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Deployed AI systems often do not work. They can be constructed haphazardly, deployed indiscriminately, and promoted deceptively.

However, despite this reality, scholars, the press, and policymakers pay too little attention to functionality. This leads to technical and

policy solutions focused on “ethical” or value-aligned deployments, often skipping over the prior question of whether a given system

functions, or provides any benefits at all. To describe the harms of various types of functionality failures, we analyze a set of case

studies to create a taxonomy of known AI functionality issues. We then point to policy and organizational responses that are often

overlooked and become more readily available once functionality is drawn into focus. We argue that functionality is a meaningful AI

policy challenge, operating as a necessary first step towards protecting affected communities from algorithmic harm.

CCS Concepts: • Computing methodologies → Machine learning; • Applied computing → Law, social and behavioral sci-

ences.
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1 INTRODUCTION

As one of over 20,000 cases falsely flagged for unemployment benefit fraud by Michigan’s MIDAS algorithm [34],

Brian Russell had to file for bankruptcy, undermining his ability to provide for his two young children. The state finally

cleared him of the false charges two years later [51]. RealPage, one of several automated tenant screening tools produc-

ing “cheap and fast—but not necessarily accurate—reports for an estimated nine out of 10 landlords across the country”,

flagged Davone Jackson with a false arrest record, pushing him out of low income housing and into a small motel room

with his 9-year-old daughter for nearly a year [107, 108]. Josiah Elleston-Burrell had his post-secondary admissions po-

tentially revoked [106, 113], Robert Williams was wrongfully arrested for a false facial recognition match [90], Tammy

Dobbs lost critical access to healthcare benefits [116]. The repercussions of AI-related functionality failures in high

stakes scenarios cannot be overstated, and the impact reverberates in real lives for weeks, months and even years.

Despite the current public fervor over the great potential of AI, many deployed algorithmic products do not work. AI-

enabled moderation tools regularly flag safe content [80, 109, 139], teacher assessment toolsmark star instructors to be

fired [140, 159], hospital bed assignment algorithms prioritize healthy over sick patients [133], and medical insurance

service distribution and pricing systems gatekeep necessary care-taking resources [116, 159]. Deployed AI-enabled

clinical support toolsmisallocate prescriptions [182], misread medical images [66, 132], andmisdiagnose [180, 203]. The
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New YorkMTA’s pilot of facial recognition had a reported 100% error rate, yet the programmoved forward anyway [21].

Some of these failures have already proven to disproportionately impact some more than others: moderation tool

glitches target minoritized groups [45]; facial recognition tools fail on darker skinned female faces [31]; a hospital

resource allocation algorithm’s misjudgements will mostly impact Black and lower income patients [133]. However,

all failures in sum reveal a broader pattern of a market saturated with dysfunctional, deployed AI products.

Importantly, the hype is not limited to AI’s boosters in corporations and the technology press; scholars and policy-

makers often assume functionality while discussing the dangers of algorithmic systems as well. In fact, many of the

current critiques, policy positions and interventions in algorithmic accountability implicitly begin from the premise

that such deployed algorithmic systems work, echoing narratives of super-human ability [62], broad applicability [149],

and consistency [145], espoused in corporatemarketing materials, academic research papers and in mainstream media.

These proposals thus often fall short of acknowledging the functionality issues in AI deployments and the role of the

lack of functional safety in contributing to the harm perpetuated by these systems.

If a product works, we can weigh its costs and benefits. But if the product does not work, the judgment is no longer

a matter of pros and cons, but a much simpler calculation, exposing that this product does not deserve its spot on the

market. Although notions of accuracy and product expectations are stakeholder-dependent and can be contested, the

assessment of such claims are often easier to empirically measure, grounding the discussion of harm in a way that is

challenging to repudiate.

As an overlooked aspect of AI policy, functionality is often presented as a consideration secondary to other ethical

challenges. In this paper, we argue that it is a primary concern that often precedes such problems. We start by calling

out what we perceive to be a functionality assumption, prevalent in much of the discourse on AI risks. We then argue

that this assumption does not hold in a large set of cases. Drawing on the AI, Algorithmic and Automation Incident and

Controversy Repository (AAAIRC), we offer a taxonomyof theways inwhich such failures can take form and the harms

they cause, which differ from the more commonly cited critiques of AI. We then discuss the existing accountability

tools to address functionality issues, that are often overlooked in AI policy literature and in practice, due in large part

to this assumption of functionality.

2 RELATED WORK

A review of past work demonstrates that although there is some acknowledgement that AI has a functionality problem,

little has been done to systematically discuss the range of problems specifically associated with functionality.

Recent work details that theAI research field suffers from scientific validity and evaluation problems [48, 79]. Kapoor

and Narayanan [105] have demonstrated reproducibility failures in published work on predicting civil wars. Liao et al.

[118] found that advances in machine learning often “evaporate under closer scrutiny or turn out to be less widely

applicable than originally hoped.”

There is also somework demonstrating that AI products are challenging to engineer correctly in practice. In a survey

of practitioners, Wan et al. [194] describe how developers often modify traditional software engineering practices due

to unique challenges presented byML, such as the increased effort required for testing and defining requirements. They

also found thatML practitioners "tend to communicate less frequentlywith clients" and struggle tomake accurate plans

for the tasks required in the development process. Sculley et al. [166] have additionally argued that ML systems "have

a special capacity for incurring technical debt."

Other papers discuss how the AI label lends itself to inflated claims of functionality that the systems cannot meet.

Kaltheuner et al. [102] and Broussard [28] critique hyped narratives pushed in the AI industry, joined by many similar
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domain-specific critiques [18, 19, 148, 173, 179, 184]. Narayanan [130] recently popularized the metaphor of “snake oil”

as a description of such AI products, raising concerns about the hyperbolic claims now common on the market today.

