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Dynamical machine learning volumetric
reconstruction of objects’ interiors from limited
angular views
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Abstract
Limited-angle tomography of an interior volume is a challenging, highly ill-posed problem with practical implications
in medical and biological imaging, manufacturing, automation, and environmental and food security. Regularizing
priors are necessary to reduce artifacts by improving the condition of such problems. Recently, it was shown that one
effective way to learn the priors for strongly scattering yet highly structured 3D objects, e.g. layered and Manhattan, is
by a static neural network [Goy et al. Proc. Natl. Acad. Sci. 116, 19848–19856 (2019)]. Here, we present a radically
different approach where the collection of raw images from multiple angles is viewed analogously to a dynamical
system driven by the object-dependent forward scattering operator. The sequence index in the angle of illumination
plays the role of discrete time in the dynamical system analogy. Thus, the imaging problem turns into a problem of
nonlinear system identification, which also suggests dynamical learning as a better fit to regularize the reconstructions.
We devised a Recurrent Neural Network (RNN) architecture with a novel Separable-Convolution Gated Recurrent Unit
(SC-GRU) as the fundamental building block. Through a comprehensive comparison of several quantitative metrics, we
show that the dynamic method is suitable for a generic interior-volumetric reconstruction under a limited-angle
scheme. We show that this approach accurately reconstructs volume interiors under two conditions: weak scattering,
when the Radon transform approximation is applicable and the forward operator well defined; and strong scattering,
which is nonlinear with respect to the 3D refractive index distribution and includes uncertainty in the forward
operator.

Introduction
Optical tomography reconstructs the three-dimensional

(3D) internal refractive index profile by illuminating the
sample at several angles and processing the respective raw
intensity images. The reconstruction scheme depends
on the scattering model that is appropriate for a given
situation. If the rays through the sample can be well
approximated as straight lines, then the accumulation of
absorption and phase delay along the rays is an adequate

forward model, i.e. the projection or Radon transform
approximation applies. This is often the case with hard x-
rays through most materials including biological tissue;
for that reason, Radon transform inversion has been
widely studied1–10. The problem becomes even more
acute when the range of accessible angles around the
object is restricted, a situation that we refer to as “limited-
angle tomography,” due to the missing cone problem11–13.
The next level of complexity arises when diffraction and

multiple scattering must be taken into account in the
forward model; then, the Born or Rytov expansions and
the Lippmann-Schwinger integral equation14–18 are more
appropriate. These follow from the scalar Helmholtz
equation using different forms of expansion for the scat-
tered field19. In all these approaches, weak scattering is
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obtained from the first order in the series expansion.
Holographic approaches to volumetric reconstruction
generally rely on this first expansion term20–31. Often,
solving the Lippmann-Schwinger equation is the most
robust approach to account for multiple scattering, but
even then, the solution is iterative and requires excessive
amount of computation especially for complex 3D geo-
metries. The inversion of these forward models to obtain
the refractive index in 3D is referred to as inverse scat-
tering, also a well-studied topic32–39.
An alternative to the integral methods is the Beam

Propagation Method (BPM), which sections the sample
along the propagation distance z into slices, each slice
scattering according to the thin transparency model,
and propagates the field from one slice to the next
through the object40. Despite some compromise in
accuracy, BPM offers comparatively light load of com-
putation and has been used as forward model for 3D
reconstructions18. The analogy of the BPM computa-
tional structure with a neural network was exploited, in
conjunction with gradient descent optimization, to
obtain the 3D refractive index as the “weights” of the
analogous neural network in the learning tomography
approach41–43. BPM has also been used with more tra-
ditional sparsity-based inverse methods33,44. Later, a
machine learning approach with a Convolutional Neural
Network (CNN) replacing the iterative gradient descent
algorithm exhibited even better robustness to strong
scattering for layered objects, which match well with the
BPM assumptions45. Despite great progress reported by
these prior works, the problem of reconstruction
through multiple scattering remains difficult due to the
extreme ill-posedness and uncertainty in the forward
operator; residual distortion and artifacts are not
uncommon in experimental reconstructions.
Inverse scattering, as inverse problems in general, may

be approached in a number of different ways to regularize
the ill-posedness and thus provide some immunity to
noise46,47. Recently, thanks to a ground-breaking obser-
vation from 2010 that sparsity can be learnt by a deep
neural network48, the idea of using machine learning to
approximate solutions to inverse problems also caught on
ref. 49. In the context of tomography, in particular, deep
neural networks have been used to invert the Radon
transform50 and recursive Born model32, and were also the
basis of some of the papers we cited earlier on holographic
3D reconstruction28–30, learning tomography41–43, and
multi-layered strongly scattering objects45. In prior work
on tomography using machine learning, generally, the
intensity projections are all fed simultaneously as inputs to
a computational architecture that includes a neural net-
work, and the output is the 3D reconstruction of the
refractive index. The role of the neural network is to learn
(1) the priors that apply to the particular class of objects

being considered and (2) the relationship of these priors to
the forward operator (Born, BPM, etc.) so as to produce a
reasonable estimate of the inverse.
Here we propose a rather distinct approach to exploit

machine learning for a generic 3D refractive index
reconstruction independent of the type of scattering. Our
motivation is that, as the angle of illumination is changed,
the light goes through the same scattering volume, but
the scattering events, weak or strong, follow a different
sequence. At the same time, the raw image obtained
from a new angle of illumination adds information to the
tomographic problem, but that information is constrained
by (i.e. is not orthogonal to) the previously obtained
patterns. We interpret this as similar to a dynamical
system, where the output is constrained by the history of
earlier inputs as time evolves and new inputs arrive. (The
convolution integral is the simplest and best-known
expression of this relationship between the output of a
system and the history of the system’s input.) An alter-
native interpretation is as dynamic programming51, where
the system at each step reacts so as to incrementally
improve an optimality criterion—in our case, the recon-
struction error metric.
The analogy between tomography and a dynamical

system suggests the RNN architecture as a strong candi-
date to process raw images in sequence, as they are
obtained one after the other; and process them recur-
rently so that each raw image from a new angle improves
over the reconstructions obtained from the previous
angles. Thus, we treat multiple raw images under different
illumination angles as a temporal sequence, as shown in
Fig. 1. The angle index replaces what is a dynamical sys-
tem would have been the time t. This idea is intuitively
appealing; it also leads to considerable improvement in
the reconstructions, removing certain artifacts that were
visible in the strong scattering case of ref. 45.
The dynamic reconstruction methodology applies, for

