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A B S T R A C T   

The increasing frequency and severity of wildfire events in the last few decades has created an urgent need for 
new technologies that allow rapid surveying and assessment of post-wildfire building damage. However, existing 
technologies lack in accuracy and ability to scale to effectively aid disaster relief and recovery. Even today, most 
wildfire event inspectors need to physically visit the areas impacted by wildfires and manually classify building 
damage, which requires considerable time and resources. Here, we present DamageMap, an artificial 
intelligence-powered post-wildfire building damage classifier. DamageMap is a binary classifier (outputs are 
“damaged” or “undamaged”). Unlike existing solutions that require both pre- and post-wildfire imagery to 
classify building damage, DamageMap relies on post-wildfire images alone by separating the segmentation and 
classification tasks. Our model has an overall accuracy of 98% on the validation set (five wildfire events all 
around the world) and 92% and 98% on two independent test sets from the Camp Fire and the Carr Fire, 
respectively. Excellent model performance across a variety of datasets provides evidence of DamageMap’s 
robustness to unseen data. Thus, DamageMap may help governmental and non-governmental agencies rapidly 
survey building damage using post-wildfire aerial or satellite imagery in wildfire-impacted areas.   

1. Introduction 

Post-wildfire disaster recovery depends on the ability to rapidly 
assess building damage. Detailed information about the locations, sizes, 
and values of damaged buildings is essential for multiple affected 
stakeholders to proceed with the disaster recovery process. First re
sponders and disaster management agencies rely on damage information 
to better strategize their efforts in response and recovery. Affected res
idents require information about their damaged buildings to initiate 
insurance claims and to request financial support and disaster relief from 
governmental agencies. State and federal authorities depend on the 
building damage information and cost estimations to plan for future 
disaster relief resources and financial aid [1]. A successful disaster re
covery for fire-affected communities thus depends on the ability to 
quickly assess building damage. 

The need for rapid building damage classification has intensified as 
climate change and the growth of the wildland-urban interface (WUI), 
defined as the areas where human development intersects or 

intermingles with undeveloped wildland or vegetative fuels, have sub
stantially increased wildfire risk, extent, and destruction globally [3–5]. 
Over the past five decades, the frequency of wildfire events and areas 
burned in the western United States have increased by more than four 
and six times, respectively [6,7]. Globally, wildfire seasons have 
lengthened significantly due to global warming in the past three decades 
[4]. Recent studies also indicate that wildfire intensity and areas burned 
will continue to increase in Australia, Canada, Chile, Portugal, and the 
United States [8–12]. In addition to climate change, the continuous 
expansion of the WUI exacerbates the ignition probability and asset 
exposure to wildfire events, thus leading to escalating wildfire risks [3, 
13–15]. Studies have shown that human activities and ignitions inside 
the WUI are one of the major causes of wildfires in recent years [3,5,16, 
17]. 

Despite the importance and urgent need for rapid building damage 
classification, current methods of inspecting wildfire-induced building 
damage are tedious and time-consuming. In the United States, damage 
assessment teams, usually consisting of certified specialists, are 
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deployed by local governments to perform building damage inspections 
and provide safety evaluation of structures in burned areas [1,18]. 
Building damage assessment teams also compile reports and send them 
to emergency operation centers (EOC) after the completion of building 
damage investigation to allow the EOC staff to strategize the recovery 
effort. Although the manual process provides valuable damage infor
mation, the addition of an automated quick assessment and data 
compilation could provide a more complete picture of the damage in a 
more timely manner. In addition to immediate post-wildfire recovery, 
the automation of damage data collection and compilation could also 
benefit the long-term study of wildfire damage and building loss. 
However, as of now, there is no nation-wide consistent building loss 
dataset. Many past studies have had to manually compile and digitize 
local data to perform analyses [5]. 

To automate the identification and classification of damaged build
ings, many studies have combined aerial or satellite imagery with a 
variety of methods ranging from simple spectral analyses [19–22] to 
complex methods involving deep learning models with more than a 
million parameters [23–25]. Thanks to the advances in deep learning 
models and availability of vast amounts of training data [26], deep 
learning models have surpassed traditional spectral methods in accuracy 
of classifying building damage. 

