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Neural-Based Hierarchical Approach for Detailed
Dominant Forest Species Classification by

Multispectral Satellite Imagery
Svetlana Illarionova , Alexey Trekin , Vladimir Ignatiev , and Ivan Oseledets

Abstract—Among different forest inventory problems, one of the
most basic is defining dominant species. These data are crucial in
forest management to determine forest category, and a cheaper
remote sensing-based approach would be a useful supplement to
field surveys. We used WorldView multispectral satellite imagery
to address this problem as an image segmentation task dividing
the image into regions with particular dominant species. Neural
networks have recently become one of the most useful tools for
this kind of problem, including incomplete or erroneous training
labels. However, it is still challenging to distinguish between such
similar patterns as different forest compositions. To handle this,
we represented the multiclass forest classification problem as a
hierarchical set of binary classification tasks, which allowed us
to reach better results with both high- and medium-resolution
satellite imagery. We also examined supplementary data, such as
tree height, to improve the species classification results for wider
tree age diversity. We conducted experiments considering six neural
network architectures to find the best one for each task in the
hierarchical decomposition. The proposed approach was tested on
sample territories in Leningrad Oblast of Russia, for which the
field-based observations were acquired and made publicly available
as a single dataset. The proposed approach showed significantly
better results (average F1-score 0.84) than multiclass classification
(average F1-score 0.7).

Index Terms—Convolutional neural network (CNN), forest
species classification, remote sensing, semantic segmentation.

I. INTRODUCTION

A LGORITHMIC analysis of remote sensing data allows
for solving a wide range of tasks that previously required

high professional skills and were time consuming. One of these
challenges is forest species classification, which is commonly
considered a dominant species classification problem. A forest’s
dominant species is the one that includes the majority of the
timber stock of the stand, and forest management depends on
this as a primary characteristic.

The industrial approach to the forest inventory still consists of
several methods, including manual and partly automated satel-
lite mapping, LIDAR data analysis, and ground-based surveys.
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Since the beginning of computer vision method development,
many works have aimed to replace some stages with automatic
remote sensing imagery analysis.

It is challenging to compare the performance of different
methods proposed in the papers due to their region specificity
and evaluation data inaccessibility for other researchers. There-
fore, a comparison of the declared metrics cannot often explain
what is better, and a literature survey is mostly qualitative. The
presented work partly addresses this issue, as we provided the
training markup and the images’ IDs to compare achieved results
in future studies.

A common choice of remote sensing data is medium-
resolution multispectral satellite imagery (Landsat or Sentinel),
which is freely available and has a good revisit time. This allows
researchers to obtain images for any region of interest with
relative ease. The multispectral channels in visible and infrared
wavelengths provide a good deal of information about surface
reflection properties. This data type is used in many research
works both for single satellite images [1]–[3] and time series [4],
[5]. Although, it makes it possible to automatically process the
data for vast territories and with decent accuracy, it does not
produce high-resolution semantic maps, which can be useful for
the precise estimation of timber stock.

A significant number of works cover the usage of airborne
multispectral or hyperspectral sensing for forestry inventory
classification [6]–[9], and many of these works leverage a combi-
nation with LIDAR scans. It allows for evaluating different forest
biomass components [10] and estimating timber stock [11].
In [12], they addressed the challenge of savanna tree species
classification in South Africa. The basic premise is the hetero-
geneous nature of the considered region. Therefore, tree height
was utilized as structural information to make classification
more robust. However, this is not suitable for the preliminary
large-area examination due to the high costs of the data and
the need for expeditions to the area of interest for imagery
acquisition.