Richardson [157] has noted that despite the "intelligent" label, many deployed AI systems used by public agencies

involve simple models defined by manually crafted heuristics. Similarly, Raji et al. [149] argue that AI makes claims to

generality while modeling behaviour that is determined by highly constrained and context-specific data. In a study of

actual AI policy discussions, Krafft et al. [110] found that policymakers often define AI with respect to how human-like

a system is, and concluded that this could lead to deprioritizing issues more grounded in reality.

Finally, Vinsel [191] has argued that even critics of technology often hype the very technologies that they critique,

as a way of inflating the perception of their dangers. He refers to this phenomenon as "criti-hype"—criticism which

both needs and feeds on hype. As an example, he points to disinformation researchers, who embrace corporate talking

points of a recommendation model that can meaningfully influence consumer behavior to the point of controlling their

purchases or voting activity—when in actuality, these algorithms have little ability to do either [22, 75, 88, 95, 162].

Even the infamous Cambridge Analytica product was revealed to be “barely better than chance at applying the right

[personality] scores to individuals”, and the company accused explicitly of “selling snake oil” [88].

3 THE FUNCTIONALITY ASSUMPTION

It is unsurprising that promoters of AI do not tend to question its functionality. More surprising is the prevalence of

criti-hype in the scholarship and political narratives around automation and machine learning—even amidst discussion

of valid concerns such as trustworthiness, democratization, fairness, interpretability, and safety. These fears, though

legitimate, are often premature “wishful worries”—fears that can only be realized once the technology works, or works

"too well", rather than being grounded in a reality where these systems do not always function as expected [191]. In

this section, we discuss how criti-hype in AI manifests as an unspoken assumption of functionality.

The functionality of AI systems is rarely explicitly mentioned in AI principle statements, policy proposals and AI

ethics guidelines. In a recent review of the landscape of AI ethics guidelines, Jobin et al. [101] found that few acknowl-

edge the possibility of AI not working as advertised. In guidelines about preventing malfeasance, the primary concern

is malicious use of supposedly functional AI products by nefarious actors. Guidelines around "trust" are geared towards

eliciting trust in AI systems from users or the public, implying that trusting these AI products would be to the benefit

of these stakeholders and allow AI to “fulfill its world changing potential” [101]. Just one guideline of the hundreds

reviewed in the survey “explicitly suggests that, instead of demanding understandability, it should be ensured that AI

fulfills public expectations” [101]. Similarly, the U.S. National Institute of Standards and Technology (NIST) seeks to

define "trustworthiness" based primarily on how much people are willing to use the AI systems they are interacting

with [178]. This framing puts the onus on people to trust in systems, and not on institutions to make their systems

reliably operational, in order to earn that trust [6, 30]. NIST’s concept of trust is also limited, citing the "dependability"

section of ISO/IEEE/IEC standards [96], but leaving out other critical concepts in these dependability engineering stan-

dards that represent basic functionality requirements, including assurance, claim veracity, integrity level, systematic

failure, or dangerous condition. Similarly, the international trade group, the Organisation for Economic Co-operation

and Development (OECD), mentions "robustness” and “trustworthy AI” in their AI principles but makes no explicit

mention of expectations around basic functionality or performance assessment [207].

The ideal of “democratizing” AI systems, and the resulting AI innovation policy, is another effort premised on

the assumed functionality of AI. This is the argument that access to AI tooling and AI skills should be expanded

[14, 70, 83, 181]—with the corollary claim that it is problematic that only certain institutions, nations, or individuals
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have access to the ability to build these systems [8]. A recent example of democratization efforts was the global push

for the relaxation of oversight in data sharing in order to allow for more innovation in AI tool development in the

wake of the COVID-19 pandemic [11, 49, 122, 137, 196]. The goal of such efforts was to empower a wider range of

non-AI domain experts to participate in AI tool development. This policy impact was long lasting and informed later

efforts such as the AI National Resource (AINR) effort in the US [43] and the National Medical Imaging Platform

(NMIP) executed by National Health Services (NHS) in the UK [112]. In this flurry of expedited activity, some parallel

concerns were also raised about how the new COVID-19 AI tools would adequately address cybersecurity, privacy, and

anti-discrimination challenges [46, 111], but the functionality and utility of the systems remained untested for some

time [85, 97, 161, 206].

An extremely premature set of concerns are those of an autonomous agent becoming so intelligent that humans lose

control of the system. While it is not controversial to claim that such concerns are far from being realized [13, 42, 146],

this fear of misspecified objectives, runaway feedback loops, and AI alignment presumes the existence of an industry

that can get AI systems to execute on any clearly declared objectives, and that the main challenge is to choose and

design an appropriate goal. Needless to say, if one thinks the danger of AI is that it will work too well [168], it is a

necessary precondition that it works at all.

The fear of hyper-competent AI systems also drives discussions on potentialmisuse [29]. For example, expressed con-

cerns around large languagemodels centers on hyped narratives of themodels’ ability to generate hyper-realistic online

content, which could theoretically be used by malicious actors to facilitate harmful misinformation campaigns [176,

195]. While these are credible threats, concerns around large language models tend to dismiss the practical limitations

of what these models can achieve [18], neglecting to address more mundane hazards tied to the premature deployment

of a system that does not work [55, 189]. This pattern is evident in the EU draft AI regulation [9], where, even as the

legislation does concern functionality to a degree, the primary concerns—questions of “manipulative systems,” “social

scoring,” and “emotional or biometric categorization”—“border on the fantastical” [190, p. 98].

A major policy focus in recent years has been addressing issues of bias and fairness in AI. Fairness research is

often centered around attempting to balance some notion of accuracy with some notion of fairness [59, 63, 68]. This

research question presumes that an unconstrained solution without fairness restrictions is the optimal solution to the

problem. However, this intuition is only valid when certain conditions and assumptions are met [67, 124, 198], such as

the measurement validity of the data and labels. Scholarship on fairness also sometimes presumes that unconstrained

models will be optimal or at least useful. Barocas and Selbst [15, p. 707] argued that U.S. anti-discrimination law would

have difficulty addressing algorithmic bias because the "nature of data mining" means that in many cases we can

assume the decision is at least statistically valid. Similarly, as an early example of technical fairness solutions, Feldman

et al. [60] created a method to remove disparate impact from a model while preserving rank, which only makes sense

if the unconstrained system output is correct in the first place. Industry practitioners then carry this assumption into

how they approach fairness in AI deployments. For example, audits of AI hiring tools focus primarily on ensuring an

80% selection rate for protected classes (the so-called 4/5ths rule) is satisfied, and rarely mention product validation

processes, demonstrating an assumed validity of the prediction task [52, 148, 199].