However, most methods of automating building damage identifica
tion and classification still require images from both pre-wildfire and 
post-wildfire in similar settings of lighting and camera angle [see 27,28, 
and references within]. These building damage classification algorithms 
have primarily focused on change detection between pre- and 
post-disaster images [27,28]. Depending on the magnitude of spectral 
change between the two images in similar lighting conditions, either a 
parametric model [29] or a non-parametric machine learning model 
[30] is trained to identify the presence and extent of building damage. 
Under such constraints, maintaining a reliable pre-wildfire image 
database requires frequent surveys. This poses a major challenge in 
scaling such techniques globally since maintaining a reliable 
pre-wildfire image database for the entire world would be very costly. In 
contrast, post-wildfire imagery is easier to obtain than pre-wildfire im
agery because of the availability of on-demand satellites, such as 
WorldView [31] and the possibility to conduct one-off aerial surveys. 
Therefore, identifying buildings in any pre-wildfire image (taken before 
a wildfire, not necessarily at similar lighting or camera angle) and then 
classifying building damage using post-wildfire images only has clear 
advantages. Although a few studies have attempted to identify damaged 
buildings using post-disaster images only, they have been restricted to 
non-deep learning solutions, thus vastly limiting their accuracy [32–34]. 

In this study, we combined two deep learning models to first identify 
building footprints in any recent pre-wildfire image and then classify 
building damage using post-wildfire images only. The two models work 
sequentially. The first model uses aerial or satellite imagery to output 
regions of interest (building footprints) which are then used by the 
second model to classify the footprints as either “damaged”, or “un
damaged” buildings. We refer to the two models in combination as 
“DamageMap”. As the remainder of this paper details, we trained, 
validated, and tested DamageMap on wildfire events around the world 
to assess its robustness for several roof architectures and landscape 
characteristics. 

2. Methods 

Even though models exist to perform two-class segmentation for 
buildings, state-of-the-art models still require images sourced right 
before and after a disaster event to segment and classify the buildings 
[23,30]. Such classifiers work through change detection (e.g., if a 
building’s pixel values change significantly, it is likely damaged). Since 
predicting the timing of natural hazards like wildfires is almost impos
sible, obtaining aerial images just before a wildfire can be challenging. 

To overcome the challenge of classifying building damage without a 

pre-wildfire image, we used two separate models:  

1. A segmenter that uses any pre-wildfire image (not necessarily 
sourced just prior to the wildfires, but at any time in recent history) 
to produce regions of interest for the classifier.  

2. A classifier that uses only a post-wildfire image to classify building 
damage. 

2.1. Dataset 

For training and validating our classifier, we used a subset of the xBD 
dataset [26], the largest building damage assessment dataset to date 
which contains pre- and post-event satellite images of various natural 
disaster events. In this study, we only used the post-wildfire images. The 
locations of the five wildfires included in xBD are shown as blue dots in 
Fig. 1. The xBD contained 47,543 cropped images of buildings that 
suffered different levels of damage (“no damage,” “minor damage,” 
“major damage,” and “destroyed”) after wildfire events. All images were 
red-green-blue (RGB), and their resolution was 0.8 m. We used these 
images as our training set because it offered two advantages. First, the 
five wildfire events included in xBD had occurred in disparate locations 
with different building architectures. This diversity of locations could 
allow our model to recognize different types and styles of structures. 
Second, the images after each wildfire were taken separately under 
different lighting conditions. This variation in light conditions could 
help our model perform consistently on new wildfire images taken 
during different times of the day. 

To test the performance of our model on real case studies, we used 
two GeoTiff RGB images of Paradise, California after the Camp Fire of 
2018 (Camp Fire) and Whiskeytown–Shasta–Trinity National Recrea
tion Area after the Carr Fire of 2018 (Carr Fire), both of which are shown 
in Fig. 1 with yellow dots. The two images were captured using aerial 
imagery and were made available by the California Department of 
Forestry and Fire Protection [35]. The level of damage for each building 
in the images was classified by damage assessment inspectors who 
visited each structure. The manual on-site classification means that 
buildings with intact rooftops, which will appear undamaged from the 
aerial images, can be labeled as damaged due to broken walls or win
dows. To overcome this challenge, we re-classified the damage to just 
two classes, undamaged and damaged, as explained further in Sec. 2.3. 

The Camp Fire image had dimensions of 30,000 x 30,000 x 3 pixels 
(height x width x channels), and 0.3 m ground resolution. The Carr Fire 
image had dimensions of 68,000 x 80,000 x 3, and 0.15 m ground res
olution. We decided to test our model on these two fires because both 
images were taken by different types of cameras than xBD (i.e., aerial 
imagery instead of satellite), and at different spatial resolution. This 
allowed us to test whether the model will be capable of handling new 
data collected from local agencies after a wildfire event. The total 
number of damaged and undamaged buildings per wildfire is displayed 
in Fig. 2. 