example, too weak scattering where the raw images are
the sinograms; and too strong scattering, where the raw
images are better interpreted as intensity diffraction pat-
terns. The purpose of the learning scheme is to augment
this relationship with regularization priors applicable to a
certain class of objects of interest.
The way we propose to use RNNs in this problem is

quite distinct from the recurrent architecture proposed
first in ref. 48 and subsequently implemented, replacing
the recurrence by a cascade of distinct neural networks, in
refs. 50,52,53, among others. In these prior works, the input
to the recurrence can be thought of as clamped to the raw
measurement, as in the proximal gradient54 and related
methods; whereas, in our case, the input to the recurrence
is itself dynamic, with the raw images from different
angles forming the input sequence. Moreover, by utilizing
a modified gated recurrent unit (more on this below)
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rather than a standard neural network, we do not need to
break the recurrence up into a cascade.
Typical applications of RNNs55,56 are in temporal

sequence learning and identification. In imaging and
computer vision, RNN is applied in 2D and 3D: video
frame prediction57–60, depth map prediction61, shape
inpainting62; and stereo reconstruction63,64 or segmenta-
tion65,66 from multi-view images, respectively. Stereo, in
particular, bears certain similarities to our tomographic
problem here, as sequential multiple views can be treated
as a temporal sequence. To establish the surface shape,
the RNNs in these prior works learn to enforce con-
sistency in the raw 2D images from each view and resolve
the redundancy between adjacent views in recursive
fashion through the time sequence (i.e. the sequence of
view angles). Non-RNN learning approaches have also
been used in stereo, e.g. Gaussian mixture models67. In
computed tomography, in particular, an alternate dyna-
mical neural network of the Hopfield type has been used
successfully68.
In this work, we replaced the standard Long Short-

Term Memory (LSTM)56 implementation of RNNs with a
modified version of the newer Gated Recurrent Unit
(GRU)69. The GRU has the advantage of fewer parameters
but generalizes comparably with the LSTM. Our GRU
employs a separable-convolution scheme to explicitly
account for the asymmetry between the lateral and axial
axes of propagation. We also utilize an angular attention
mechanism whose purpose is to learn how to reward
specific angles in proportion to their contribution to
reconstruction quality70. We found that for the strongly
anisotropic samples or scanning schemes the angular
attention mechanism is effective.
The results of our simulation and experimental study on

a generic interior volumetric reconstruction are in
Results. We first show numerically that the dynamical
machine learning approach is suitable to tomographic
reconstruction under more restrictive and commonly

used Radon transform assumption, i.e. weak scattering.
Then, we demonstrate the applicability of the dynamical
approach to strong scattering tomography. We show
significant improvement over static neural network-based
reconstructions of the same experimental data under the
strong scattering assumption. The improvement is shown
both visually and in terms of several quantitative metrics.
Results from an ablation study indicate the relative sig-
nificance of the new components we introduced to the
quality of the reconstructions.

Results
Our first investigation of the recurrent reconstruction

scheme is for weak scattering, i.e. when the Radon trans-
form approximation applies and with a limited range of
available angles. For simulation, each sample consists of
random number, between 1 and 5 with equal probability, of
ellipsoids at random locations with arbitrarily chosen sizes,
amplitudes, and angles, thus spatially isotropic in average.
Rotation is applied along the x-axis, from −10° to +10° with
1° increment, thus 21 projections per sample under a
parallel-beam geometry. The Filtered Backprojection (FBP)
algorithm3 is used to generate crude estimates from the
projections. nth FBP Approximant (n = 1,2,…,21) is the
reconstruction by the FBP algorithm using n projections of
n angles starting from −10°.
The reconstructions by the RNN are compared in Fig. 2

with FBP and Total Variation (TV)-regularized recon-
structions using TwIST71 for qualitative and visual com-
parison. Here a TV-regularization parameter is set to be
0.01, and the algorithm is run up to 200 iterations until its
objective function saturates. Figure 3 shows the quanti-
tative comparison on test performance using three dif-
ferent quantitative metrics, where FBP and FBP+TV
yielded much lower values than the recurrent scheme.
Figure 4 shows the evolution of test reconstructions as new

projections or FBP Approximants are presented to the
dynamical scheme. When the recurrence starts with n = 1,
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Fig. 1 Definition of the angular axis according to illumination angles. Each angle of illumination, here labeled as angular axis, corresponds to a
time step in an analogous temporal axis
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the volumetric reconstruction is quite poor; as more projec-
tions are included, the reconstruction improves as expected. It
is also interesting to see that not all the angles are needed to
achieve reasonable quality of reconstructions as the graphs
and reconstructions in Fig. 4a, b saturate around n = 19.

Details of the recurrent architecture for the weak
scattering assumption are presented in Fig. 16b. To
quantify the relative contributions to reconstruction
quality of each element in the architecture, the elements
one by one are ablated (-) or substituted ($) with
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alternatives. This ablation study is performed on a
strategy to giving weights on hidden features, separable
convolution, and ReLU (rectified linear unit) activation
function72 inside the recurrence cell. Specifically, in the
study, (1) an angular attention mechanism is ablated, or
only last hidden feature hn is taken into account before
the decoder instead of the angular attention mechanism;
(2) a separable convolution scheme is ablated, thus the
standard 3D convolution; and (3) ReLU activation
function is ablated and then substituted with the tanh
activation function, which is more usual69. The ablated
architectures are trained under the same training
scheme (for more details, see Training the recurrent
neural network in Materials and methods) and tested
with the same simulated data.
Visually, in Fig. 5, test performance largely degrades as the

ablation happens on the ReLU activation function and
separable convolution, which is also found quantitatively in
Fig. 6. Therefore, for the Radon case, we find that (1) ReLU
activation function is highly desirable instead of the native
tanh function; (2) the separable convolution is helpful
when designing a recurrent unit and encoder/decoder for

tomographic reconstructions under the weak scattering
assumption. However, for the ablation of the angular
attention mechanism, it makes no large difference from the
performance of the proposed model, which is because
the objects used for training and testing are isotropic in
average and do not show any preferential direction.
Here, we perform an additional study on the role of the

angular attention mechanism by granting a preferential
direction or spatial anisotropy to the objects of interest. In
this study, the mean major axis of the objects is assumed
to be parallel to the z-axis, i.e. the objects are elongated
along the axis. Instead of the previously examined sym-
metric angular scanning range (−10°, +10°), we now
consider the asymmetric case (−15°, +5°).
In Fig. 7a, the angular attention with the asymmetry now

