does
not require a priori knowledge of the object geometry,
exact hole position, or exact hole orientation. To our
knowledge, this is one of few works that can insert an
object when axial rotation is largely unknown (> 40°).

2) We do not require complex analytical or computationally
expensive learned models of contact dynamics; our
method relies solely on the idea of validating constraints
via axial force application through time.

3) This method is conceptually straightforward, as it solely
relies on following a trajectory in Contact Formation-
space, and can thus be controlled physically in real-time.

4) We justify the true utility of using compliant systems
for tight tolerance, contact-rich tasks by quantifying
reconfigurability. Specifically, we quantify slip condi-
tions for our underactuated hand, and show how the
hand reorganizes its contacts when excessive forces are
applied, which helps eliminate in-hole jamming.

II. RELATED WORK

Generalized robot assembly has been investigated for
decades and the development of a practical, holistic solution
has faced many challenges [13]. Elucidating this grand
challenge can be found in previous works with: standard
cylinders [7], [14], [15], multiple-peg objects [16], [17],
soft or compliant cylinders [18], industrial inserts [19], and
standard open world objects [8], [9], [20]–[22]. In an attempt
to extend previous work, we outline a method that underscores
the idea of generalization, in that our method provides a
practical solution to insertion when there exists positional
and orientational uncertainty of the hole pose, with minimal
knowledge of the object geometry.

Peg-in-hole Assembly: Approaches to solving generic
assembly tasks can be divided into two different categories:
analytical approaches and learning-based approaches. In the
former, approaches utilize contact models to reason about
their state conditions [17], [18], controlling the manipulator
based on force/torque sensor readings [14]. Model-based
approaches using vision and rigid systems have been difficult
to implement, as uncertainty in the manipulator’s pose can
create dangerously large forces [23]. Compliance has become
a key component to overcoming this issue, both in software-
based [7] and hardware-based [8], [9] architectures. Many
works have disregarded the use of a dexterous robot hand,
directly attaching the object to the manipulator. Two previous
works utilized a dexterous hand [24], [25], where both found
it advantageously extended the robot’s workspace. In both
cases, a priori knowledge of the hole pose was available.

Learning-based solutions help deal with robot sensor and
model uncertainty, and typically require physical environment
exploration or some form of human-in-the-loop demon-
strations [15]. Reinforcement learning and self-supervised
learning [26], [27] have been popular approaches, allowing
the robot to interact with its environment and sufficiently
explore desired regions [19], [20], [28]. Notably, learning
manipulation policies is both, time consuming and data
intensive, which increases the chance of damaging the robot.

While attempting to maintain a model-free nature but also
limiting the need for expensive exploration, we are interested
in forming a solution that can achieve reliable insertions of
tight tolerance by solely using force data and vision feedback,
and without a priori knowledge of the hole pose.

Contact Formations: Contact formations “provide a
qualitative description of how 2 or more objects make contact
with one another (e.g., vertex to surface, edge to edge)”
[6]. This formulation is advantageous, in that it implicitly
defines the contacts and thus constraints imposed on an
object’s motion. Contact formations have been computed in
different ways: from using CAD models [29] to probabilistic
frameworks based on interaction [30]. From knowing these
contact formations, other works have utilized them in planning
[31] and control frameworks [32]. Fundamentally, the ability
to group together different combinations of contacts that
define the same or mere similar constraints, can be a powerful
tool for defining more capable robot manipulation capabilities.



Fig. 2. The Contact Formation-space (CF-space) of an insertion task can be conceptualized as an explicit organization of different contact formations that
share borders according to constraint similarity and possible transitions. Transitions between contact formations are represented when constraints are added
or removed to the state of an object. By controlling paths through a CF-space from light (few constraints) to dark (more constraints), the object follows a
progression towards insertion. Note: This depiction of contact types is not exhaustive and other intermediate formations may be possible.