2.2. Segmenter and classifier choice 

The segmenter consists of a pre-trained ResNet34 model from 
Microsoft [36]. The ResNet34 (residual network) is a type of neural 
network that can be efficiently trained despite containing many (34) 
layers due to connections that allow skipping of one or more layers. The 
segmenter performs building extraction from satellite images in two 
steps. First, it recognizes building pixels in the aerial images (semantic 
segmentation), and then it converts the building pixels into polygons 
(representing individual structures). This allows us to extract the foot
prints of buildings. The advantage of this segmenter is that it can be used 
in any aerial image taken anytime recently before a wildfire event. The 
extracted footprints are used as post-wildfire regions of interest to 
classify the damage of each building. Moreover, the footprints of all the 
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buildings in the USA were already created in 2018 by Microsoft using 
this segmenter. For the classifier, we used a convolutional neural 
network (CNN) since it is the most widely used neural network archi
tecture for analyzing visual imagery, as first proposed by LeCun et al. 
[37]. We selected five of the most popular CNN architectures (ResNet 
[38], AlexNet [39], VGG [40], SqueezeNet [41], DenseNet [42]) 
pre-trained on Imagenet [43] and fine-tuned them on our training set. 
Since the classification was only binary, we used the smallest models of 
each architecture. After comparing their accuracies on our validation 
set, we decided to keep ResNet18 as our classifier of choice due to its 
better performance in our application. 

2.3. Training 

Before training, the dataset was pre-processed. The original xBD 
dataset contained a total of 47,543 images of structures after wildfires. 
Those images were separated in four classes depending on the severity of 
damage the structure experienced during the wildfire incident (“no 
damage,” “minor damage,” “major damage,” and “destroyed”). Since it 
was virtually impossible to distinguish an undamaged building from a 
building with “minor damage” using aerial imagery alone (see Fig. 3 in 
Ref. [30] and F1-scores in Ref. [26]), we reduced the number of classes 

to two. We labeled the first class containing the xBD classes of “no 
damage” and “minor damage” as “undamaged”. We labeled the other 
class containing “major damage”, and “destroyed” as “damaged”. Since 
DamageMap is designed to serve as a rapid assessment tool for 
post-wildfire building damage assessment, having a more accurate 
model with less granular information about the extent of damage is 
better than having a less accurate model with more granular 
information. 

As shown in Fig. 2 the two new classes were imbalanced with only 
7,346 images depicting damaged structures, while the remaining 40,197 
images contained undamaged structures. Such imbalance is common in 
wildfire events when most buildings in an affected area are safe. To 
separate the images into training, validation, and test sets, we did the 
following. We randomly picked 30,182 images of undamaged structures 
and 4,915 of damaged structures for the training set, 4,919 images of 
undamaged structures and 1,039 of damaged structures for the valida
tion set, and 5,096 images of undamaged structures and 1,392 of 
damaged structures for the test set. To deal with the class imbalance, we 
augmented the damaged structure images in the training and validation 
set by performing three rotations (90◦, 180◦, and 270◦), flip, and mirror 
transformations. These transformations were not applied to the test set– 
the set used to evaluate model performance. 

Fig. 1. Locations of all wildfire images used for training, validation, and testing. Training and validation data originated from the same source (xBD) whereas test 
images were sourced from the Carr Fire and the Camp Fire areas independently. Year of each wildfire is shown in parenthesis. 

Fig. 2. Number of damaged and undamaged structures in each wildfire incident in our dataset. With the exception of the Camp Fire, all locations had a majority of 
undamaged structures. For the Pinery, Portugal, Santa Rosa, Socal, and Woolsey wildfires, the damage classification was performed by human labelers using satellite 
images, whereas in the case of the Camp and Carr fires (test set), assessment was performed by post-disaster damage assessors through ground surveys. 
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After preparing the three datasets, we trained the model in the 
following way. We started with a ResNet18 CNN pre-trained on 
ImageNet, a dataset that contains 1.3 million images of common objects 
and scenes. Then, we replaced the output layer with a new layer with 
only two outputs, and we fine-tuned every layer. Before feeding the 
training images into the model, we resized them to size 224 x 224 by 
using bilinear interpolation. Then, we applied random Gaussian noise to 
the pixels by changing the brightness, contrast, and saturation 
randomly. Finally, we normalized the images using the training data’s 
mean and standard deviation for all three channels (i.e., red, green, and 
blue). We applied these transformations to make the model generalize 
better on new unseen images. For training, we used stochastic gradient 
descent with Nesterov momentum optimizer and cross entropy loss 
function. We trained for a total of fifty epochs (saving the model pa
rameters with the best accuracy on the validation set). We chose the 
hyperparameters after trying many different combinations. The batch 
size was 128 due to the restriction of the GPU available for training. For 
our optimizer, we used a learning rate of 0.001, momentum factor of 0.9, 
and L2 penalty of 10− 5. The entire training process is summarized in 
Fig. 3. 