A significant source in terms of information depth and avail-
ability is very high spatial resolution satellite imagery, such as
WorldView satellite data (about 2-m spatial resolution). In [13],
they classified deciduous-dominated forest species through
three-seasonal WorldView images. In [14], they leveraged a
single WorldView high-resolution satellite image for species
and age classification. The scope of the work included both
object- and pixel-based approaches. Sunlit areas of tree crowns
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presented dataset objects. For such a polygon, a particular
species class was ascribed, keeping each object’s homogeneity.
Moreover, only instances of approximately the same age were
chosen for the study, making the samples within a class less
diverse. In [15], they used QuickBird images (a 2.44-m spatial
resolution) to classify forest species. Still, a relatively small
number of works have given preference to such high-resolution
satellite data instead of unmanned aerial vehicle (UAV) images.

Although classical machine learning methods, such as sup-
port vector machine [16] and random forest [17], are used in
many remote sensing classification studies [5], [12], [14], [18],
[19], other works consider newer approaches. In recent years,
convolutional neural networks (CNNs) have become a principal
method for many computer vision problems, including image
classification, segmentation, and object detection. CNNs are
applicable in different spheres, and the remote sensing area is
no exception [20], [21]. Deep neural networks showed accurate
results in the task of deciduous and coniferous classification [20],
[22] and other forest inventory characteristic estimation [23]
using LIDAR sensing data.

Hierarchical problem decomposition can often be imple-
mented in various applied tasks of a particular nature con-
taining subclasses. It has performed successfully in medical
problems [24], [25]. In [26], they implemented a hierarchical
multilabel classification for diatom images using a single predic-
tive clustering tree. Just a few studies considered the hierarchical
approach for forest species classification [27], [28]. However,
in these works, UAV or airborne data was used with a spatial
resolution higher than 0.3 m. The classification approaches were
maximum likelihood classification techniques and object-based
image classification [29]. Thus, all considered forest species
classification studies based on satellite images rely exactly on the
classical multiclass classification approach [5], [9], [14], [15].

The goal of this work is to enhance the spatial detail of
dominant forest species estimation using the high-resolution
WorldView satellite imagery (2 m per pixel). We have chosen
this kind of remote sensing data because it can combine the high
availability of satellite imagery (though it is not as high as with
moderate resolution) and the spatial precision of aerial imaging.
In contrast with most of the work in this area, we did not only
concentrate on homogeneous forest stands of approximately the
same age. Thus, we aimed to provide a more robust solution
applicable to real-life conditions.

We aimed to make the following contribution.
1) To improve forest species multiclass image segmentation

by splitting the problem into a hierarchy of binary seg-
mentation problems.

2) To study the forest height maps usefulness as supplemen-
tary data for the forest species classification problem.

3) To prepare an open-source dataset for the dominant species
segmentation problem—the lack of relevant markup
causes obstacles in this sphere of study, so open-access
data are crucial.

In the proposed study, six neural network architectures were
considered to find the best one for each classification task. In
addition, to confirm the developed approach’s applicability, we
tested our method modifications on moderate-resolution data

Fig. 1. Classes markup of study area.

(Sentinel images), which has lower resolution but is more avail-
able due to its being freely available for download.1

II. DATASET

A. Study Area

The dataset for this work was created using ground-based
observations of Leningrad Oblast of Russia during the 2018
year (see Fig. 1). The total area is around 20 000 hectares.
The coordinates of this region are between 33◦42′ and 33◦76′

longitude and between 60◦78′ and 61◦01′ latitude. The region’s
climate is humid. The coldest day of the year is in February,
with a temperature between 13 and 24◦F [30]. The topography
is flat. The vegetation cover is mixed and includes deciduous
and conifer tree species.

B. Reference Data

The study area was split into small regions representing indi-
vidual forest stands. The term “forest stand” in forest inventory
instructions defines a contiguous forested area sufficiently uni-
form in essential characteristics to distinguish it from adjacent
communities. Each stand is described by several aspects; the
most important for this work are the following.

1) Forest composition, i.e., the percentage of each tree
species, denoted with a stride of 10% of the relative timber
volume (the composition is given in percentage points,
each representing 10% of the total timber volume).