Another dominant theme in AI policy developments is that of explainability or interpretability. The purpose of

making models explainable or interpretable differs depending on who is seen as needing to understand them. From

the engineering side, interpretability is usually desired for debugging purposes [23], so it is focused on functionality.

But on the legal or ethical side, things look different. There has beenmuch discussion aboutwhether the GDPR includes

a "right to explanation" and what such a right entails [50, 103, 167, 193]. Those rights would serve different purposes. To
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the extent the purpose of explanation is to enable contestation [104], then functionality is likely included as an aspect

of the system subject to challenge. To the extent explanation is desired to educate consumers about how to improve

their chances in the future [16], such rights are only useful when the underlying model is functional. Similarly, to the

extent regulators are looking into functionality, explanations aimed at regulators can assist oversight, but typically

explanations are desired to check the basis for decisions, while assuming the systems work as intended.

Not all recent policy developments hold the functionality assumption strongly. The Food and Drug Administra-

tion (FDA) guidelines for AI systems integrated into software as a medical device (SaMD) has a strong emphasis on

functional performance, clearly not taking product performance as a given [64]. The draft AI Act in the EU includes

requirements for pre-marketing controls to establish products’ safety and performance, as well as quality management

for high risk systems [190]. These mentions suggest that functionality is not always ignored outright. Sometimes, it is

considered in policy, but in many cases, that consideration lacks the emphasis of the other concerns presented.

4 THE MANY DIMENSIONS OF AI DYSFUNCTION

Functionality can be difficult to define precisely. The dictionary definition of “fitness for a product’s intended use” [134]

is useful, but incomplete, as some intended uses are impossible. Functionality could also be seen as a statement that a

product lives up to the vendor’s performance claims, but this, too, is incomplete; specifications chosen by the vendor

could be insufficient to solve the problem at hand. Another possible definition is "meeting stakeholder expectations"

more generally, but this is too broad as it sweeps in wider AI ethics concerns with those of performance or operation.

Lacking a perfectly precise definition of functionality, in this section we invert the question by creating a taxonomy

that brings together disparate notions of product failure. Our taxonomy serves several other purposes, as well. Firstly,

the sheer number of points of failure we were able to identify illustrates the scope of the problem. Secondly, we offer

language in which to ground future discussions of functionality in research and policy. Finally, we hope that future

proposals for interventions can use this framework to concretely illustrate the way any proposed interventions might

work to prevent different kinds of failure.

4.1 Methodology

To challenge the functionality assumption and demonstrate the various ways in which AI doesn’t work, we developed

a taxonomy of known AI failures through the systematic review of case studies. To do this, we partly relied on the AI,

Algorithmic and Automation Incident and Controversy Repository (AIAAIC) spreadsheet crowdsourced from journal-

ism professionals [35]. Out of a database of over 800 cases, we filtered the cases down to a spreadsheet of 283 cases

from 2012 to 2021 based on whether the technology involved claimed to be AI, ML or data-driven, and whether the

harm reported was due to a failure of the technology. In particular, we focused on describing the ways in which the

artifact itself was connected to the failure, as opposed to infrastructural or environmental "meta" failures which caused

harm through the artifact. We split up the rows in the resulting set and used an iterative tagging procedure to come

up with categories that associate each example with a different element or cause of failure. We updated, merged, and

grouped our tags in meetings between tagging sessions, resulting in the following taxonomy. We then chose known

case studies from the media and academic literature to illustrate and best characterize these failure modes.

4.2 Failure Taxonomy

Here, we present a taxonomy of AI system failures and provide examples of known instances of harm. Many of these

cases are direct refutations of the specific instances of the functionality assumptions in Section 3.
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Table 1. Failure Taxonomy

Impossible Tasks Conceptually Impossible
Practically Impossible

Engineering Failures Design Failures
Implementation Failures
Missing Safety Features

Post-Deployment Failures Robustness Issues
Failure under Adversarial Attacks
Unanticipated Interactions

Communication Failures Falsified or Overstated Capabilities
Misrepresented Capabilities

4.2.1 Impossible Tasks. In some situations, a system is not just "broken" in the sense that it needs to be fixed. Re-

searchers across many fields have shown that certain prediction tasks cannot be solved with machine learning. These

are settings in which no specific AI developed for the task can ever possibly work, and a functionality-centered critique

can be made with respect to the task more generally. Since these general critiques sometimes rely on philosophical,

controversial, or morally contested grounds, the arguments can be difficult to leverage practically and may imply the

need for further evidence of failure modes along the lines of our other categories.

Conceptually Impossible. Certain classes of tasks have been scientifically or philosophically "debunked" by extensive

literature. In these cases, there is no plausible connection between observable data and the proposed target of the

prediction task. This includes what Stark and Hutson call “physiognomic artificial intelligence,” which attempts to

infer or create hierarchies about personal characteristics from data about their physical appearance [179]. Criticizing

the EU Act’s failure to address this inconvenient truth, Veale and Borgesius [190] pointed out that “those claiming

to detect emotion use oversimplified, questionable taxonomies; incorrectly assume universality across cultures and

contexts; and risk ‘[taking] us back to the phrenological past’ of analysing character traits from facial structures.”

A notorious example of technology broken by definition are attempts to infer “criminality” from a person’s physical

appearance. A paper claiming to do this “with no racial bias” was announced by researchers at Harrisburg University

in 2020, prompting widespread criticism from the machine learning community [69]. In an open letter, the Coalition

for Critical Technology note that the only plausible relationship between a person’s appearance and their propensity

to commit a crime is via the biased nature of the category of “criminality” itself [65]. In this setting, there is no logical

basis with which to claim functionality.