2.4. Prediction 

We tested the trained network on the Camp Fire and the Carr Fire 
GeoTiff images. We obtained the true labels for both fires from post- 
wildfire ground surveys [35]. The ground surveyors recorded the loca
tion of the damaged buildings that we used to compare against model 
predictions. 

To use the same model to classify damage in buildings of all shapes 
and sizes, we cropped square images around the building footprints. The 
dimension of the square was chosen to be the square root of 75th 
percentile of footprint area of all buildings in the test region. We chose 
the 75th percentile for the dimension of the cropped image after we 
qualitatively found that the 25th and 50th percentile areas led to images 
being too zoomed-in and the 100th percentile led to images being too 
zoomed-out for majority of the buildings. After obtaining the square 
crops of the buildings’ segments, we normalized each image using the 
training data’s mean and standard deviation for all three channels. 
Then, we used our model to predict if every structure in the image was 
undamaged or damaged. This whole process took approximately 60 ms 

per image on an Nvidia Tesla K80 graphics processing unit. The pre
diction process is summarized in Fig. 4. 

To evaluate our model’s performance, we used four key metrics: 
accuracy, precision, recall, and F1 score. For our application it is 
important to correctly identify the damaged buildings even if they are 
considerably less than the undamaged ones. Therefore, we focussed on 
the F1 score, which is considered the most important metric when the 
false negatives and false positives are crucial. The four metrics are 
defined below: 

Accuracy =
Number of correct predictions
Total number of predictions  

Recall =
Number of correctly predicted damaged buildings

Total number of damaged buildings  

Precision =
Number of correctly predicted damaged buildings
Total number of buildings predicted as damaged  

F1 = 2⋅
Precision⋅Recall

Precision + Recall  

3. Results 

3.1. xBD validation set 

Most of the aerial images collected after wildfire events showed an 
area with either a very high percentage of damaged buildings or a high 
percentage of undamaged buildings. This means that in an area with 
high concentration of damaged buildings, a model could achieve high 
accuracy by simply predicting every building as damaged. Therefore, it 
is necessary to investigate the performance of our model for more 
metrics than just accuracy. Since the main goal of the proposed model is 
to classify correctly the damaged structures after a wildfire event, recall 
is a crucial metric to evaluate. 

As shown in Table 1 and Fig. 5, when evaluated on the validation set 
of the xBD, our model had a recall of 0.98, while accuracy, precision, 
and F1 score were 0.98, 0.99, and 0.98, respectively. This is a substantial 
improvement in comparison to a baseline model, a linear classifier 
trained on xBD that achieved an accuracy of 0.71 on the validation set. 

None of the existing models is aimed at solving an identical problem 

Fig. 3. Methods overview during time of model training. We input red-green-blue images into a classifier to train against known classes and tune model weights.  
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as our model, but some perform similar tasks. Three of the best attempts 
for assessing building damage from satellite imagery using the xBD 
dataset can be viewed in Refs. [24,26,30]. The difference in these 
models is that they were applied to many natural disasters, including 
floods, wildfires, and earthquakes. In addition to the variety of natural 
disasters, these models were also tasked to do both segmentation and 
classification of buildings into four different classes (“no damage,” 
“minor damage,” “major damage,” and “destroyed”). In contrast, our 
model only classified the already segmented buildings into two classes 

(“undamaged” and “damaged”), as explained in Sec. 2.3. That difference 
makes a fair comparison between the performance of their models and 
ours challenging. To address this problem and make the comparison as 
fair as possible, we compared our model’s performance for our two 
classes (“undamaged” and “damaged”) with their models’ performance 
for two of their classes (“undamaged” and “destroyed”), disregarding the 
other two classes (“minor damaged” and “major damaged”), which none 
of the existing models can identify accurately. In Table 2 we show the F1 
scores for classes undamaged and damaged of the models from Gupta 

Fig. 4. Methods overview during time of prediction. The DamageMap system ingests an aerial post-wildfire image and outputs polygons for undamaged and 
damaged buildings. The input image is fed through two convolutional neural networks designed to first segment buildings and then classify whether the buildings 
were undamaged (green) or damaged (red) due to the wildfire. 

Table 1 
Evaluation metrics of the model on each dataset. Refer to sec. 3.1 for definitions 
of metrics.  

Dataset Accuracy Precision Recall F1 Score 

xBD wildfires (validation set) 0.98 0.99 0.98 0.98 
Camp Fire (Test set 1) 0.92 0.92 0.99 0.96 
Carr Fire (Test set 2) 0.98 0.97 0.95 0.96  

Fig. 5. Confusion matrices showing the performance of our model on each dataset. True labels refers to damage classification obtained from human labelers or 
ground surveyors. Predicted labels refer to damage classification from our model. Validation set from xBD consists of 12.5% of xBD images. Darker colors correspond 
to bigger numbers in each matrix. 