III. METHODOLOGY

We are interested in solving a generalized peg-in-hole prob-
lem by leveraging compliance-enabled contact formations –
the concept that object constraints can be more easily acquired,
broken, and remade when operating within a compliant robot’s
“reconfiguration range” [33], [34]. Conceptually, compliance
allows the robot to convert a traditionally difficult force
control problem into a velocity control problem, as there now
exists an ability to “take up the slack” in control uncertainty.
A F/T sensor is leveraged to modulate forces closed-loop.
This is particularly advantageous for maintaining a contact
formation, as now we can more easily ensure the system
maintains constraints while operating along a desired path.

Fundamentally, contact formations (CF) represent group-
ings of discrete positional and physical relationships. Solving
the insertion problem can thus be framed as a traversal from
a starting, CF0, toward a final, CFn, transitioning through
intermediate CFs, i.e., CFpath = {CF0, CF1, . . . , CFn}
(Fig. 2). In this work, we demonstrate the efficacy of this
approach by following a fixed path in CF-space.

Formally, transitioning from one CF, CFn, to a new CF,
CFn+1, along a trajectory in CF-space is comparable to
adding or removing constraints on the object’s available DOF.
Thus, the role of compliance serves to ensure that a single
desired CF is maintained while manipulation occurs via force
modulation, and transitions are detected when the motion of
the object is impeded by the environment. Once a variational
change in F/T signals is felt by the robot, a contact formation
change is detected, and the system has transitioned in CF-
space. Conceptually, move along a single axis until no longer
possible, and while maintaining that force, move orthogonally
until another constraint is added.

The theory of controlling compliance-enabled contact
formations is that constraints can be continually added until
the task of insertion is complete. Notably, any DOF that is not
currently constrained can be controlled to perform other tasks
without modifying the current CF of the system. For example,

an edge contact between an object and the hole’s surface
allows the robot to explore via sliding until a lateral force is
detected and thus a new CF is achieved. It is important to
note that under this additive force contact process, explicitly
estimating the current CF is possible if the starting CF is
known and the transitions can be detected via F/T signals.

A. Assumptions and Prior Knowledge
By relying on F/T sensing for environment perception, our

algorithm leverages the following priors:
• The object starts in a stable, centered, and upright grasp.

This grasp is expected to be maintained.
• CF0 has 0 constraints, i.e. 6 free DOFs starting in space.
• The hole is somewhere within a known 2D workspace

boundary in the XY-plane (e.g., 10cm exploration size).
• Minimal knowledge of the object’s face type is known,

but assumed to be convex or near-convex.
• There exists a hole with low contact friction and positive

tolerance matching the peg within the workspace.
• Within the workspace, no objects other than the hole,

plane, and manipulated object are present. This ensures
the CF transitions match the preset CF-space path.

B. CF-space Insertion Algorithm
Our approach follows a desired path in CF-space, as defined

through a total of 7 steps. For ease of notation, we set the
object frame as an orthogonal frame with the x−axis pointing
toward the direction of the object motion on the hole surface
plane, and the z−axis pointing downward. For each step, we
provide a corresponding implicit CF control target. Although
we define a set of values for force modulation, this is for
clarity and is in practice robot-specific (see Sec. IV-A).

Let’s assume we can detect the object forces, F =
{fx, fy, fz} and torques, T = {τx, τy, τz}, during insertion.
Our goal is for the robot to traverse through a desired
trajectory of CFs {CF0, . . . , CF5} (Fig. 1). We outline the
algorithm in pseudocode below, and provide a breakdown on
a real robotic system in Sec. IV-B.



Insertion Pseudocode
1) Reaching the hole plane

Current constraints: None
Target constraint: (+fz , 1.5N)
Implicit CF targets: (CF1) point or edge on face
Additional motions:
• Lateral exploration within the workspace area, ran-

domly selecting x/y direction within workspace limits.
• In-hand manipulation to tilt the object toward the

direction of the lateral motion, to ensure an edge/face
contact, and avoid a face/face contact.