Practically Impossible. There can be other, more practical reasons for why a machine learning model or algorithm

cannot perform a certain task. For example, in the absence of any reasonable observable characteristics or accessible

data to measure the model goals in question, attempts to represent these objectives end up being inappropriate proxies.

As a construct validity issue, the constructs of the built model could not possibly meaningfully represent those relevant

to the task at hand [98, 99].

Many predictive policing tools are arguably practically impossibleAI systems. Predictive policing attempts to predict

crime at either the granularity of location or at an individual level [61]. The data that would be required to do the task

properly—accurate data about when and where crimes occur—does not and will never exist. While crime is a concept
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with a fairly fixed definition, it is practically impossible to predict because of structural problems in its collection. The

problems with crime data are well-documented—whether in differential victim crime reporting rates [10], selection

bias based on policing activities [54, 120], dirty data from periods of recorded unlawful policing [158], and more.

Due to upstream policy, data or societal choices, AI tasks can be practically impossible for one set of developers

and not for another, or for different reasons in different contexts. The fragmentation, billing focus, and competing

incentives of the US healthcare system have made multiple healthcare-related AI tasks practically impossible [7]. US

EHR data is often erroneous, miscoded, fragmented, and incomplete [91, 92], creating a mismatch between available

data and intended use [74]. Many of these challenges appeared when IBM attempted to support cancer diagnoses. In

one instance, this meant using synthetic as opposed to real patients for oncology prediction data, leading to "unsafe

and incorrect" recommendations for cancer treatments [164]. In another, IBM worked with MD Anderson to work on

leukemia patient records, poorly extracting reliable insights from time-dependent information like therapy timelines—

the components of care most likely to be mixed up in fragmented doctors’ notes [171, 180].

4.2.2 Engineering Failures. Algorithm developers maintain enormous discretion over a host of decisions, and make

choices throughout the model development lifecycle. These engineering choices include defining problem formula-

tion [141], setting up evaluation criteria [118, 143], and determining a variety of other details [126, 142]. Failures in AI

systems can often be traced to these specific policies or decisions in the development process of the system.

Model Design Failures. Sometimes, the design specifications of a model are inappropriate for the task it is being

developed for. For instance, in a classification model, choices such as which input and target variables to use, whether

to prioritize accepting true positives or rejecting false negatives, and how to process the training data all factor into

determining model outcomes. These choices are normative andmay prioritize values such as efficiency over preventing

harmful failures [47, 117].

In 2014, BBC Panorama uncovered evidence of international students systematically cheating on English language

exams run by the UK’s Educational Testing Service by having others take the exam for them. The Home Office began

an investigation and campaign to cancel the visas of anyone who was found to have cheated. In 2015, ETS used voice

recognition technology to identify this type of cheating. According to the National Audit Office [135],

ETS identified 97% of all UK tests as “suspicious”. It classified 58% of 58,459 UK tests as “invalid” and

39% as “questionable”. The Home Office did not have the expertise to validate the results nor did it, at

this stage, get an expert opinion on the quality of the voice recognition evidence. ... but the Home Office

started cancelling visas of those individuals given an “invalid” test.

The staggering number of accusations obviously included a number of false positives. The accuracy of ETS’s method

was disputed between experts sought by the National Union of Students and the Home Office; the resulting estimates

of error rates ranged from 1% to 30%. Yet out of 12,500 people who appealed their immigration decisions, only 3,600

won their cases—and only a fraction of these were won through actually disproving the allegations of cheating. This

highly opaque system was thus notable for the disproportionate amount of emphasis that was put into finding cheaters

rather than protecting those who were falsely accused. Although we cannot be sure the voice recognition model was

trained to optimize for sensitivity rather than specificity, as the head of the NAO aptly put, "When the Home Office

acted vigorously to exclude individuals and shut down colleges involved in the English language test cheating scandal,

we think they should have taken an equally vigorous approach to protecting those who did not cheat but who were
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still caught up in the process, however small a proportion they might be" [135]. This is an example of a system that

was not designed to prevent a particular type of harmful failure.

Model Implementation Failures. Even if a model was conceptualized in a reasonable way, some component of the

system downstream from the original plan can be executed badly, lazily, or wrong. In 2011, the state of Idaho attempted

to build an algorithm to set Medicaid assistance limits for individuals with developmental and intellectual disabilities.

When individuals reported sudden drastic cuts to their allowances, the ACLU of Idaho tried to find out how the al-

lowances were being calculated, only to be told it was a trade secret. The class action lawsuit that followed resulted in

a court-ordered disclosure of the algorithm, which was revealed to have critical flaws. According to Richard Eppink,

Legal Director of the ACLU of Idaho [177],

There were a lot of things wrong with it. First of all, the data they used to come up with their formula for

setting people’s assistance limits was corrupt. They were using historical data to predict what was going

to happen in the future. But they had to throw out two-thirds of the records they had before they came

up with the formula because of data entry errors and data that didn’t make sense.

Data validation is a critical step in the construction of a ML system, and the team that built the benefit system chose

to use a highly problematic dataset to train their model. For this reason, we consider this to be an implementation

failure.

Another way that failures can be attributed to poor implementation is when a testing framework was not appro-

priately implemented. One area in which a lack of sufficient testing has been observed in the development of AI is in

the area of clinical medicine. Nagendran et al. [129] systematically examined the methods and claims of studies which

compared the performance of diagnostic deep learning computer vision algorithms against that of expert clinicians.

In their literature review, they identified 10 randomized clinical trials and 81 non-randomized clinical trials. Of the 81

non-randomized studies, they found the median number of clinical experts compared to the AI was 4, full access to

datasets and code were unavailable in over 90% of studies, the overall risk of bias was high, and adherence to reporting

standards were suboptimal, and therefore poorly substantiate their claims. Similarly, the Epic sepsis prediction model,

a product actually implemented at hundreds of hospitals, was recently externally validated by Wong et al. [203], who

found that the model had poor calibration to other hospital settings and discriminated against under-represented de-

mographics. These results suggest that the model’s testing prior to deployment may have been insufficient to estimate

its real-world performance. Notably, the COVID-19 technology which resulted from innovation policy and democra-

tization efforts mentioned in section 3 was later shown to be completely unsuitable for clinical deployment after the

fact [85, 97, 161, 206].