Table 2 
F1 score comparison of four different models on the two classes, undamaged and 
damaged.  

Model Undamaged Damaged 

Weber and Kané 0.906 0.837 
Gupta and Shah 0.883 0.808 
xView2 challenge winners 0.923 0.864 
Our approach 0.979 0.983  
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and Shah [30], Weber and Kané [24], xView2 challenge winners, and 
our own. Despite the fact that our model displays a better performance, 
we point out again that a comparison between our model and the other 
three can never be totally fair due to the reasons mentioned before. 

To understand better what makes our model give a false prediction, 
we analyzed the images that our model failed to classify correctly. A few 
characteristic images, from the xBD validation set, leading to inaccurate 
predictions are shown in Fig. 6. To investigate the inaccuracies, saliency 
maps are presented. These maps are created such that the pixels with 
higher contribution to the decision making of the classifier display a 
brighter red color. As seen from Fig. 6, the classifier mostly focused on 
building pixels when making a decision because most of the pixels with 
dense red color on the saliency maps correspond to building pixels. In 
addition, most of the incorrect predictions of the classifier are from 
buildings that are either not visible in the image (e.g., the building is 
located under a tree), or damaged but with intact roofs. Finally, some
times the building of interest is undamaged, but there exists another 
damaged building in the same image due to errors in segmenting or 
cropping. 

3.2. Camp Fire (Paradise, CA) and Carr Fire (Redding, CA) 

A successful model should perform well even on new unseen data
sets. To evaluate our model on such datasets, we used the images 
collected from the Camp Fire and the Carr Fire. These two aerial images 
were retrieved from aeroplanes rather than satellites. From Fig. 7, one 
can observe the large differences among the color channel distributions 
of each dataset caused by the different sources of the imaging. Despite 
the variations, our model generalized well on new data collected with 
different methods. In the case of the Camp Fire, it achieved a recall of 
0.99, while accuracy, F1 score, and precision were 0.92, 0.96, and 0.92, 
respectively, as seen in Fig. 5 and Table 1. A sample of predictions from 
the Camp Fire are presented in Fig. 9. To investigate the relatively low 
precision (0.92), a sample of undamaged buildings from the Camp Fire, 
incorrectly classified as “damaged”, are presented in Fig. 8. When four 
humans were asked to classify 100 building images from the Camp Fire, 
their precision ranged from 83% to 93%. Thus model performance, 
despite being low, was on par with human performance in the case of the 
Camp Fire. 

When evaluated on the Carr Fire, our model had a recall of 0.95 and 
the accuracy, F1 score, and precision were 0.98, 0.96, and 0.97, 

respectively, as shown in Fig. 5 and Table 1. Eight representative images 
from the Carr Fire are shown in Fig. 10. Once again, saliency maps 
suggest that our model correctly focused on the buildings’ pixels to 
classify the images. In addition, most of the incorrect predictions were 
difficult to classify properly given only a top view because of the pres
ence of trees or intact roofs. 

4. Discussion 

4.1. Adequacy of post-wildfire images for damage classification 

Obtaining pre- and post-wildfire images under similar lighting, view 
angle, and camera can be a monumental task for three main reasons. 
First, since wildfires can occur in any year, maintaining a reliable pre- 
fire image database would demand mapping the urban and rural 
world at very high resolution (<1 m) every year. Second, any change in 
the sensor capturing the pictures would demand a whole new set of pre- 
fire images captured with the new sensor camera. This is because even 
minute changes in camera angle and sensor can degrade model perfor
mance if higher-level features are not first extracted [45]. Lastly, and 
perhaps most importantly, building damage assessments immediately 
after a wildfire can be performed with airborne cameras only because 
lingering smoke and clouds may obstruct spaceborne imagery. This 
leaves disaster assessment using post-wildfire images as the only option, 
since airborne surveys are hardly ever performed at regular intervals. 
Thus, by exclusively using post-wildfire images, we reduced data 
sourcing challenges. 

Although earlier studies showed that using only post-disaster images 
may result in significant under-counting of damaged buildings [32], 
more recent studies using deep learning have found that the loss in ac
curacy is negligible. In the case of Xu et al. [45], accuracy dropped from 
0.83 to 0.80. The results of our study show through the five validation 
fires (Fig. 6) and two explicit test cases (Figs. 9 and 10) that our deep 
learning model maintained high accuracy with solely post-wildfire im
ages. The saliency maps in the validation as well as the test set show that 
when the model’s predictions were correct, it focused correctly on the 
buildings (indicated by brighter red colors over the footprint area). 
Validation as well as test accuracy for damage classification exceeded 
90% in all cases (Table 1), and exceeded previous approaches (Table 2), 
suggesting that post-disaster images alone might be sufficient for a bi
nary building damage classification task. 