1Code for experiments and labeled data is available at https://github.com/
LanaLana/forest_species

https://github.com/LanaLana/forest_species
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TABLE I
DATASET STATISTICS FOR INDIVIDUAL REGIONS

TABLE II
WORLDVIEW IMAGES

2) Average tree height for each of the primary forest compo-
nents in the forest composition.

3) Average tree age for each of the primary forest components
in the forest composition.

The rest of the parameters leveraged for the forest analysis
are not considered in the current research.

The dominant species is the one that has the highest per-
centage, and it is the target value that we want to evaluate in
this work. Of course, there are situations when two or more
forest species have the same or a similar percentage. This case
is defined when the difference between the dominant and the
second species is not greater than 1% point, and these stands are
treated as “mixed forests.” The composition of mixed forests is
beyond this article’s scope, so such stands were excluded from
both training and test sets.

The dataset contains forest stands with four classes of dom-
inant species: 38% spruce (Picea spp.), 14% aspen (PÓpulus
tremula spp.), 26% birch (Betula spp.), and 22% pine (Pónus
spp.) (see Table I). The rest of the study area species are less
distributed and do not compose the stands as a dominant species.
It is worth noting that the “dominant species” in forestry does
not exactly match the biological term “species” and is connected
mostly with the timber class and quality. In this research, the
existing forest inventory standards were followed, and this in-
ventory does not distinguish between species within a genus and
treats the whole genus as a single class.

C. Satellite Data

WorldView 2 and 3 multispectral imagery with eight spectral
bands was downloaded from GBDX [31]. The spatial resolution
was about 2 m per pixel. Sentinel imagery with 13 spectral
bands and a spatial resolution of about 10 m per pixel was
downloaded from SentinelHub [32]. All images were from the
high vegetation period from May to August. Image acquisition
dates and catalogue IDs are presented in Tables II and III.

Dataset consists of georeferenced satellite images in the for-
mat of 8-b TIFF files and forestry inventory data converted into
raster per pixel masks for each class.

TABLE III
SENTINEL IMAGES

The additional challenge was posed by the temporal mis-
match between imagery and markup. Current forest inventory
information is sparsely available. Thus, some forest areas were
felled after the ground-based observations. To deal with this,
we utilized a previously trained neural network that performs
forest segmentation. It produces an up-to-date forest mask for
the images and excludes the derived nonforested areas from the
training and validation sets. We additionally cleaned the test set
manually.

III. METHODS

A. Problem Definition

As described in Section II, we treated an individual forest
stand as a homogeneous region with a common characteristic
within its area. The aim was to develop a method that could
produce high-resolution semantic maps outlining forest stands.
Thus, the problem was formulated as image segmentation: to as-
sign a species class to every pixel in the image. The background
classes were excluded from the dataset before training and did
not appear at the test time. The following fact complicated
the problem. Forest stands can have inconsistency and include
visible parts of the nondominant species. These parts should be
segmented as a separate stand of another dominant species, but
the training data do not support it, as the markup is completely
standwise.

B. Neural Networks for Image Segmentation

As the most recent computer vision advances are connected
with the novel neural network architectures, it is vital to select
a suitable one for the given task and available computational
resources. Since the task was formulated as a multiclass image
segmentation problem, a fully convolutional architecture was
considered, such as U-Net [33] or a feature pyramid network
(FPN) [34]. Both of them show good image segmentation per-
formance, including remote sensing data, with FPN being more
suitable for multiclass segmentation. These architectures are
constructed in an encoder–decoder fashion with skip connec-
tions, which allows us to use various convolutional encoders.
Modern architectures outperformed the original VGG encoder
used in [33], so the first variant was ResNet [35], used by Lin
et al. [34]. As counterparts, we used Inception-ResNet-v2 [36]
and EfficientNet [37] as one of the most resent and advanced
architectures, showing state-of-the-art results at the ImageNet
benchmark [38]. To comply with computational resource restric-
tions, the model size was limited to ResNet-34 and EfficientNet-
B3 correspondingly. The models’ architecture implementation
was based on Yakubovskiy [39].
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C. Image Preprocessing

As Sentinel images were contrast-enhanced and had a value
range of [0 : 255] in each channel, they were scaled as

I ′ = I/255 (1)

where I and I ′ are intensities before and after the normalization,
respectively.