gives attention on n differently, i.e. its peak translated to the
left by 5. It is because the projections from higher angles
may contain more useful information on the objects due to
the directional preference of the objects, thus the distribu-
tion of the attention probabilities is now attracted to
the lower indices. In Fig. 7b, we quantitatively show that the
angular attention improves performance in the case of the
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asymmetric scanning of objects with directionality regard-
less of the noise present in projections.
Figures 8 and 9 characterize our proposed method in

terms of feature size and feature sparsity, as well as cross-
domain generalization, compared to the baseline model
(see Training the recurrent neural network in “Materials

and methods” for details). Networks trained with exam-
ples with small and dense features tend to generalize
better and with less artifacts than large and sparse fea-
tures, in agreement with ref. 73. Lastly, and not surpris-
ingly, overall reconstruction quality is better when feature
size is large and features are sparse.
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Next, we investigate the case when the Radon transform
is not applicable, i.e. tomography under strong scattering
conditions and under a similarly limited-angle scheme.
The RNN is first trained with the single-pass, gradient
descent-based Approximants Eq. (4) of simulated dif-
fraction patterns (see Training and testing procedures in
Materials and methods), and then tested with the simu-
lated ones and additionally with the TV-based Approx-
imants Eq. (5) of experimentally obtained diffraction
patterns. TV regularization is only applied to the experi-
mental patterns. To reconcile any experimental artifacts,
there is an additional step of Dynamic Weighted
Moving Average (DWMA) on the Approximants

f ½1�n ðn ¼ 1; 2; ¼ ; 42Þ, hence DWMA Approximants

~f
½1�
m ðm ¼ 1; 2; ¼ ; 12Þ. See “Materials and methods” for

more details in the DWMA process. The evolution of the
RNN output as more DWMA Approximants are pre-
sented is shown in Fig. 10 and shows a similar improve-
ment with recurrence m as in the Radon case of Fig. 4.
Also, like the Radon case, it is interesting to see that not
all the Approximants are needed to acquire reasonable
quality of reconstructions: the graphs in Fig. 10a saturate
around m = 10 and the visual quality of the reconstruc-
tions at m = 10–12 in Fig. 10b does not largely differ.
For comparison, the 3D-DenseNet architecture with skip

connections in ref. 45 and its modified version with more
parameters to match with that of our RNN are set as
baseline models (see Training the recurrent neural network
in Materials and methods for details). Our RNN has
approximately 21M parameters, and visual comparisons
with the baseline 3D-DenseNets with 0.5M and 21M
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parameters are shown in Fig. 11. The RNN results show
substantial visual improvement, with fewer artifacts and
distortions compared to the static approaches of ref. 45, even
when the number of parameters in the latter matches ours.
PCC, SSIM, Wasserstein distance, and PE are used to
quantify test performance using simulated and experimental
data in Fig. 12.
We also conducted an ablation study of the learning

architecture of Fig. 16d. Similar to the Radon case, each
component in the architecture was ablated or substituted
with its alternative, one at a time: (1) ReLU was ablated
and then substituted with the native tanh activation
function, (2) the separable convolution was ablated, thus
the standard 3D convolution, and (3) the angular atten-
tion mechanism was ablated, or only the last hidden
feature was given attention. The ablated architectures are
also trained under the same training scheme (see Training
the recurrent neural network in “Materials and methods”
for more details) and tested with both the simulated
Eq. (4) and experimental Approximants Eq. (5).

Visually in Fig. 13, unlike the Radon case, paying
attention only to the last hidden feature affects and
degrades the testing performance worst. Also, it is
important to note that the ablation of the separable
convolution scheme brings degradation in test perfor-
mance according to Fig. 13. The decrease in test perfor-
mance by the substitution of ReLU with the more
common tanh is comparatively marginal. These findings
are supported quantitatively as well in Fig. 14.
Thus, under the strong scattering condition, we find that

(1) hidden features from all angular steps need to be taken
into consideration with the angular attention mechanism for
reconstructions to get a better test performance although
the last hidden feature is assumed to be informed of the
history of the previous angular steps; (2) replacing the
standard 3D convolution with the separable convolution
helps when designing a recurrent unit and a convolutional
encoder/decoder for tomographic reconstructions; and (3)
the substitution of tanh with ReLU is still useful but may be
application dependent.
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Discussion
We have proposed a new recurrent neural network scheme

for a generic interior-volumetric reconstruction by processing
raw inputs from different angles of illumination dynamically,
i.e. as a sequence, with each new angle improving the 3D
reconstruction. We found this approach to work well under
two types of scattering assumptions: weak (Radon transform)
and strong. In the second case, in particular, we observed
significant qualitative and quantitative improvement over the
static machine learning scheme of ref. 45, where the raw inputs
from all angles are processed at once by a neural network.
Through the ablation studies, we found that sand-

wiching the recurrent structure with some key elements
between a convolutional encoder/decoder helps improve

the reconstructions. We found that the angular attention
mechanism takes an important role especially when the
objects of interest are spatially anisotropic and performs
better than placing all the attention on only the last hid-
den feature. Even though the last hidden feature is a
nonlinear multivariate function of all the previous hidden
features, as it has a propensity to reward the latter
representations but the former ones74, the last hidden
feature may not sufficiently represent all angular views.
Hence, the angular attention mechanism adaptively
merges information from all angles. This is particularly
important for our strong scattering case as each DWMA
Approximant involves a diffraction pattern of a certain
illumination angle; whereas an FBP Approximant under
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Fig. 13 Visual quality assessment from the ablation study on elements (see “Computational architecture in Materials and methods” for
details) using experimental data. Rows 3–5 show reconstructions based on experimental data for each layer upon the ablation and substitution of
ReLU activation in Eq. (10) with the more common tanh activation function instead (row 3); ablating the separable convolution scheme, thus the
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ordered by increasing severity of the ablation effect according to Fig. 14b
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the weak scattering case is computed from several pro-
jections in a cumulative fashion.
In addition, interestingly, the relative contributions of other

elements, e.g. the separable convolution scheme and ReLU
activation, differ in weak and strong scattering assumptions.
The substitution of the ReLU with a more common tanh
activation brings forth more severe degradation of perfor-
mance under the weak scattering assumption. Thus, we
suggested different guidelines for each scattering assumption.
Lastly, alternative implementations of the RNN could be

considered. Examples are LSTMs, Reservoir Comput-
ing75–77, separable convolution or DenseNet variants for
the encoder/decoder and dynamical units. We leave these
investigations to future work.