Fig. 6. xBD wildfire images and prediction visualization. A sample of input images after cropping around building segments is provided in the top row. Corre
sponding saliency maps from our model are in the bottom row. The saliency maps are created such that the pixels with higher contribution to the decision making of 
the classifier display a brighter red color. 
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The metrics of both test cases combined with the saliency maps 
suggest that our model can be used in new datasets with promising re
sults. Despite the fundamental differences between the three different 
datasets (xBD, Camp Fire, Carr Fire) the classifier was able to correctly 
predict building damage for most buildings. With the trained and vali
dated model, we created a web application [46] to allow users to 
interactively explore damage predictions on the test set. 

4.2. Causes for prediction error 

Although our model exhibited an overall accuracy exceeding 98% on 
the validation set and in the Carr Fire, its performance was considerably 
lower in the Camp Fire, with accuracy = 92% (Table 1). The 

overwhelming majority of the incorrect examples in the Camp Fire were 
of buildings that were actually undamaged but predicted as damaged 
(precision = 92%, but recall = 99%, Table 1). An investigation of the 
incorrectly classified images from the Camp Fire revealed that model 
performance suffered in two scenarios. First, when trees covered un
damaged buildings, the model predicted them as “damaged” (Figs. 8 and 
9). This was perhaps caused by the similarity in texture between tree 
canopies and damaged buildings’ debris. Secondly, the model incor
rectly classified images which had a smaller building and a relatively 
higher portion of the background landscape visible in the cropped re
gion of interest. Brown ground appears visually similar to damaged 
roofs, thus degrading the accuracy of our model in the Camp Fire. 

In contrast, the images from the Carr Fire were sourced from a 

Fig. 7. Color channel histograms for the three datasets in our study. Both the Camp Fire and xBD wildfires had similar histograms whereas the Carr Fire images had a 
bi-modal distribution due to its highly urbanised area. 

Fig. 8. A sample of images of undamaged buildings from the Camp Fire, incorrectly classified as “damaged”. Such false positives mostly occur when tree canopies 
cover the building roofs either partially or fully. 

Fig. 9. Camp Fire images and prediction visualization. A sample of input images after cropping around building segments are provided in the top row, and cor
responding saliency maps are in the bottom row. 
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developed environment (Fig. 10) that had brighter background colors 
(Fig. 7) and thus lesser likelihood of encountering brown ground. 
Furthermore, owing to the built-up environment of the Carr Fire’s 
location, trees were less likely to be present adjacent to the buildings, 
thus making classification easier and more robust. Nevertheless, given 
the fact that in the Camp Fire, the errors are of commission and not 
omission, the lower accuracy is less concerning for use in an operational 
setting since the resulting damage assessment is more conservative. 
Moreover, since model performance matched human-level prediction 
(92% for model, 93% for humans), it is likely that model accuracy may 
not be improved with the current image quality of 0.3 m resolution. 

4.3. Model generalization 

The ability of empirical models to generalize to new unseen data can 
be beneficial in an operational environment. New images sourced from 
future fires could be from new places where the current model was 
neither trained nor validated. Thus, to quantify generalized model ac
curacy, it is insufficient to evaluate it on the validation set alone (which 
is typically used to tune model hyperparameters). An independently- 
sourced test set is needed to understand true ability of models to 
generalize. This is because the validation data contain buildings from 
the same place, with similar roof architectures, roof colors, or back
ground colors unlike in the case of test data where images are sourced 
from completely different places using different instruments (e.g., aerial 
cameras as opposed to satellite-based cameras). 

On comparing the model performance on different datasets, we 
observed that the accuracy remained almost unchanged between the 
training set (99%), validation set (98%), and test sets (98% in the Carr 
Fire and 92% in the Camp Fire, Table 1). This indicates that the tuning of 
model hyperparameters and data normalization likely helped prevent 
overfitting to the training or the validation datasets, despite significant 
differences in their color spectrum (Fig. 7). 

For model tuning, we imposed a stringent regularization mechanism 
by constraining the L2 norm of the weight matrix. We also introduced 
random changes to brightness, contrast, and saturation of the input 
images between each epoch to help the model generalize better. Finally, 
we subtracted the mean reflectances from all bands before dividing it by 
the standard deviation to normalize the color spectrum of each image 
(Fig. 3). This helped maintain high model performance on the Carr Fire 
data (test set) despite its vastly different color histogram (Fig. 7). The 
saliency maps show that the model’s attention was correctly focused on 

the building footprints, instead of the background landscape in the Carr 
Fire (Fig. 10). This finding is consistent with other image recognition 
studies where spectrum normalization and random shifting of image 
brightness and contrast have helped improve overall model performance 
on unseen test data [47]. 