To ensure relative brightness uniformity for different images,
we performed minimum–maximum brightness normalization to
the range [0, 1], as in [40].

The WorldView images have a wider dynamic range, different
for each channel, so contrast enhancement was also included in
the scaling formula to suppress the darkest and the brightest
regions that lie beyond three standard deviations from the mean
value

m = max(0,mean(I)− 3 ∗ std(I)) (2)

M = min(I_max,mean + 3 ∗ std) (3)

I ′ = (I −m)/(M −m) (4)

where mean and std are the mean and standard deviation of
the image, respectively. In (2) and (3), we calculate m and M
(minimum and maximum of the preserved dynamic range). In
(4), values are scaled to 0 and 255 linearly. The values outside
the [m, M] range are clipped. The standardization of the imagery
according to the whole dataset statistics proves profitable for
the neural network training compared to a simple scaling of the
entire value range [41].

There are two ways to compute mean and standard deviation
values: for all channels simultaneously or individually for each
band. The advantage of the first type is that ratios between the
channel values stay constant, which might be necessary for a
more in-depth nature processes evaluation. On the other hand,
when statistics within each channel are computed, connections
between the same channels of different images are more robust,
and it can be useful for algorithm adaptability.

D. Dataset Augmentation

The dataset augmentation is a common technique that can
improve the robustness of the neural network. In the considered
case, the spatial transforms were applied to the training images
with 50% probability: rotation with a 90◦ step, a vertical and
horizontal flip, and a zoom-in and -out within 20%.

E. Oversampling

To handle the class imbalance, we added extra weights for
the smaller classes during loss computation. For this variant,
weighted cross-entropy (WCE) was computed, and optimal
weights were estimated according to the class distribution in
the training set.

The other problem was that the label for the dominant species
property was the same, whether there were 50% or 90%. Still, the
former represented a more “dirty” markup for the segmentation,
as about half of the pixels represented nondominant species.
We managed to enforce the training on more clean samples by

TABLE IV
DATASET STATISTICS FOR INDIVIDUAL REGIONS (DOMINATED SPECIES BY

THRESHOLD), AREA IN HECTARE

increasing the probability of the samples with a higher dominant
species percentage. Species distribution is provided for each
forest region in Table IV.

F. Problem Decomposition

The baseline approach used multiclass segmentation, where
the output layer of the neural network had a number of outputs
that was equal to the number of classes. The argmax (arguments
of the maximum) of these values was treated as a class label for
a pixel.

The approach modification was based on the fact that forest
species classification has an explicit hierarchy: classes are di-
vided into coniferous and deciduous tree species. Therefore, it
was reasonable to decompose the problem. The hierarchical so-
lution represented the multiclass segmentation as a set of binary
segmentation problems. The multiclass segmentation map was
obtained by consistently applying the method and aggregating
the results (see Fig. 2).

The stages scheme of the hierarchical segmentation process is
depicted in Fig. 3. We used the “parent” data obtained from the
previous stages of the processing at each step. For example, to
segment coniferous and deciduous forest stands, the forest mask
was utilized to exclude nonforest regions from the observation.
During the model training, this “parent” data were used as a
mask for the loss function computation. The training loss was
calculated within the parent class areas only because, for the
same example, there was no need to rely on the nonforested
regions to distinguish between the forest types. During the
inference, the result of the binary segmentation was multiplied
by the “parent” mask.

We also compared this approach with “one versus all” classi-
fication, where a set of separate neural network models is trained
to predict just one class. All predictions are then aggregated, and
the most likely label is ascribed to each pixel.