Materials and methods
Experiment
For the experimental study under the strong scattering

assumption, the experimental data are the same as in
ref. 45, whose experimental apparatus is summarized in
Fig. 15. We repeat the description here for the readers’
convenience. The He-Ne laser (Thorlabs HNL210L,
power: 20 mW, λ = 632.8 nm) illuminated the sample
after spatial filtering and beam expansion. The illumina-
tion beam was then de-magnified by the telescope
(fL3 : fL4 ¼ 2 : 1), and the EM-CCD (Rolera EM-C2, pixel
pitch: 8 μm, acquisition window dimension: 1002 ´ 1004)
captured the experimental intensity diffraction patterns.
The integration time for each frame was 2ms, and the EM
gain was set to × 1. The optical power of the laser was

strong enough for the captured intensities to be comfor-
tably outside the shot-noise limited regime.
Each layer of the sample was made of fused silica slabs

(n= 1.457 at 632.8 nm and at 20 °C). Slab thickness was
0.5mm, and patterns were carefully etched to the depth of
575 ± 5 nm on the top surface of each of the four slabs. To
reduce the difference between refractive indices, gaps
between adjacent layers were filled with oil (n= 1.4005 ±
0.0002 at 632.8 nm and at 20 °C), yielding binary-phase
depth of −0.323 ± 0.006 rad. The diffraction patterns used
for training were prepared with simulation precisely mat-
ched to the apparatus of Fig. 15. For testing, we used a set of
diffraction patterns that was acquired both through simula-
tion (see Approximant computations in Materials and
methods for details) and experiment.
For the strong scattering case, objects used for both

simulation and experiment are dense-layered, transparent, i.e.
of negligible amplitude modulation, and of binary refractive
index. They were drawn from a database of IC layout seg-
ments45. The feature depth of 575 ± 5 nm and refractive
index contrast 0.0565 ± 0.0002 at 632.8 nm and at 20 °C were
such that weak scattering assumptions are invalid and strong
scattering has to be necessarily taken into account. The
Fresnel number ranged from 0.7 to 5.5 for the given defocus
amount Δz = 58.2mm for the range of object feature sizes.
To implement the raw image acquisition scheme, the

sample was rotated from −10° to +10° with a 1° increment
along both the x and y axes, while the illumination beam and
detector remained still. This resulted in N = 42 angles and
intensity diffraction patterns in total. Note that ref. 45 only

b

a
1.000 1.0000

0.5

0.4

0.3

0.2

0.1

0.0

8

7

6

5

4

3

2

1

0

0.9975

0.9950

0.9925

0.9900

0.9875

0.9850

0.9825

0.9800

1.2

0.5

0.4

0.3

0.2

0.1

0.0

30

25

20

15

10

5

0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.995

0.990

0.985

0.980

0.975

0.970

0.965
Layer 1 Layer 2

Proposed RNN
(   ) tanh
(–) Separable convolution
(–) Angular attention

Proposed RNN

(   ) tanh

(–) Separable convolution

(–) Angular attention

Proposed RNN

(   ) tanh

(–) Separable convolution

(–) Angular attention

Proposed RNN

(   ) tanh

(–) Separable convolution

(–) Angular attention

Proposed RNN

(   ) tanh

(–) Separable convolution

(–) Angular attention

Proposed RNN

(   ) tanh

(–) Separable convolution

(–) Angular attention

Proposed RNN

(   ) tanh

(–) Separable convolution

(–) Angular attention

Proposed RNN

(   ) tanh

(–) Separable convolution

(–) Angular attention

Layer 3 Layer 4 Overall

Layer 1 Layer 2 Layer 3 Layer 4 Overall Layer 1 Layer 2 Layer 3 Layer 4 Overall

Layer 1 Layer 2 Layer 3 Layer 4 Overall Layer 1 Layer 2 Layer 3 Layer 4 Overall Layer 1 Layer 2 Layer 3 Layer 4 Overall

Layer 1 Layer 2 Layer 3 Layer 4 OverallLayer 1 Layer 2 Layer 3 Layer 4 Overall

P
C

C
 (

   
)

P
C

C
 (

   
)

S
S

IM
 (

   
)

S
S

IM
 (

   
)

W
as

se
rs

te
in

 d
is

ta
nc

e 
(x

 0
.0

1)
 (

   
)

W
as

se
rs

te
in

 d
is

ta
nc

e 
(x

 0
.0

1)
 (

   
)

P
ro

ba
bi

lit
y 

of
 e

rr
or

 (
%

) 
( 

  )
P

ro
ba

bi
lit

y 
of

 e
rr

or
 (

%
) 

( 
  )

Fig. 14 Ablation study on the recurrent architecture under the strong scattering condition. Quantitative assessment from the ablation study
using four different metrics on (a) simulated and (b) experimental data. Graphs in (a) show the means and 95% confidence intervals. Raw data of
Fig. 14b can be found in Table S3 in SI Section S2
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utilized 22 patterns out of with a 2-degree increment along
both x and y axes. The comparisons we show later are still
fair because we retrained all the algorithms of ref. 45 for the
42 angles and 1° increment.

Computational architecture
Figure 16 shows the proposed RNN architectures for

both scattering assumptions in detail. Details of the for-
ward model and Approximant (pre-processing) algorithm,
the separable-convolution GRU, convolutional encoder
and decoder, and the angular attention mechanism are
described in Materials and methods. The total number of
parameters in both computational architectures is ∼ 21 M
(more on this topic in Training the recurrent neural
network in Materials and methods.).