On the other hand, relying on the validation set alone may not al
ways reveal a model’s ability to generalize. This is because the valida
tion set is usually comprised of images similar to the images in the 
training set without changes in the type of cameras used to source the 
images, camera angle, or camera resolution. For instance, when Xu et al. 
[45], trained their CNN model on a dataset of damaged buildings in 
Mexico, they found that the model had an accuracy of 71% on unseen 
data in Mexico. However, the accuracy dropped to 60% when the model 
was trained on a dataset from Haiti and tested in Mexico. In spite of the 
need to test model generalization ability, most studies of building 
damage detection in the past were validated on a portion of the same 
data source (for e.g., 30, 48, 26, 49 with the notable exception of Weber 
et al., [24]). Thus, there is an urgent need to test model generalizability 
on not just unseen data from the same data source, but also on images 
from new places, captured under different settings. 

4.4. Limitations and future work 

There are some limitations to our study. Incorrect classification of 
building damage mostly occurred at buildings located under trees or 
partially damaged buildings. Future efforts must address classification 
challenges with such partial information. Since buildings adjacent to 
trees are likely to be present in intermix zones of the WUI, it is of prime 
importance that any damaged building classifier perform well in such 
regions due to the increased risk of wildfire damage in such areas [5]. To 
overcome the challenges posed by tree-covered buildings for building 
damage classification, three solutions may help. First, a more advanced 
cropping technique for selecting regions of interest could be used. 
Instead of just cropping an image around building footprints, pixels not 
belonging to the building footprints may be masked out before classi
fying the images [50,51]. Second, using imagery with more spectral 
bands may help distinguish between built-up area and vegetation. In 
particular, near-infrared band reflectance, or an index constructed from 
it such as the normalized difference vegetation index can assist the 
model to distinguish between rooftops and vegetation canopy due to 
direct sensitivity to chlorophyll content in vegetation [52]. Third, mi
crowave radars may be used to penetrate through thin canopies [53]. An 

Fig. 10. Carr Fire images and prediction visualization. Eight building images and their true labels are provided in the top row. Corresponding predicted labels and 
saliency maps are in the bottom row. 
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added advantage of microwaves is that they can penetrate smoke and 
clouds, thus allowing for consistent data capturing. Microwave synthetic 
aperture radar (SAR) has shown promise in damage identification, 
although the speckle (spatial noise) in SAR images has posed significant 
challenges in accurately identifying damage at the building-scale [54]. 

In addition, our model might under-perform with new data collected 
from unique and rare environments that our model has never seen in the 
training and validation process. Another limitation is that our model is a 
binary classifier, whereas for more precise damage assessment we might 
need more granular damage classifications. Supplementing aerial im
agery with other remotely-sensed information like microwave back
scatter may help in this regard. Finally, even though our model does not 
need images just before the wildfire for classifying building damage, it 
still needs an image taken at some time before the fire to identify 
building perimeters (which are then fed to the classifier). However, if 
the time period between the image collection and fire is considerably 
long, our approach will miss buildings that were constructed in that time 
period. This is of particular concern in places experiencing rapid 
expansion of the WUI [55]. In such cases, locally-sourced information 
from authorities can help in obtaining the latest information on location 
of buildings to supplement the segmentation task. This can be done by 
taking the union of known location of buildings from local authorities 
and from the output of Microsoft’s building footprints dataset. 

The issue of building damage identification is not unique to wildfire 
disasters alone. Other natural disasters such as hurricanes and earth
quakes also demand rapid damage assessments [26], since current 
methods are manual and laborious [56–59]. Extending DamageMap to 
other natural disasters can thus be beneficial. Dataset compiled by 
Ref. [26] may be used for this purpose, although independent test sets to 
estimate model generalizability are lacking. Furthermore, an analysis of 
the type of damage caused by each natural disaster would be required 
because damages caused by floods, for instance, may not be apparent 
using aerial imagery alone. 

5. Conclusion 

The artificial intelligence-powered DamageMap has the potential to 
assist disaster managers and first responders in building damage 
assessment and post-disaster recovery. Unlike other studies that require 
imagery both before and after wildfires occur, our model achieved high 
accuracy in classifying building damages by only using post-wildfire 
images. Our results suggest that our model can potentially save time 
and reduce the costs of collecting pre-disaster aerial imagery. Moreover, 
most of the existing models of building damage classification for wild
fires used the same data sources for training and validation, so their 
accuracy may drop significantly when applied to other unseen data at 
different locations. In contrast, our model used different sources of 
training and test datasets and showed promising results in both the 
validation set of the xBD dataset, and the test set of wildfire events, such 
as the Camp Fire and the Carr Fire. These promising results demonstrate 
that our model has the potential to generalize well to unseen datasets of 
wildfires and other natural disasters. 
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[11] Susana Gómez-González, Fernando Ojeda, Paulo M. Fernandes, Portugal and Chile: 
longing for sustainable forestry while rising from the ashes, Environ. Sci. Pol. 81 
(2018) 104–107. July 2017. 