Missing Safety Features. Sometimes model failures are anticipated yet difficult to prevent; in this case, engineers can

sometimes take steps to ensure these points of failure will not cause harm. In 2014, a Nest Labs smoke and carbon

monoxide detector was recalled [200]. The detector had a feature which allowed the user to turn it off with a “wave"

gesture. However, the company discovered in testing that under certain circumstances, the sensor could be uninten-

tionally deactivated. Detecting a wave gesture with complete accuracy is impossible, and Google acknowledges factors

that contribute to the possibility of accidental wave triggering for its other home products [1]. However, the lack of a

failsafe to make sure the carbon monoxide detector could not be turned off accidentally made the product dangerous.

In the same way, the National Transportation Safety Board (NTSB) cited a lack of adequate safety measures—such as

“a warning/alert when the driver’s hands are off the steering wheel”, “remotemonitoring of vehicle operators” and even
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the companies’ “inadequate safety culture”—as the probable causes in at least two highly publicized fatal crashes of

Uber [27, 197] and Tesla [25, 26] self-driving cars. As products in public beta-testing, this lack of functional safeguards

was considered to be an even more serious operational hazard than any of the engineering failures involved (such as

the vehicle’s inability to detect an incoming pedestrian [27] or truck [25]).

This category also encompasses algorithmic decision systems in critical settings that lack a functional appeals pro-

cess. This has been a recurring feature in algorithms which allocate benefits on behalf of the government [56]. Not all

of these automated systems rely on machine learning, but many have been plagued by bugs and faulty data, resulting

in the denial of critical resources owed to citizens. In the case of the Idaho data-driven benefit allocation system, even

the people responsible for reviewing appeals were unable to act as a failsafe for the algorithm’s mistakes: “They would

look at the system and say, ‘It’s beyond my authority and my expertise to question the quality of this result’ ” [115].

4.2.3 Deployment Failures. Sometimes, despite attempts to anticipate failure modes during the design phase, the

model does not “fail” until it is exposed to certain external factors and dynamics that arise after it is deployed.

Robustness Issues. A well-documented source of failure is a lack of robustness to changing external conditions. Liao

et al. [118] have observed that the benchmarking methods used for evaluation in machine learning can suffer from

both internal and external validity problems, where “internal validity refers to issues that arise within the context

of a single benchmark” and “external validity asks whether progress on a benchmark transfers to other problems.”

If a model is developed in a certain context without strong evaluation methods for external validity, it may perform

poorlywhen exposed to real-world conditions that were not captured by the original context. For instance, while many

computer vision models developed on ImageNet are tested on synthetic image perturbations in an attempt to measure

and improve robustness, but Taori et al. [183] have found that these models are not robust to real-world distribution

shifts such as a change in lighting or pose.

Robustness issues are also of dangerous consequence in language models. For example, when large language models

are used to process the queries of AI-poweredweb search [131], themodels’ fragility tomisspellings [125, 147], or trivial

changes to format [19] and context [18] can lead to unexpected results. In one case, a large language model used in

Google search could not adequately handle cases of negation [55] – and so when queried with “what to dowhen having

a seizure”, the model alarmingly sourced the information for what not to do, unable to differentiate between the two

cases [189].

Failure under Adversarial Attacks. Failures can also be induced by the actions of an adversary—an actor deliberately

trying to make the model fail. Real-world examples of this often appear in the context of facial recognition, in which

adversaries have some evidence that they can fool face-detection systems with, such as 3d-printed masks [144] or

software-generated makeup [78]. Machine learning researchers have studied what they call “adversarial examples,” or

inputs that are designed to make a machine learning model fail [76]. However, some of this research has been criticized

by its lack of a believable threat model— in other words, not focusing on what real-world “adversaries” are actually

likely to do [136].

Unanticipated Interactions. Amodel can also fail to account for uses or interactions that it was not initially conceived

to handle. Even if an external actor or user is not deliberately trying to break a model, their actions may induce failure

if they interact with the model in a way that was not planned for by the model’s designers. For instance, there is

evidence that this happened at the Las Vegas Police Department:
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As new records about one popular police facial recognition system show, the quality of the probe image

dramatically affects the likelihood that the system will return probable matches. But that doesn’t mean

police don’t use bad pictures anyway. According to documents obtained by Motherboard, the Las Vegas

Metropolitan Police Department (LVMPD) used “non-suitable" probe images in almost half of all the facial

recognition searches it made last year, greatly increasing the chances the system would falsely identify

suspects, facial recognition researchers said. [57]

This aligns with reports from Garvie [71] about other police departments inappropriately uploading sketch and

celebrity photos to facial recognition tools. It is possible for designers to preempt misuse by implementing instructions,

warnings, or error conditions, and failure to do so creates a system that does not function properly.

4.2.4 Communication Failures. Aswith other areas of software development, roles in AI development and deployment

are becoming more specialized. Some roles focus onmanaging the data that feeds into models, others specialize in mod-

eling, and others optimally engineer models for speed and scale [44]. There are even those in "analytics translator" roles

– managers dedicated to acting as communicators between data science work and non-technical business leaders [86].

And, of course, there are salespeople. Throughout this chain of actors, potential miscommunications or outright lies

can happen about the performance, functional safety or other aspects of deployed AI/ML systems. Communication

failures often co-occur with other functional safety problems, and the lack of accountability for false claims – inten-

tional or otherwise – makes these particularly pernicious and likely to occur as AI hype continues absent effective

regulation.