Approximant computations
Under the weak scattering condition, amplitude phan-

toms with the random number between 1 and 5 of
ellipsoids with arbitrarily chosen dimensions and ampli-
tude values at random locations are illuminated within a
limited-angle range along one axis, thus spatially isotropic
in average. The angle is scanned from −10° to +10° with a
1° increment. Intensity patterns on a detector are simple
projections of the objects along certain angles according
to the Radon transform as a forward model.
Filtered Backprojection (FBP)3 is chosen to perform

backward operation. Here a crude estimate of n projections,
i.e. g1; ¼ ; gn, using to the FBP algorithm without any
regularization is the nth FBP Approximant or f 0n. Thus, the
quality of the FBP Approximant is improved as n increases.
As n spans from 1 to N(=21), a sequence of the FBP
Approximants f 01; f

0
2; ¼ ; f 0N

� �
becomes the input to an

encoder and a recurrence cell as shown in Fig. 1b. The FBP

Approximant sequences for training, validation, and testing
are generated with these procedures and based on three-
dimensional simulated phantoms.
However, under the strong scattering condition, the

dense-layered, binary-phase object is illuminated at a
sequence of angles, and the corresponding diffraction
intensity patterns are captured by a detector. At the nth step
of the sequence, the object is illuminated by a plane wave at
angles θnx; θny

� �
with respect to the propagation axis z on

the xz and yz planes, respectively. Beyond the object, the
scattered field propagates in free space by distance Δz to the
digital camera (the numerical value is Δz= 58.2mm. Let the
forward model under the nth illumination angle be denoted
as Hn; n ¼ 1; 2; ¼ ; N ; that is, the nth measurement at the
detector plane produced by the phase object f is gn.
The forward operators Hn are obtained from the non-

paraxial BPM33,40,45, which is less usual so we describe it
in some additional detail here. Let the jth cross-section of
the computational window perpendicular to z-axis be
f j½ � ¼ exp iφ j½ �� �

; j ¼ 1; ¼ ; J ; where J is the number of
slices the we divide the object into, each of axial extent δz.
The optical field at the (j + 1)th slice is expressed as

ψ jþ1½ �
n ¼ F�1 F ψ½j�

n � f j½ �
n

h i
kx; ky
� � � exp �i k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q� �
δz

� �h i
ð1Þ

where δz is is equal to the slab thickness, i.e. 0.5mm;
F and F�1 are the Fourier and inverse Fourier transforms,
respectively; and χ1 � χ2 denotes the Hadamard (element-
wise) product of the functions χ1 and χ2:The Hadamard
product is the numerical implementation of the thin
transparency approximation, which is inherent in the BPM.
To obtain the intensity at the detector, we define the (J + 1)
th slice displaced by Δz from the Jth slice (the latter is the exit

He–Ne laser

EM-CCD

Δz
z

y
x

L1F1L2A1

M1

M2

Object L3 L4

Image
plane

Δ

Fig. 15 Optical apparatus used for experimental data acquisition45. L1-4: lenses, F1: pinhole, A1: aperture, EM-CCD: Electron-Multiplying Charge
Coupled Device. fL3 : fL4 ¼ 2 : 1. The object is along both x and y axes. The defocus distance between the conjugate plane to the exit object surface
and the EM-CCD is Δz = 58.2 mm

Kang et al. Light: Science & Applications           (2021) 10:74 Page 13 of 21



a

Filtered
backprojection

Filtered
backprojection

......

Filtered
backprojection

Angular axis

...

SC-GRUSC-GRU

Angular attention mechanism

SC-GRU

EncoderEncoder Encoder

... ...

...

Decoder

Input

Gradient descent

DRB1

DRB2

DRB3

DRB4

SC-GRU

Angular attention

URB1

URB2

URB3

URB4

RB1

RB2

Output

128 × 128 × 1 × 42 × 1

128 × 128 × 4 × 42 × 1

DWMA 128 × 128 × 4 × 12 × 1

128 × 128 × 4 × 1

64 × 64 × 4 × 12 × 24

32 × 32 × 4 × 12 × 48

16 × 16 × 4 × 12 × 96

8 × 8 × 4 × 12 × 192

8 × 8 × 4 × 12 × 512

16 × 16 × 4 × 192

32 × 32 × 4 × 96

64 × 64 × 4 × 48

128 × 128 × 4 × 36

128 × 128 × 4 × 24

128 × 128 × 4 × 1

8 × 8 × 4 × 512

(row, column, layer, angle, filter)

(row, column, layer, filter)

Input

Filtered Backprojection

RB1

DRB1

DRB2

DRB3

SC-GRU

URB1

URB2

URB3

RB2

RB3

RB4

Output

32 × 32 × 1 × 21 × 1

32 × 32 × 32 × 21 × 1

32 × 32 × 32 × 1

32 × 32 × 32 × 21 × 24

16 × 16 × 16 × 21 × 48

8 × 8 × 8 × 21 × 96

4 × 4 × 4 × 21 × 192

4 × 4 × 4 × 21 × 512

8 × 8 × 8 × 192

16 × 16 × 16 × 96

32 × 32 × 32 × 48

32 × 32 × 32 × 36

32 × 32 × 32 × 24

32 × 32 × 32 × 1

Angular attention 4 × 4 × 4 × 512

(row, column, layer, angle, filter)

(row, column, layer, filter)

Input (diffraction patterns)

DRB1

DRB2

DRB3

DRB4

SC-GRU

URB1

URB2

URB3

URB4

RB1

RB2 (output)

Decoder

Gradient descent

Dynamically Weighted Moving Average (DWMA)

Encoder

Angular attention

Input (projections)

RB1

DRB1

DRB2

DRB3

SC-GRU

URB1

URB2

URB3

RB2

RB3

RB4 (output)

Decoder

Filtered Backprojection

Encoder

Angular attention

b

c d

Gradient
descent

Gradient
descent

SC-GRUSC-GRU

Decoder

SC-GRU

Angular attention mechanism

......

EncoderEncoder Encoder

Dynamically weighted moving average

Gradient
descent

Angular axis

......

... ...

... ...