[12] Paul Fox-Hughes, Rebecca Harris, Greg Lee, Michael Grose, Nathan Bindoff, Future 
fire danger climatology for tasmania, Australia, using a dynamically downscaled 
regional climate model, Int. J. Wildland Fire 23 (3) (2014) 309–321. 

[13] M.D. Flannigan, K.A. Logan, B.D. Amiro, W.R. Skinner, B.J. Stocks, Future area 
burned in Canada, Climatic Change 72 (1–2) (2005) 1–16. 

[14] Sirio Modugno, Heiko Balzter, Beth Cole, Pasquale Borrelli, Mapping regional 
patterns of large forest fires in Wildland-Urban Interface areas in Europe, 
J. Environ. Manag. 172 (2016) 112–126. 

[15] Michael Buxton, Rachel Haynes, David Mercer, Andrew Butt, Vulnerability to 
bushfire risk at melbourne’s urban fringe: the failure of regulatory land use 
planning, Geogr. Res. 49 (1) (2011) 1–12. 

[16] Raul Romero-Calcerrada, C.J. Novillo, J.D.A. Millington, I. Gomez-Jimenez, GIS 
analysis of spatial patterns of human-caused wildfire ignition risk in the SW of 
Madrid (Central Spain), Landsc. Ecol. 23 (3) (2008) 341–354. 

[17] Jennifer K. Balch, Bethany A. Bradley, John T. Abatzoglou, R. Chelsea Nagy, Emily 
J. Fusco, Adam L. Mahood, Human-started wildfires expand the fire niche across 

M. Galanis et al.                                                                                                                                                                                                                                

https://kkraoj.users.earthengine.app/view/damagemap
https://github.com/MariosGalanis/DamageMap
https://github.com/MariosGalanis/DamageMap
https://www.fema.gov/disasters/preliminary-damage-assessment-reports/guide
https://www.fema.gov/disasters/preliminary-damage-assessment-reports/guide
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref3
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref3
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref3
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref3
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref3
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref3
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref4
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref4
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref4
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref5
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref5
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref5
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref6
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref6
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref6
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref7
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref7
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref7
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref8
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref8
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref8
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref9
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref9
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref9
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref9
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref9
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref9
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref10
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref10
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref10
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref11
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref11
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref11
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref12
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref12
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref12
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref13
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref13
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref14
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref14
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref14
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref15
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref15
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref15
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref16
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref16
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref16
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref17
http://refhub.elsevier.com/S2212-4209(21)00501-X/sref17


International Journal of Disaster Risk Reduction 65 (2021) 102540

10

the United States, in: Proceedings of the National Academy of Sciences of the 
United States of America, vol. 114, 2017, pp. 2946–2951, 11. 

[18] Damage assessments for properties affected by the glass fire, Sonoma County 
Emergency and Preparedness Information, County of Sonoma, California, Oct 
2020. https://socoemergency.org/recover/glass-wildfire/damage-assessments/. 

[19] Jia-hang Liu, Xin-jian Shan, Jing-yuan Yin, Automatic recognition of damaged 
town buildings caused by earthquake using remote sensing information: taking the 
2001 bhuj, India, earthquake and the 1976 tangshan, China, earthquake as 
examples, Acta Seismol. Sin. (Engl. Ed.) 17 (6) (2004) 686–696. 

[20] Yalkun Yusuf, Masashi Matsuoka, Fumio Yamazaki, Damage assessment after 2001 
Gujarat earthquake using landsat-7 satellite images, Journal of the Indian Society 
of Remote Sensing 29 (1–2) (2001) 17–22. 

[21] Paolo Gamba, Fabio Casciati, Gis and image understanding for near-real-time 
earthquake damage assessment, Photogramm. Eng. Rem. Sens. 64 (1998) 987–994. 

[22] Fuzhou Duan, Huili Gong, Wenji Zhao, Collapsed houses automatic identification 
based on texture changes of post-earthquake aerial remote sensing image, in: 2010 
18th International Conference on Geoinformatics, IEEE, 2010, pp. 1–5. 

[23] Colin Alstad, The xView2 AI Challenge, IBM, 2020. https://www.ibm.com/cloud 
/blog/the-xview2-ai-challenge. 
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