Falsified or Overstated Capabilities. To pursue commercial or reputational interests, companies and researchers may

explicitly make claims aboutmodels which are provably untrue. A common form of this are claims that a product is "AI",

when in fact it mainly involves humans making decisions behind the scenes. While this in and of itself may not create

unsafe products, expectations based on unreasonable claims can create unearned trust, and a potential over-reliance

that hurts parties who purchase the product. As an example, investors poured money into ScaleFactor, a startup that

claimed to have AI that could replace accountants for small businesses, with the exciting (for accountants) tagline

"Because evenings are for families, not finance" [100]. Under the hood, however,

Instead of software producing financial statements, dozens of accountants did most of it manually from

ScaleFactor’s Austin headquarters or from an outsourcing office in the Philippines, according to former

employees. Some customers say they received books filled with errors, and were forced to re-hire accoun-

tants, or clean up the mess themselves. [100]

Even large well-funded entities misrepresent the capabilities of their AI products. Deceptively constructed evalu-

ation schemes allow AI product creators to make false claims. In 2018, Microsoft created machine translation with

"equal accuracy to humans in Chinese to English translations" [186]. However, the study used to make this claim (still

prominently displayed in press release materials) was quickly debunked by a series of outside researchers who found

that at the document-level, when provided with context from nearby sentences, and/or compared to human experts,

the machine translation model did not indeed achieve equal accuracy to human translators [114, 185]. This follows a

pattern seen with machine learning products in general, where the advertised performance on a simple and static data

benchmark, is much lower than the performance on the often more complex and diverse data encountered in practice.

Misrepresented Capabilities. A simple way to deceive customers into using prediction services is to sell the product

for a purpose you know it can’t reliably be used for. In 2018, the ACLU of Northern California revealed that Amazon
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effectively misrepresented capabilities to police departments in selling their facial recognition product, Rekognition.

Building on previous work [31], the ACLU ran Rekognition with a database of mugshots against members of U.S.

Congress using the default setting and found 28 members falsely matched within the database, with people of color

shown as a disproportionate share of these errors [175]. This result was echoed by Raji and Buolamwini [150] months

later. Amazon responded by claiming that for police use cases, the threshold for the service should be set at either

95% or 99% confidence [204]. However, based on a detailed timeline of events [5], it is clear that in selling the service

through blog posts and other campaigns that thresholds were set at 80% or 85% confidence, as the ACLU had used in

its investigation. In fact, suggestions to shift that threshold were buried in manuals end-users did not read or use –

even when working in partnership with Amazon. At least one of Amazon’s police clients also claimed being unaware

of needing to modify the default threshold [123].

The hype surrounding IBM’s Watson in healthcare represents another example where a product that may have

been fully capable of performing specific helpful tasks was sold as a panacea to health care’s ills. As discussed earlier,

this is partially the result of functional failures like practical impossibility – but these failures were coupled with

deceptively exaggerated claims. The backlash to this hype has been swift in recent years, with one venture capitalist

claiming "I think what IBM is excellent at is using their sales and marketing infrastructure to convince people who

have asymmetrically less knowledge to pay for something" [202]. AtMemorial-SloanKettering, after $62million dollars

spent and may years of effort, MD Anderson famously cancelled IBM Watson contracts with no results to show for

it [89].

This is particularly a problem in the context of algorithms developed by public agencies – where the AI systems

can be adopted as symbols for progress, or smokescreens for undesirable policy outcomes, and thus liable to inflated

narratives of performance. Green [77] discusses how the celebrated success of “self-driving shuttles” in Columbus,

Ohio omits its marked failure in the lower-income Linden neighborhood, where residents were now locked out of the

transportation apps due to a lack of access to a bank account, credit cards, a data plan orWi-Fi. Similarly, Eubanks [56]

demonstrates how a $1.4 billion contract with a coalition of high-tech companies led an Indiana governor to stubbornly

continue a welfare automation algorithm that resulted in a 54% increase in the denials of welfare applications.

5 DEALING WITH DYSFUNCTION: OPPORTUNITIES FOR INTERVENTION ON FUNCTIONAL SAFETY

The challenge of dealing with an influx of fraudulent or dysfunctional products is one that has plaguedmany industries,

including food safety [24], medicine [12, 17], financial modeling [170], civil aviation [87] and the automobile indus-

try [128, 192]. In many cases, it required the active advocacy of concerned citizens to lead to the policy interventions

that would effectively change the tide of these industries. The AI field seems to now be facing this same challenge.

Thankfully, as AI operates as a general purpose technology prevalent in many of these industries, there already

exists a plethora of governance infrastructure to address this issue in related fields of application. In fact, healthcare is

the field where AI product failures appear to be the most visible, in part due to the rigor of pre-established evaluation

processes [20, 119, 160, 205]. Similarly, the transportation industry has a rich history of thorough accident reports

and investigations, through organizations such as the National Transportation and Safety Board (NTSB), who have

already been responsible for assessing the damage from the few known cases of self-driving car crashes from Uber and

Tesla [81].

In this section, we specifically outline the legal and organizational interventions necessary to address functionality

issues in general context in which AI is developed and deployed into the market. In broader terms, the concept of
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functional safety in engineering design literature [163, 174] well encapsulates the concerns articulated in this paper—

namely that a system can be deployed without working very well, and that such performance issues can cause harm

worth preventing.

5.1 Legal/Policy Interventions

The law has several tools at its disposal to address product failures to work correctly. They mostly fall in the category

of consumer protection law. This discussion will be U.S.-based, but analogues exist in most jurisdictions.

5.1.1 Consumer Protection. The Federal Trade Commission is the federal consumer protection agency within the

United States with the broadest subject matter jurisdiction. Under Section 5 of the FTC Act, it has the authority to

regulate “unfair and deceptive acts or practices” in commerce [58]. This is a broad grant authority to regulate practices

that injure consumers. The authority to regulate deceptive practices applies to any material misleading claims relating

to a consumer product. The FTC need not show intent to deceive or that deception actually occurred, only that claims

are misleading. Deceptive claims can be expressed explicitly—for example, representation in the sales materials that is

inaccurate—or implied, such as an aspect of the design that suggests a functionality the product lacks [82, 93]. Many

of the different failures, especially impossibility, can trigger a deceptive practices claim.