... ...

g1 gn gN

g1 gn gN

h1

f1

f1 fn fN

f1 fm fM

[1]

[1] [1] [1]

[1] [1]

fn fN

hn

a

f

a

f

hN

h1 hm hM

�1 �n �N

�1 �m �M

Fig. 16 Details on implementing the dynamical scheme. Overall network architecture and tensorial dimensions of each layer for (a–b) weak
scattering and (c–d) strong scattering cases. (a) and (c) show unrolled versions of the architectures in (b) and (d), respectively. (a-b) Weak scattering

case: at nth step, n Radon projections g1; ¼ ; gn create an Approximant f ′n by a FBP operation, and a sequence of FBP Approximants f ′n; n ¼
1; ¼ ; N ¼ 21ð Þ; is followed by an encoder and a recurrent unit. There is an angular attention block before a decoder for the 3D reconstruction f̂ ,
(c-d) Strong-scattering case: the raw intensity diffraction pattern gn; n ¼ 1; ¼ ; N ð¼ 42Þ; of the nth angular sequence step is followed by gradient

descent and the Dynamically Weighted Moving Average (DWMA) operations to construct another Approximant sequence ~f
1½ �
m ; m ¼ 1; ¼ ; M ð¼ 12Þ

from original Approximants f 1½ �
n . TV regularization is applied to the gradient descent only for experimental diffraction patterns. The DWMA

Approximants ~f
1½ �
m are encoded to ξm and fed to the recurrent dynamical operation whose output sequence hm; m ¼ 1; ¼ ; 12, and the angular

attention mechanism them into a single representation a, which is finally decoded to produce the 3D reconstruction f̂ . For both cases, training adapts

the weights of the learned operators in this architecture to minimize the training loss function E f ; f̂
� �

between f̂ and the ground truth object f
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surface of the object) to yield

Hn fð Þ ¼ ψ Jþ1½ �
n

�� ��2 ð2Þ

The purpose of the Approximant, in general, is to pro-
duce a crude estimate of the volumetric reconstruction
using the forward operator alone. This has been well
established as a helpful form of pre-processing for sub-
sequent treatment by machine learning algorithms45,78.
Previous works constructed the Approximant as a single-
pass gradient descent algorithm33,45. Here, due to the
sequential nature of our reconstruction algorithm, as each
intensity diffraction pattern from a new angle of illumina-
tion n is received, we instead construct a sequence of
Approximants, indexed by n, by solving the problem

f̂ ¼ argminfLn fð ÞwhereLn fð Þ ¼ 1
2
kHn fð Þ � gnk22;

n ¼ 1; 2; ¼ ; N
ð3Þ

The gradient descent update rule for this functional
Ln fð Þ is

f lþ1½ �
n ¼ f l½ �

n � s ∇fLn f l½ �
n

� �� �y
¼ f l½ �

n � s HT
n f l½ �

n

� �
∇fHn f l½ �

n

� ��
� gTn∇fHn f l½ �

n

� �
Þy ð4Þ

where f 0½ �
n ¼ 0 and s is the descent step size and in the

numerical calculations was set to 0.05 and the superscript †
denotes the transpose. The single-pass, gradient descent-
based Approximant was used for training and testing of the
RNN with simulated diffraction patterns but with an
additional pre-processing step that will be explained in Eq. (7).
We also implemented a denoised TV-based Approximant,

to be used only at the testing stage of the RNN with
experimental diffraction patterns, where the additional pre-
processing step in Eq. (7) also applies. In this case, the
functional to be minimized is

LTV
n fð Þ ¼ 1

2
kHn fð Þ � gnk22 þ κTVl1 fð Þ;

n ¼ 1; 2; ¼ ; N
ð5Þ

where the TV-regularization parameter was chosen as
κ ¼ 10�3, and for x 2 RP ´Q the anisotropic l1-TV
operator is

TVl1 xð Þ ¼
XP�1

p¼1

XQ�1

q¼1

xp;q � xpþ1;q

�� ��þ xp;q � xp;qþ1

�� ��� �

þ
XP�1

p¼1

xp;Q � xpþ1;Q

�� ��þXQ�1

q¼1

xP;q � xP;qþ1

�� ��
ð6Þ

with reflexive boundary conditions79,80. To produce the
Approximants of experimentally obtained diffraction
patterns for testing from this functional, we first ran 4
iterations of the gradient descent and ran 8 iterations of
the FGP-FISTA (Fast Gradient Projection with Fast
Iterative Shrinkage Thresholding Algorithm)79,81.

Dynamically weighted moving average
The N Approximants of the strong scattering case

form a 4D spatiotemporal sequence f 1½ �
1 ; f ½1�2 ; ¼ ; f ½1�N

� �
;

which we process with a Dynamical Weighted Moving
Average (DWMA) operation. For the weak scattering
case, we omit this operation. The purpose of the
DWMA is to smooth out short-term fluctuations, such
as experimental artifacts in raw intensity measure-
ments, and highlight longer-term trends, e.g. the
change of information conveyed by different forward
operators along the angular axis. The resulting DWMA

Approximants ~f
½1�
m have a shorter length M than the

original Approximants f ½1�n , i.e. M < N. Also, the weights
in the moving average are dynamically determined as
follows.

~f
½1�
m ¼

PmþNw

n¼m
αnmf

½1�
n ; 1 � m � Nh

PmþNw

n¼m
αnmf

½1�
nþNw

; Nh þ 1 � m � M

8>>><
>>>:

ð7Þ

where enm ¼ tanh Wm
e f 1½ �

n

� �

αnm ¼ softmax enmð Þ ¼ exp enmð ÞPNw

n¼1
exp enmð Þ

;

n ¼ m;mþ 1; ¼ ;mþ Nw

Equation 7 follows the convention of an additive attention

mechanism74. αnm indicates relative importance of f ½1�n with

respect to ~f
½1�
m . Here, Wm

e is a hidden layer assigned for

each ~f
½1�
m , which is subject to be trained for several epochs.

The relative importance is determined by computing its
associated energy enm and the softmax function normalizes it.
More details are available in the Angular attention
mechanism in Materials and methods. Supplementary
Information (SI) Section S3 explains why the DWMA is
more favorable than the Simple Moving Average (SMA) with
fixed and uniform weights, i.e. 1/M.
To be consistent, the DWMA was applied to the ori-

ginal Approximants for both training and testing. In this
study, Nw = 15, Nh = 6, M = 12. These choices follow
from the following considerations. We have N = 42
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diffraction patterns for each sequence: 21 captured
along the x-axis (1 – 21; θx ¼ �10�;�9�; ¼ ; þ10�)
and the remaining ones along the y-axis (22 – 42;
θy ¼ �10�;�9�; ¼ ; þ10�). The DWMA is first applied
to 21 patterns from x-axis rotation, which thus generates
6 averaged diffraction patterns, and then it is applied to
the remaining 21 patterns from y-axis rotation, resulting
in the other 6 patterns. Therefore, the input sequence to
the next step in the architecture of Fig. 16c, i.e. to the
encoder (see Convolutional encoder and decoder in
“Materials and methods” for details), consists of a
sequence of M = 12 DWMA Approximants ~f

½1�
m : In SI

Section S4, we discuss performance change due to dif-
ferent ways of numbering DWMA Approximants ~f

½1�
m

entering the neural network. SI Section S5 provides
visualization of DWMA Approximants.