2) Searching for the hole
Current constraints: (+fz , 1.5N)
Target constraint: (+fx, 0.7N)
Implicit CF target: (CF2) 3-point contact with hole
Additional motions: Lateral exploration as previous step.

3) Wedging
Current constraints: (+fz , 1.5N), (+fx, 0.7N)
Target constraint: (+fy , 0.7N)
Implicit CF target: (CF3) 4-point contact with hole

4) Rotational alignment of peg and hole
Current constraints: (+fz , 1.5N), (+fx, 0.7N), (+fy,
0.7N)
Target constraint: (+τz , 0.1N/m)
Implicit CF target: (CF4) hinge-type contact
Note: This step applies only to non-cylindrical objects.

5) Correcting upward tilt
Current constraints: (+fz , 1.5N)
Target constraint: (+fx, 0N), (+fy , 0N)
Implicit CF target: (CF5) Prismatic joint-type contact
Additional motion: Rotation around x− and y − axes
to minimize the accumulated angle between the object
and the hand due to fingertip slip during the previous
steps. This rotation is performed both with in-hand
manipulation and arm motions.
Note: The lateral forces are now minimized to avoid
jamming the object. This also helps centering the object
in the hole if the peg rotation is not perfectly centered
on the object’s center of mass. The angle information is
provided by extracting the 3D pose of a marker placed on
the surface of the object as seen from the palm camera.

6) Inserting peg
Current constraints: (+fz , 1.5N), (+fx, 0N), (+fy , 0N)
Exit condition: When the fingertips start touching the
hole surface or the object hits the hole bottom, we
switch to disengagement. This can be detected as a
sharp increase in fz .
Note: We have already reached the CF state that enables
peg insertion, thus the system maintains it while the final
free DOF, i.e., the z − axis translation, is controlled to
perform the final insertion motion.

7) Detaching hand grip and retracting arm
Action: The hand opens and the arm returns to its origin
position in an open loop motion.

Fig. 3. A Yale OpenHand Model O and a 6-axis force/torque sensor are
affixed to the end of Barrett WAM manipulator. Inside of the palm of the
hand, an in-hand camera setup is fabricated as to monitor the state of the
object during manipulation via an AprilTag.

IV. EXPERIMENTS

We evaluate our algorithm on a low-impedance manipulator
and a compliant, underactuated hand (Fig. 3). The manipulator,
a 7-DOF Barrett WAM, utilizes the RRTConnect algorithm
via OMPL [35] for global planning and is controlled locally
via a Jacobian-based velocity controller. The manipulator
is imprecise due to an inaccurate internal model of its true
system dynamics, which further challenges our algorithm’s
robustness. The end effector, an adapted Yale OpenHand
Model O [36], is a passively adaptive hand consisting of three
actuators and six total joints. The hand is not equipped with
tactile sensors or joint encoders, as to reduce weight and cost,
making estimation of the true system state difficult during
manipulation [37]. Modifications to the readily available open
source design include rounded fingertips, as to facilitate in-
hand manipulation, and bearings within the joints. An in-
hand manipulation controller is devised, as in [38], and is
utilized for fine motor control of object orientation up to ±20°.
Connecting the hand to the arm is a 6-axis ATI force/torque
sensor sampled at 30Hz. Finally, a camera is fabricated into
the palm of the hand as to enable the monitoring of object
poses during manipulation via AprilTags.

The algorithm is validated through a variety of experiments.
In our first experiment, we develop a linear pusher, comprised
of a leadscrew and a stepper motor, to displace objects along
different axes of the gripper’s workspace. During this test, we
measure the forces exerted on the object by the pusher and
note the amount of force the gripper can resist before fingertip
slip occurs. Thereafter, we test our algorithm with tight
tolerance tasks (<0.25mm), objects commercially available
in a children’s insertion toy, and two tasks within the NIST
Assembly Task Board #1 [39] (Fig. 4).