The FTC’s ability to address unfair practices is wider-ranging but more controversial. The FTC can reach any prac-

tice “likely to cause substantial injury to consumers[,] not reasonably avoidable by consumers themselves and not

outweighed by countervailing benefits to consumers” [58]. Thus, where dysfunctional AI is being sold and its failures

causes substantial harm to consumers, the FTC could step in. Based on the FTC’s approach to data security, in which the

Commission has sued companies for failing to adequately secure consumer data in their possession against unknown

third-party attackers [121], even post-deployment failures—if foreseeable and harmful—can be included among unfair

practices, though they partially attributable to external actors.

The FTC can use this authority to seek an injunction, requiring companies to cease the practice. Formally, the FTC

does not have the power to issue fines under its Section 5 authority, but the Commission frequently enters into long-

term consent decrees with companies that it sues, permitting continuing jurisdiction, monitoring, and fines for future

violations [3, 40]. The Commission does not have general rulemaking authority, so most of its actions to date have

taken the form of public education and enforcement. The Commission does, however, have authority to make rules

regarding unfair or deceptive practices under the Magnuson-Moss Warranty Act. Though it has created no new rules

since 1980, in July 2021, the FTC voted to change internal agency policies to make it easier to do so [41].

Other federal agencies also have the ability to regulate faulty AI systems, depending on their subject matter. The

Consumer Product Safety Commission governs the risks of physical injury due to consumer products. They can create

mandatory standards for products, can require certifications of adherence to those rules, and can investigate products

that have caused harm, leading to bans or mandatory recalls [39]. The National Highway Safety Administration offers

similar oversight for automobiles specifically. The Consumer Finance Protection Bureau can regulate harms from

products dealing with loans, banking, or other consumer finance issues [4].

In addition to various federal agencies, all states have consumer protection statutes that bar deceptive practices

and many bar unfair practices as well, like the FTC Act [33]. False advertising laws are related and also common. State

attorneys general often take active roles as enforcers of those laws [38]. Of course, the efficacy of such laws varies from

state to state, but in principle, they become another source of law and enforcement to look to for the same reasons that

the FTC can regulate under Section 5. One particular state law worth noting is California’s Unfair Competition Law,
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which allows individuals to sue for injunctive relief to halt conduct that violates other laws, even if individuals could

not otherwise sue under that law [2].

It is certainly no great revelation that federal and state regulatory apparatuses exist. Rather, our point is that while

concerns about discrimination and due process can lead to difficult questions about the operation of existing law and

proposals for legal reform, thinking about the ways that AI is not working makes it look like other product failures

that we know how to address. Where AI doesn’t work, suddenly regulatory authority is easy to find.

5.1.2 Products Liability Law. Another avenue for legal accountability may come from the tort of products liability,

though there are some potential hurdles. In general, if a person is injured by a defective product, they can sue the

producer or seller in products liability. The plaintiff need not have purchased or used the product; it is enough that

they were injured by it, and the product has a defect that rendered it unsafe.

It would stand to reason that a functionality failure in an AI system could be deemed a product defect. But sur-

prisingly, defective software has never led to a products liability verdict. One commonly cited reason is that products

liability applies most clearly to tangible things, rather than information products, and that aside from a stray comment

in one appellate case [201], no court has actually ruled that software is even a “product” for these purposes [32, 53].

This would likely not be a problem for software that resides within a physical system, but for non-embodied AI, it

might pose a hurdle. In a similar vein, because most software harms have typically been economic in nature, with, for

example, a software crash leading to a loss of work product, courts have rejected these claims as "pure economic loss"

belonging more properly in contract law than tort. But these mostly reflect courts’ anxiety with intangible injuries,

and as AI discourse has come to recognize many concrete harms, these concerns are less likely to be hurdles going

forward [36].

Writing about software and tort law, Choi [36] identifies the complexity of software as a more fundamental type

of hurdle. For software of nontrivial complexity, it is provably impossible to guarantee bug-free code. An important

part of products liability is weighing the cost of improvements and more testing against the harms. But as no amount

of testing can guarantee bug-free software, it will difficult to determine how much testing is enough to be considered

reasonable or non-negligent [36, 94]. Choi analogizes this issue to car crashes: car crashes are inevitable, but courts

developed the idea of crashworthiness to ask about the car’s contribution to the total harm, even if the initial injury

was attributable to a product defect [36]. While Choi looks to crashworthiness as a solution, the thrust of his argument

is that software can cause exactly the type of injury that products liability aims to protect us from, and doctrine should

reflect that.

While algorithmic systems have a similar sort of problem, the failure we describe here are more basic. Much as

writing bug-free software is impossible, creating amodel that handles every corner case perfectly is impossible. But the

failures we address here are not about unforeseeable corner cases in models.We are concerned with easier questions of

basic functionality, without which a system should never have been shipped. If a system is not functional, in the sense

we describe, a court should have no problem finding that it is unreasonably defective. As discussed above, a product

could be placed on the market claiming the ability to do something it cannot achieve in theory or in practice, or it

can fail to be robust to unanticipated but foreseeable uses by consumers. Even where these errors might be difficult to

classify in doctrinally rigid categories of defect, courts have increasingly been relying on “malfunction doctrine,” which

allows for circumstantial evidence to be used as proof of defect where “a product fails to perform its manifestly intended

function.” [155]. Courts are increasingly relying on this doctrine and it could apply here [73, 138]. Products liability
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could especially easily apply to engineering failures, where the error was foreseeable and an alternative, working

version of the product should have been built.

5.1.3 Warranties. Another area of law implicated by product failure is warranty law, which protects the purchasers

of defunct AI and certain third parties who stand to benefit from the sale. Sales of goods typically come with a set of

implied warranties. The implied warranty of merchantability applies to all goods and states, among other things, that

the good is “fit for the ordinary purposes for which such goods are used” [187]. The implied warranty of fitness for

particular purpose applies when a seller knows that the buyer has a specific purpose in mind and the buyer is relying

on the seller’s skill or judgment about the good’s fitness, stating that the good is fit for that purpose[188]. Defunct AI

will breach both these warranties. The remedy for such a breach is limited to contract damages. This area of law is

concerned with ensuring that purchasers get what they pay for, so compensation will be limited roughly to value of

the sale. Injuries not related to the breach of contract are meant to be worked out in tort law, as described above.