Separable-Convolution Gated Recurrent Unit (SC-GRU)
Recurrent neural networks involve a recurrent unit

that retains memory and context based on previous
inputs in a form of latent tensors or hidden units. It is
well known that the LSTM is robust to instabilities in
the training process. Moreover, in the LSTM, the
weights applied to past inputs are updated according
to usefulness, while less useful past inputs are for-
gotten. This encourages the most salient aspects of the
input sequence to influence the output sequence56.
Recently, the GRU was proposed as an alternative to
LSTM. The GRU effectively reduces the number of
parameters by merging some operations inside the
LSTM, without compromising the quality of recon-
structions; thus, it is expected to generalize better in
many cases69. For this reason, we chose to utilize the
GRU in this paper as well.

The governing equations of the standard GRU are as
follows:

rm ¼ Wrξm þ Urhm�1 þ br
zm ¼ Wzξm þ Uzhm�1 þ bz
~hm ¼ tanh Wξm þ U rm � hm�1ð Þ þ bhð Þ
hm ¼ 1� zmð Þ � ~hm þ zm � hm�1

ð8Þ

where ξm; hm; rm; zm are the inputs, hidden features,
reset states, and update states, respectively. Multiplication
operations with weight matrices are performed in a fully
connected fashion.
We modified this architecture so as to take into account

the asymmetry between the lateral and axial dimensions
of optical field propagation, motivated from the concept
of separable convolution in deep learning82,83 as shown in
Fig. 17. This is evident even in free-space propagation,
where the lateral components of the Fresnel kernel

exp iπ
x2 þ y2

λz

� 	
ð9Þ

are shift invariant and, thus, convolutional, whereas the
longitudinal axis z is not. The asymmetry is also evident in
nonlinear propagation, as in the BPM forward model
Eq. (1) that we used here. This does not mean that space is
anisotropic – of course space is isotropic! The asymmetry
arises because propagation and the object are 3D, whereas
the sensor is 2D. In other words, the orientation of the
image plane breaks the symmetry in object space so that
the scattered field from a certain voxel within the object
apparently influences the scattered intensity from its
neighbors at the detector plane differently in the lateral
direction than in the axial direction. To account for this

3

x
z

y 1

4

1

Fig. 17 Separable-convolution scheme: different convolution kernels are applied along the lateral x, y axes vs. the longitudinal z-axis. In
our present implementation, the kernels’ respective dimensions are 3 × 3 × 1 (or 1 × 1 × 1) and 1 × 1 × 4. The lateral and longitudinal convolutions
are computed separately and the results are then added element-wise. The separable convolution scheme is used in both the gated recurrent unit
and the encoder/decoder (for more details, see Convolutional encoder and decoder in Materials and methods)
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asymmetry in a profitable way for our learning task, we
first define the operators Wr; Ur; etc. as convolutional so
as to keep the number of parameters down (even though
in free space propagation the axial dimension is not
convolutional and under strong scattering neither dimen-
sion is nonlinear); and we constrain the convolutional
kernels of the operators to be the same in the lateral
dimensions x and y, and allow the axial z dimension
kernel to be different. This approach justifies the term
separable convolution, and we found it to be a good
compromise between facilitating generalization and
adhering to the physics of the problem.
We also replaced the tanh activation function of the

standard GRU with ReLU activation84 as the ReLU is
computationally less expensive and helpful to avoid local
minima with fewer vanishing gradient problems72,85. The
final form of our SC-GRU dynamics is

rm ¼ Wr � ξm þ Ur � hm�1 þ br
zm ¼ Wz � ξm þ Uz � hm�1 þ bz
~hm ¼ ReLU W � ξm þ U � rm � hm�1ð Þ þ bhð Þ
hm ¼ 1� zmð Þ � ~hm þ zm � hm�1

ð10Þ

where * denotes the separable convolution operation.

Convolutional encoder and decoder
CNNs are placed before and after the SC-GRU as

encoder and decoder, respectively. This architectural
choice was inspired by refs. 86–89. The encoder and
decoder also utilize separable convolution, in conjunction
with residual learning, which is known to improve gen-
eralization in deep networks90. As in ref. 86, the encoder
and decoder utilize Down-Residual Blocks (DRB), Up-
Residual Blocks (URB), and Residual Blocks (RB), whose
details can be found in Fig. S5 in SI Section S6; however,
there are no skip connections in our case, i.e. this is not a
U-net91 architecture. The encoder learns how to map its
input (i.e. the FBP Approximant f 0n or the DWMA

Approximant ~f
½1�
m sequence) onto a low-dimensional

nonlinear manifold. For the weak scattering case, the
compression factor for both lateral and axial input
dimensions is 8, whereas for the strong scattering case,
the compression factor is 16 for the lateral input dimen-
sions, but the axial dimension is left intact. This eases the
burden on the training process as the number of para-
meters is reduced; more importantly, encoding abstracts
features out of the high-dimensional inputs, passing latent
tensors over to the recurrent unit. Letting the encoder for
the mth Approximant be symbolized as Encm �ð Þ, ξm ¼
Encm f 0m

� �
or ξm ¼ Encm ~f

1½ �
m

� �
in Eq. (10). The decoder

restores the output of the RNN to the native dimension of
the object we are reconstructing.

Angular attention mechanism
Each raw image (either a projection under a weak

scattering assumption or a diffraction pattern under a
strong scattering condition) from a new angle of illu-
mination is combined at the SC-GRU input with the
hidden feature from the same SC-GRU’s previous out-
put. After N iterations, there are N different hidden
features resulting from N illumination angles, as seen in
Eq. (10). Since the forward operator under both scat-
tering assumptions is object dependent, the qualitative
information that each such new angle conveys will vary
with the object. It then becomes interesting to consider
whether some angles of illumination convey more
information than others.
The analog in temporal dynamical systems, the usual

domain of application for RNNs, is the attention mechan-
ism. It decides which elements of the system’s state are the
most informative. In our case, of course, time has been
replaced by the angle of illumination, so we refer to the
same mechanism as angular attention: it evaluates the
relative importance of information from each illumination
angle in generating the overall reconstruction and thus
adaptively assigns different weights to every angle on how
much attention should be paid to.
Following the convention of an additive attention

mechanism74, we compute the weight αm from its asso-
ciated energy em as output of a neural network with a
hidden layer We as

em ¼ tanh Wehmð Þ; αm ¼ softmax emð Þ ¼ exp emð ÞPM

m¼1
exp emð Þ

;

m ¼ 1; 2; ¼ ; M

ð11Þ

The output of the angular attention as a single repre-
sentation a is then computed from a linear combination
of the hidden features as

a ¼
XM
m¼1

αmhm ð12Þ

where a can be also viewed as the expected hidden
representation since the weight αm is essentially a
probability that a hidden representation hm is taken into
account to the angular attention output a. There is an
alternative, dot-product attention mechanism92, but we
chose not to implement it here.