G. Height Data

It is worth noticing that a part of the intro-class variance is
connected with the forest height or age, with a high correlation.
The same forest species at different ages shows different patterns
(see Fig. 4). As the height data could be obtained from separate
sources, we studied the height data’s effect on the dominant
species classification. The input data were extracted from the
same forest inventory characteristics used for training, and it
was used as an additional raster band in the network input. This
modification also contributed to the method performance in both
multiclass tasks and binary segmentation cases.
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TABLE V
RESULTS FOR MULTICLASS CLASSIFICATION WITHOUT HEIGHT (F1-SCORE) FOR WORLDVIEW AND SENTINEL (BASELINE) ON VALIDATION. BOLD NUMBERS —

THE BEST SCORE (THE CORRESPONDING MODEL WAS CHOSEN FOR THE FINAL RESULTS AGGREGATION)

TABLE VI
RESULTS FOR MULTICLASS CLASSIFICATION WITH HEIGHT (F1-SCORE) FOR WORLDVIEW AND SENTINEL ON VALIDATION. BOLD NUMBERS — THE BEST SCORE

(THE CORRESPONDING MODEL WAS CHOSEN FOR THE FINAL RESULTS AGGREGATION)

Fig. 2. Hierarchical model structure.
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Fig. 3. Data flow through a level of the hierarchical process. (a) Model training.
(b) Inference.

Fig. 4. Example of age and height variance within one species.

IV. EXPERIMENTS

A. Training

The training of all the neural network models was performed
on a PC with GTX-1080Ti GPUs.

The batch size varied from 16 to 30 depending on the archi-
tecture’s memory restrictions.

During the binary segmentation models’ training within the
hierarchical segmentation approach, only two particular classes
of the current stage were taken into account. Accordingly, the
loss function was calculated only over the part of the image
corresponding to the parent class of the current stage, as is shown
in Fig. 3(a). The total loss for a training batch was normalized to
the parent class area in the batch, as shown in in the following:

loss =
WCE ∗ w ∗ h ∗ b

N
(5)

where w and h correspond to the image crop size, b is the batch
size (number of image crops), and N is the number of relevant
pixels in the batch.

The final model combined all these approaches.

B. Medium Resolution Data

The same experiments were performed using widely spread in
the forest inventory tasks Sentinel-2 data to compare the selected
data to other possible sources.

The base model used 13 bands of Sentinel imagery at a spatial
resolution from 10 to 60 m. These data are available for free
download. The model was trained in the same manner as a model
without height for WorldView data. The image crop size was
reduced in batch from 256 to 64 to, by giving the field of view
the same size, make the training procedure as similar as possible.

C. Evaluation

The dataset was split into training, validation, and test sets
in the following proportion: 0.7, 0.15, and 0.15. The validation
set was used to choose the best neural network parameters and
architecture.

F1-score was utilized to measure the segmentation quality
and compare the method variants, for the individual classes and
averaged over all the classes.

The metric was computed in a pixelwise way

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

F1 =
2 ∗ P ∗R
P + R

(8)

where P is precision, R is recall, TP is true positive (the number
of correctly classified pixels of a given class), FP is false positive
(the number of pixels classified as a given class while being of
another class), and FN is false negative (the number of pixels of
a given class missed by the model).

F1-score was computed only for regions covered by species
with a domination of more than 0.5, which was described in
Section II. When the optimal in terms of the validation dataset
architecture for each task had been found, the final models were
evaluated using the test set of the images, which did not overlap
with the training or validation sets. We also used confusion
matrices, as this is a commonly considered accuracy assessment
approach in remote sensing image classification [42].
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TABLE VII
HIERARCHICAL CLASSIFICATION WITH HEIGHT DATA (F1-SCORE) FOR WORLDVIEW ON VALIDATION BEFORE THE RESULTS AGGREGATION. BLUE NUMBERS —

THE BEST SCORE FOR MODELS WITHOUT HEIGHT, BOLD NUMBERS — THE BEST SCORE FOR MODELS WITH HEIGHT (THE CORRESPONDING MODELS WERE

CHOSEN FOR THE FINAL RESULTS AGGREGATION)