A. Quantifying Axial Compliance

First, we are interested in quantifying the compliance of our
system. Conceptually, a purely compliant system with fixed
contact could comply indefinitely until a hard stop is reached,
but practically for grippers, there exists a limit in which
the forces applied to an object can be resisted by fingertip
contacts. This information is valuable to quantify as it enables
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Fig. 5. An object is pushed along the (a) x−, (b) y−, and (c) z − axes
with a linear pusher to evaluate the force plateau along each dimension, or
more specifically, the amount of force the hand can resist before slip occurs.

the system to predict when slippage may occur, which can
in turn be used to inform contact formation switching.

Given the linear pusher operating at a velocity of 3mm/s,
we push the (a) circle grasped by the manipulator along the
x−, y−, and z − axes for a duration of 12 seconds and
over six trials. After each trial, the system is systematically
reset. We record the forces measured by the F/T sensor via
the pusher during each trial, and plot the mean and standard
deviation for each evaluation (Fig. 5). Note that for each linear
push, a force plateau is distinguishable, at ∼1.5N for the x−
and y − axes (Fig. 5(a)(b)) and at ∼4N for the z − axis
(Fig. 5(c)). These plateaus correspond to the hand’s ability to
resist forces in corresponding directions, or more physically,
the point at which static friction of the contact is overcome

and a new hand-object configuration is realized.
This data is valuable in that we are able to quantify the

stable contact operating region given an external force. Once
a force level is exceeded, sliding occurs and the hand-object
state reconfigures until stability is once again realized. We
can use these force plateaus for defining modulating forces
for our algorithm in Sec. IV-B.

TABLE I
METRICS FOR OBJECT INSERTION EXPERIMENTS

Obj. Tol. (mm) Explore (s) Insert (s) Offset (°)
(a) circle 0.25 37.2 28.0 ∗n/a
(b) pear 0.25 31.7 94.7 41.1
(c) l. triangle 0.25 34.1 65.8 29.8
(d) rectangle 0.25 44.2 48.1 27.1
(e) cube 3.0 27.3 30.8 29.2
(f) s. triangle 2.1 45.1 21.2 25.0
(g) clove 2.6 63.2 19.4 23.7
(i) plug 0.9 29.8 31.0 36.2
(j) gear 0.1 27.9 21.4 ∗n/a

∗not applicable for pegs with circular faces

B. Tight Tolerance Insertion

Rectangle Case Study: With knowledge of the force
plateaus, we utilize this information to acquire and maintain
contact formations. Leveraging our algorithm (Sec. III), we
set target modulating forces to 0.7N, 0.7N, and 1.5N along
the x−, y−, and z − axes, respectively, which is ∼40-50%
of the maximum force before slippage occurs.

In our first experiment, we attempt to insert the tight
tolerance (d) rectangle with an initial 27.1° axial offset along
the object’s z − axis (Fig. 6(a)). Notably, the exact location
of the hole is unknown, and the system is given a search
space of 8cm×8cm. The process begins by first finding a
downward force, i.e., the first constraint, and choosing an
exploration direction (in this case +fx) within the search
space until an additional constraint is detected (transition
3). The additional force spike on the x − axis signals the
hole’s perimeter and a force transition begins. This process is
evidenced in Fig. 6(b), where forces are continually added and
modulated around setpoints for states 1-7 (Sec. III). Note that
although compliant, the WAM robot has difficulty modulating
velocities, and thus forces, due to controllability. Moreover,
forces in Fig. 6(b) are represented in the world frame to
represent rotations during steps 4-5 and are smoothed for
clarity, so force spikes are not represented.