Training the recurrent neural network
For the weak scattering case, 2000 and 400 synthetic

amplitude phantoms are used for training and valida-
tion, respectively. Projections are acquired by the
Radon transform along several angles within the
limited angular range, as described in Approximant
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computations in Materials and methods. The FBP
Approximants are obtained by the FBP algorithm from
the projections.
For the strong scattering case, 5000 and 500 synthetic

layered objects are used for training and validation,
respectively. For each object, a sequence of intensity
diffraction patterns from the N = 42 angles of illumi-
nation are produced by BPM, as described earlier. The
Approximants are obtained each as a single iteration of
the gradient descent, followed by the DWMA process.
For both scattering cases, all of the architectures are

trained with a Training Loss Function (TLF) of negative
Pearson Correlation Coefficient (NPCC)93:

ENPCC f ; f̂
� �

¼ �
P

x;y f x; yð Þ � fð Þ f̂ x; yð Þ � f̂
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y f x; yð Þ � fð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y f̂ x; yð Þ � f̂
� �2r

ð13Þ
where f and f̂ are a ground truth image and its
corresponding reconstruction. In this article, our NPCC
function is defined to perform computation in 3D. We
use a stochastic gradient descent scheme with the
Adam optimizer94. The learning rate is set to be 10−3

initially and halved whenever validation loss plateaued
for 5 consecutive epochs. The lower bound is set to be
10−6, and the batch size is set to be 10. The computer
used for training has Intel Xeon Gold 6248 CPU at
2.50 GHz with 27.5 MB cache, 384 GB RAM,
and dual NVIDIA Volta V100 GPUs with 32 GB
VRAM95, and it took approximately 5 min per each
training epoch.
For comparison, we also re-train the 3D-DenseNet

architecture with skip connections in ref. 45 with the
same training scheme above. This serves as baseline;
however, the number of parameters in this network is
0.5 M, whereas in our RNN architecture the number of
parameters is 21M. We also train an enhanced version of
the 3D-DenseNet by tuning the number of dense blocks,
the number of layers inside each dense block, filter size,
and growth rate to match the total number of parameters
with that of the RNN, i.e. 21 M. These two versions of the
3D-DenseNet are referred to as Baseline (0.5 M) and
Baseline (21M), respectively, in Figs. 8, 9, 11, and 12.

Testing procedures and metrics
Test performance was demonstrated with only the

simulated projections under the weak scattering condi-
tion. The projections were processed with the FBP to
generate 100 sequences of FBP Approximants f 0n for
testing the trained network. Under the strong scattering
condition, both simulated and experimental diffraction
patterns were used for testing, but the patterns were
processed differently. The simulated patterns were

directly processed with a single-pass gradient descent to
generate 50 sequences of original Approximants f 1½ �

n
Eq. (4), whereas a simple affine transform was first
applied to the raw experimentally obtained intensity
diffraction patterns of an actual layered object to correct
slight misalignment. We then applied the gradient des-
cent up to 4 iterations and the FGP-FISTA up to 8
iterations to the corrected experimental patterns, to
compute one set of TV-based Approximants Eq. (5).
Testing process took approximately 300 ms for gen-
erating each volumetric reconstruction.
Even though training used NPCC as in Eq. (13). we

investigated two additional metrics for testing: PE and the
Wasserstein distance96,97. We also quantified test perfor-
mance using the SSIM98.
PE is the mean absolute error between two binary

objects; in the digital communication community it is
instead referred to as Bit Error Rate (BER). It is the first
time to our knowledge to use PE as a quantitative metric
in tomography. To obtain the PE, we first threshold the
reconstructions (see SI Section S7 for details in the
thresholding process) and then define

PE ¼ # false negativesð Þ þ # false positivesð Þ
total# pixels

ð14Þ

We found that it oftentimes helps to accentuate the
differences between a binary phase ground truth object
and its binarized reconstruction as even small residual
artifacts, if they are above the threshold, are thre-
sholded to be one, and thus they are taken into account
to the probability of error calculation more than they
would have been to other metrics. With these proce-
dures, PE is a particularly suitable error metric for the
kind of objects we consider in this paper.
PE is also closely related to the two-dimensional

Wasserstein distance as we will now show through an
analytical derivation. The latter metric involves an
optimization process in terms of a transport plan to
minimize the total cost of transport from a source dis-
tribution to a target distribution. The two-dimensional
Wasserstein distance is defined as

Wp¼1 ¼ min
p

P;C ¼ min
p

P
ij

P
kl
γ ij;klCij;kl

s:t:
P
kl
γ ij;kl ¼ fij;

P
ij
γ ij;kl ¼ gkl; γ ij;kl � 0

ð15Þ

where fij and gkl are a ground truth binary object and its
binary reconstruction, i.e. fij; gkl; γ ij;kl 2 0; 1f g, a coupling

tensor P ¼ γ ij;kl

� �
, and a cost tensor Cij;kl ¼ xij � xkl

�� ��: PE
can be reduced to have a similar, but not equivalent, form to
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that of the Wasserstein distance. For i.j,k,l where γ ij;kl ≠ 0,

PE¼ 1
N2

X
ij

fij � gij
�� ��

¼ 1
N2

X
ij

fij �
X
kl

gklδ i� k; j� l½ �
�����

�����
¼ 1

N2

X
ij

X
kl

γ ij;kl 1� gklδ i� k; j� l½ �
γ ij;kl

 !�����
�����

¼ P
ij

P
kl
γ ij;kl ~Cij;kl

����
����

¼ P
ij;kl;γ ij;kl≠0

γ ij;kl ~Cij;kl

ð16Þ

where N2 ~Cij;kl ¼ 1� gklδ i�k;j�l½ �
γij;kl

¼ 1; if ij≠ kl
1� gkl if ij ¼ kl



This shows that the PE is a version of the Wasserstein

distance with differently defined cost tensor.
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