TABLE VIII
HIERARCHICAL CLASSIFICATION WITH HEIGHT DATA (F1-SCORE) FOR SENTINEL ON VALIDATION BEFORE THE RESULTS AGGREGATION. BLUE NUMBERS — THE

BEST SCORE FOR MODELS WITHOUT HEIGHT, BOLD NUMBERS — THE BEST SCORE FOR MODELS WITH HEIGHT (THE CORRESPONDING MODELS WERE CHOSEN

FOR THE FINAL RESULTS AGGREGATION)

TABLE IX
HIERARCHICAL APPROACH (1) IN COMPARISON WITH “ONE VERSUS ALL”
CLASSIFICATION AND (2) ON TEST DATA (BOTH APPROACHES USE HEIGHT

DATA) FROM THE WORLDVIEW DATA

TABLE X
HIERARCHICAL APPROACH (1) IN COMPARISON WITH “ONE VERSUS ALL”
CLASSIFICATION AND (2) ON TEST DATA (BOTH APPROACHES USE HEIGHT

DATA) FROM THE SENTINEL DATA

V. RESULTS AND DISCUSSION

A. Hierarchical Decomposition

We compared hierarchical decomposition with two com-
monly used image semantic segmentation approaches: mul-
ticlass classification and “one versus all.” All studies were
conducted both for WorldView and Sentinel images to assess
the proposed method using different data sources. The results
of multiclass classification and hierarchical decomposition be-
fore aggregation are reported in Tables V–VIII. As shown in
Tables XI and XII, which have the aggregated results, the hier-
archical approach allows us to improve model performance in
terms of the F1-score for WorldView from 0.716 to 0.836 and
for Sentinel from 0.668 to 0.77. “One versus all” classification
also shows lower results than those of the hierarchical decom-
position depicted in Tables IX and X. For WorldView, there

TABLE XI
FINAL AGGREGATED RESULTS (F1-SCORE) FOR WORLDVIEW TEST DATA

TABLE XII
FINAL AGGREGATED RESULTS (F1-SCORE) FOR SENTINEL TEST DATA

is decline in quality in the F1-score from 0.836 to 0, whereas
for Sentinel, that decline is from 0.77 to 0.667. There is no
significant difference between multiclass and “one versus all”
classification. For WorldView, the difference is 0.716 and 0.69;
for Sentinel, it is 0.668 and 0.667. Confusion matrices for World-
View and Sentinel data are shown in Fig. 5. The WorldView
prediction quality is higher than that of Sentinel. Moreover, for
the WorldView imagery, coniferous and deciduous subclasses
are less often ascribed to the wrong parent class.

One of the important issues of the hierarchical approach is
that, for each classification task, the most suitable neural network
architecture can be chosen.

As is shown in Tables XI and XII, the accuracy of the clas-
sification of aspen and birch became more adequate, and the
final performance is more satisfying in the context of available
markup.
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Fig. 5. Confusion matrices for the best aggregated hierarchical models with
height data. (a) WorldView data. (b) Sentinel data.

The proposed work approach is only applicable when a hierar-
chy of classes is established. However, this approach can yield
better results, as shown by utilizing the semantic connections
between classes. It also helps to reduce computational costs in
the case of a high number of classes (a binary logarithm instead
of a linear one).

The computational overhead from the use of four models in the
hierarchical approach instead of two in the multiclass baseline is
not crucial since the problem is neither real time nor addressed
to the mobile devices.

B. Supplementary Height Data

Aggregated results for experiments with height data are pre-
sented in Tables XI and XII. For the multiclass approach and
hierarchical decomposition, height data usage improves model
performance. WorldView hierarchical decomposition enhances
the quality from 0.797 to 0.836. In multiclass classification,
the F1-score without height is 0.703; with height, it is 0.716.
The same trend is observed for the Sentinel data. Hierarchical
decomposition with height improves the quality from 0.72 to
0.77; for multiclass classification, the scores are 0.58 and 0.668,
respectively.