All Objects: Generalization is underscored by our ability to
insert objects of varying convex, or near-convex, geometries
– specifically pegs with circle-, pear-, and triangle-shaped
faces (Fig. 4). The result of our evaluations with tolerances,
exploration times, insertion times, and offset degrees is
presented in Table I (a-d). During evaluation, we noted that
the (a) circle was the easiest, as it did not require z − axis
offset control. The other objects (b-d), were more difficult
and posed various challenges. First, the initial offset was
different for each, ranging from 27.1° to 41.1°. Objects (c)
and (d) had sharp edges which encouraged jamming, whereas
object (b) presented difficultly due to its non-convexity.



Fig. 6. The progression of insertion is depicted in (a), where an object goes from free space (0 constraints) to inserted (5 constraints) into its goal
configuration. (b) During this process, forces are modulated and added through different steps in the insertion task (forces are smoothed and placed in the
world frame for clarity). (c) We evaluate this algorithm with tight tolerance tasks, child insertion toys, and objects from the NIST Task Board.

Overcoming these challenges, we were able to complete
insertions successfully with objects of <0.25mm tolerance
and without prior knowledge of the hole pose (Fig. 6(c)).

C. Open World Insertion Tasks
Beyond our tight tolerance evaluations, we were interested

in applicability of our method to open world tasks. Our first
experiment is with a commercially available children’s toy
consisting of different object geometries and with a hole
tolerance of approximately 2.5mm. Similar to the previous
experiments, the pose of the hole is unknown, and the search
area is now confined to a 6.4cm×6.4cm space (denoted
in green in Fig. 4(h)). Here, we attempt to challenge the
exploration component of our algorithm, ensuring the object
started at the edge of the search space. All insertions were
successfully completed, with the longest exploration phase of
63.2 seconds for the (g) clove. Interestingly, the non-convexity
of the clove did not complicate the insertion process as much
as originally believed, as the round edges of the object helped
limit jamming from occurring.

Our final experiment evaluated plug and gear insertion from
the NIST Assembly Task Board (Fig. 6(c)). The gear task is
interesting in that the peg-in-hole paradigm is transformed
instead into a hole-on-peg schema. This was not a problem for
our system, as the search pattern was instead completed on
the bottom of the hole, i.e., the gear, instead of by using a peg.
Similarly, the plug insertion with a relaxed plunger spring was
completed with ease, which started with an z − axis offset
of 36.2°(Table I). These tests underscore the practicality and
generalizability of our method, which is further showcased
in the supplementary video.

V. DISCUSSIONS AND FUTURE WORK

This work presents a method that leverages compliance-
enabled contact formations as a step towards generalized,

tight tolerance insertion for robots. Our algorithm is simple,
yet mechanically grounded, and exploits the concept of
reducing uncertainty through additive contact constraints,
i.e., manipulation funnels. Notably, in this work we do not
need to utilize costly learning frameworks or system-specific,
idealized analytical models – this method is effective yet did
not require a single equation to describe in detail.

The authors are excited about this preliminary exploration,
as our experiments illustrate validity of our approach for future
applications. As an attempt to not overclaim contributions,
the authors want to be forthcoming on known limitations that
will warrant future investigation:

1) We cannot claim theoretical guarantees that an insertion
will always be successful. In simulation, we verified
that convex objects of non-negative tolerances should
always succeed, but guarantees are not as clear for all
non-convex circumstances.

2) Hole geometry requires a low-frictional “platform” for
object exploration in order to find constraints. If this
platform has variable friction, contact states may be
transitioned prematurely and cause failure.

3) Negative tolerance insertion would be unlikely due to
the maximum forces the system can apply (Sec. IV-A).
A redesign of the end effector to apply a greater amount
of force (∼5-10N) would be beneficial for varied tasks.

Overall, the authors believe compliance will continue to
prove invaluable for future advancements in robot manipula-
tion. By investigating how to build more capable end effectors
and by developing robust control strategies for non-convex
object insertion, our method should prove to extend to a vast
array of everyday insertion tasks for service robots of the
future. Please find a complete overview of our motivation,
approach, and experiments in the supplementary video.
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