5.1.4 Fraud. In extreme cases, the sale of defunct AI may constitute fraud. Fraud has many specific meanings in law,

but invariably it involves a knowing or intentional misrepresentation that the victim relied on in good faith. In contract

law, proving that a personwas defrauded can lead to contract damages. Restitution is another possible remedy for fraud.

In tort law, a claim of fraud can lead to compensation necessary to rectify any harms that come from the fraud, as well

as punitive damages in egregious cases. Fraud is difficult to prove, and our examples do not clearly indicate fraud, but

it is theoretically possible if someone is selling snake oil. Fraud can lead to criminal liability as well.

5.1.5 Other Legal Avenues Already Being Explored. Finally, other areas of law that are already involved in the account-

ability discussion, such as discrimination and due process, become much easier cases to make when the AI doesn’t

work. Disparate impact law requires that the AI tool used be adequately predictive of the desired outcome, before

even getting into the question of whether it is too discriminatory or not [15]. A lack of construct validity would easily

subject a model’s user to liability. Due process requires decisions to not be arbitrary, and AI that doesn’t work loses its

claim to making decisions on a sound basis [37]. Where AI doesn’t work, legal cases in general become easier.

5.2 Organizational interventions

In addition to legal levers, there are many organizational interventions that can be deployed to address the range of

functionality issues discussed. Due to clear conflicts of interest, the self-regulatory approaches described are far from

adequate oversight for these challenges, and the presence of regulation does a lot to incentivise organizations to take

these actions in the first place. However, they do provide an immediate path forward in addressing these issues.

5.2.1 Internal Audits & Documentation. After similar crises of performance in fields such as aerospace, finance and

medicine, such processes evolved in those industries to enforce a new level of introspection in the form of internal

audits. Taking the form of anything from documentation exercises to challenge datasets as benchmarks, these processes

raised the bar for deployment criteria and matured the product development pipeline in the process [152]. The AI field

could certainly adopt similar techniques for increasing the scrutiny of their systems, especially given the nascent state

of reflection and standardization common in ML evaluation processes [118]. For example, the “Failure modes, effects,

and diagnostic analysis (FMEDA)” documentation process from the aerospace industry could support the identification

of functional safety issues prior to AI deployment [152], in addition to other resources from aerospace (such as the

functional hazard analyses (FHA) or Functional Design Assurance Levels (FDALS)).
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Ultimately, internal audits are a self-regulatory approach—though audits conducted by independent second par-

ties such as a consultancy firm could provide a fresh perspective on quality control and performance in reference to

articulated organizational expectations [151]. The challenge with such audits, however, is that the results are rarely

communicated externally and disclosure is not mandatory, nor is it incentivized. As a result, assessment outcomes are

mainly for internal use only, often just to set internal quality assurance standards for deployment and prompt further

engineering reflection during the evaluation process.

5.2.2 Product Certification & Standards. A trickier intervention is the avenue of product certification and standards

development for AI products. This concept has already made its way into AI policy discourse; CEN (European Com-

mittee for Standardisation) and CENELEC (European Committee for Electrotechnical Standardisation), two of three

European Standardisation Organisations (ESOs) were heavily involved in the creation of the EU’s draft AI Act [190].

On the U.S. front, industry groups IEEE and ISO regularly shape conversations, with IEEE going so far as to attempt

the development of a certification program [72, 84]. In the aviation industry, much of the establishment of engineering

standards happened without active government intervention, between industry peers [152]. These efforts resemble

the Partnership on AI’s attempt to establish norms on model documentation processes [153]. Collective industry-wide

decision-making on critical issues can raise the bar for the entire industry and raise awareness within the industry

of the importance of handling functionality challenges. Existing functional safety standards from the automobile (ISO

26262), aerospace (US RTCA DO-178C), defense (MIL-STD-882E) and electronics (IEEE IEC 61508 / IEC 61511) indus-

tries, amongst others, can provide a template on how to approach this challenge within the AI industry.

5.2.3 Other Interventions. There are several other organizational factors that can determine and assess the functional

safety of a system. As a client making decisions on which projects to select, or permit for purchase, it can be good to set

performance related requirements for procurement and leverage this procurement process in order to set expectations

for functionality [127, 156, 165, 172]. Similarly, cultural expectations for safety and engineering responsibility impact

the quality of the output from the product development process – setting these expectations internally and fostering

a healthy safety culture can increase cooperation on other industry-wide and organizational measures [163]. Also, as

functionality is a safety risk aligned with profit-oriented goals, manymodel logging and evaluation operations tools are

available for organizations to leverage in the internal inspection of their systems – including tools for more continuous

monitoring of deployed systems [154, 169].

6 CONCLUSION : THE ROAD AHEAD

We cannot take for granted that AI products work. Buying into the presented narrative of a product with at least

basic utility or an industry that will soon enough “inevitably” overcome known functional issues causes us to miss

important sources of harm and available legal and organizational remedies. Although functionality issues are not

completely ignored in AI policy, the lack of awareness of the range in which these issues arise leads to the problems

being inadequately emphasized and poorly addressed by the full scope of accountability tools available.

The fact that faulty AI products are on the market today makes this problem particularly urgent. Poorly vetted

products permeate our lives, and while many readily accept the potential for harms as a tradeoff, the claims of the

products’ benefits go unchallenged. But addressing functionality involves more than calling out demonstrably broken

products. It also means challenging those who develop AI systems to better and more honestly understand, explore,

and articulate the limits of their products prior to their release into the market or public use. Adequate assessment
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and communication of functionality should be a minimum requirement for mass deployment of algorithmic systems.

Products that do not function should not have the opportunity to affect people’s lives.
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