A sample of the test region with the ground truth markup
and the predictions of the final hierarchical model with height
supplementary data is presented in Figs. 6 and 7, which show a

Fig. 6. Sample of the WorldView imagery for the test area. (a) Input image.
(b) Ground truth. (c) Prediction.

significant intersection between real classes and the artificially
estimated classes. Experiments with both high and medium
resolution data confirmed the reliability of the chosen strategy.

C. Architecture Selection

We compared six neural network architectures (Unet with
Resnte34 encoder, Unet with EfficientNet encoder, Unet with In-
ceptionresnetv2 encoder, FPN with Resnte34 encoder, FPN with
EfficientNet encoder, and FPN with Inceptionresnetv2 encoder)
for each of the classification tasks in the hierarchical decompo-
sition and the multiclass approaches. Results are presented in
Tables VII and VIII. Aggregated predictions were computed for
the best models in each category. The batch size was limited
by the available memory properties and was reduced for larger
models for the WorldView data with a crop size of 256 ∗ 256
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Fig. 7. Sample of the Sentinel imagery for the test area. (a) Input image.
(b) Ground truth. (c) Prediction.

pixels. For Sentinel, the crop size was smaller (64 ∗ 64 pixels);
therefore, the batch size was the same for all experiments. The
best models for WorldView are the smaller ones (Unet with
Resnet34 encoder and FPN with the same encoder). However,
for Sentinel experiments, the best architecture is considerably
different. Both the WorldView and Sentinel studies show that
the correct architecture for each task can adjust classification
quality significantly.

TABLE XIII
OVERSAMPLING EFFECT ON THE WORLDVIEW VALIDATION IMAGES

(F1-SCORE)

Note: (1) All stands with a dom-
inant species content larger than
50% are used. (2) Special thresh-
olds are defined for each class (0.7
for spruce and pine, 0.6 for birch,
and 0.5 for aspen).

D. Augmentation and Oversampling

For all models, we implemented geometrical augmentations.
This allowed us to achieve a higher diversity in the training
dataset. As augmentation in neural network training is well
studied, we assessed its contribution to the classification quality
for only one architecture and one classification solution: the Unet
with Resnet34 encoder in the multiclass problem definition, with
WorldView images, and without supplementary height data. The
F1-score without augmentation during training is 0.67 (for val-
idation augmented data), whereas the augmentation procedure
increases the quality to 0.7 (for the same validation augmented
data). This effect is explained by the fact that a neural network
treats any geometrical transformation as a new training sample.

We conducted class oversampling according to the thresholds
defined in Table IV. Two strategies were compared: first, a
dataset of forest stands was formed with a dominant species
content of more than 50%, and second, a special threshold was
defined for each class (0.7 for spruce and pine, 0.6 for birch, and
0.5 for aspen). The averaged results for a multiclass approach
with WorldView images and without height data are presented
in Table XIII. It shows that such an oversampling can increase
model performance.

VI. CONCLUSION

We studied the applicability of the neural networks for the
automatic extraction of forest inventory characteristics from
satellite imagery and concentrated on the dominant species
classification problem. We present the following contributions.

1) We provide a labeled dataset for dominant species classi-
fication, covering a part of Leningrad Oblast, Russia.

2) We developed a hierarchical pipeline for the neural net-
work segmentation, which allows outperforming the basic
network approach in the multiclass image segmentation
problem. Applicability and relevance of our solution were
proved on two data sources: Sentinel and WorldView
satellites.

3) We investigated the effect of the supplementary height
data, which increases the accuracy significantly.

This approach can be extended to other forest inventory
problems and can be improved by a better training markup, both
of which we are going to pursue in future work. Moreover, the
results in this study are limited to dominant species classification
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only. However, in future research, we are going to cover mixed
forest cases, which will fall entirely into the hierarchical segmen-
tation scheme. The other goal is to add more forest inventory
characteristics, which can also be estimated from the satellite
imagery.
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