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Predicting densities and elastic moduli of SiO2-based glasses
by machine learning
Yong-Jie Hu 1, Ge Zhao2,3, Mingfei Zhang1, Bin Bin1, Tyler Del Rose1, Qian Zhao4, Qun Zu4, Yang Chen4, Xuekun Sun5,
Maarten de Jong6,7 and Liang Qi 1✉

Chemical design of SiO2-based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a
universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a
complex function of interatomic bonds and their ordering at different length scales. Here we show that the densities and elastic
moduli of SiO2-based glasses can be efficiently predicted by machine learning (ML) techniques across a complex compositional
space with multiple (>10) types of additive oxides besides SiO2. Our machine learning approach relies on a training set generated
by high-throughput molecular dynamic (MD) simulations, a set of elaborately constructed descriptors that bridges the empirical
statistical modeling with the fundamental physics of interatomic bonding, and a statistical learning/predicting model developed by
implementing least absolute shrinkage and selection operator with a gradient boost machine (GBM-LASSO). The predictions of the
ML model are comprehensively compared and validated with a large amount of both simulation and experimental data. By just
training with a dataset only composed of binary and ternary glass samples, our model shows very promising capabilities to predict
the density and elastic moduli for k-nary SiO2-based glasses beyond the training set. As an example of its potential applications, our
GBM-LASSO model was used to perform a rapid and low-cost screening of many (~105) compositions of a multicomponent glass
system to construct a compositional-property database that allows for a fruitful overview on the glass density and elastic properties.
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INTRODUCTION
SiO2-based glasses are a group of materials known for its diverse
applications as both structural and functional materials in various
industrial fields1–3. Density and elastic moduli are two of the most
common properties of SiO2-based glasses. Particularly, discovering
new glass compositions to achieve high elastic moduli and low
densities is of great interests for the development of strengthened
and durable SiO2-based glass materials nowadays. Finding
universal expressions or correlations to efficiently predict and
further optimize densities and elastic moduli of SiO2-based glasses
according to the chemical composition is not very straightforward
due to their non-crystalline structures. Different from the crystal-
line materials, the elastic moduli of a SiO2-based glass are not only
determined by the atomic bonding strength but also a complex
function of many other physical properties at different length
scales4–7, such as cation coordination, formation of atomic ring,
chain, layer and polyhedral atomic clusters, and even the
structural organization at mesoscopic scale, e.g. the formation of
nanodomains4. Moreover, the additive oxides besides SiO2

introduce cations with various valence states, which not only
change the cation-oxygen bonding strengths but also modify the
degree of network polymerization. As a result, elastic moduli of
the glass are complex functions of the chemical compositions of
the additive oxides.
Through linear or polynomial regression analyses, many efforts

have been devoted previously to fit the densities and elastic
moduli with either the glass composition only8–10 or a single
parameter related to atomistic structures, such as molar volume11

and the correlation length of x-ray diffraction peak5,12. Although

these regression models were demonstrated to provide valid
descriptions for some certain glass systems, they may have two
major shortcomings that impede their usage in the practical
design of new glass compositions. Firstly, the models are usually
accurate for specific glass systems. Once the type of the additive
oxides changed, the regression results may significantly be varied,
or an alternative modeling method must be applied. As a result, it
is difficult to extrapolate the developed models to capture the
mixed effects of multiple additive oxides in the design space for
industrial glass products. Secondly, for the models built on non-
compositional variables, their outcomes are hard to be directly
used for discovering new glass compositions, because it could be
difficult to quantitatively interpret the optimization results with
respect to glass chemistries. For example, elastic extremeness may
occur at a certain correlation length of x-ray diffraction peak5,12,
while it is still unknown what glass chemistries result in such
correlation length. These shortcomings may originate from the
fact that these models were usually built from regression
algorithms based on presumed analytical formulas and a few
variables that were predetermined relying on historical intuition
and knowledge.
Machine learning (ML) techniques offer an alternative way to

create predictive models that bridge the materials property of
interest with its potential descriptors quickly and automatically13–16.
In addition, the model created from ML does not require to rely on
presumed fitting expressions or any historical intuition of material
behaviors. As a result, the ML approaches can be a particularly
powerful tool for modeling the property that is determined by
many factors in a complex way with unclear underlying
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mechanisms. To date, the ML approaches have been widely used
to build predictive models for a handful of materials properties
and applications, including the modeling of elastic moduli of both
crystalline17–19 and amorphous materials20–24. Using the artificial
neural networks and genetic evolution algorithms, Mauro
et al.20,24 recently showed that Young’s moduli of over 250
different glass samples can be accurately regressed and predicted
using glass compositions as inputs. Most recently, by using glass
composition as input descriptors, Yang et al. performed extensive
studies to show that Young’s moduli of the CaO-Al2O3-SiO2 ternary
glass system can be accurately predicted through several different
ML models21. Additionally, in a recent work by Bishnoi et al.,
Young’s moduli of four important ternary glass systems were
comprehensively studied and well predicted based on nonpara-
metric ML regression models22. Furthermore, recent works by Lu
et al. show that the densities and elastic moduli of the ZrO2-doped
soda-lime borosilicate and calcium aluminosilicate glasses can be
well predicted by a group of physical descriptors using
quantitative structure-property relationship (QSPR) analysis25,26.
All these recent works show great promise in the application of
ML techniques on the chemistry design of advanced glass
materials.
One could encounter several challenges to model densities and

elastic moduli of SiO2-based glasses under a ML-based framework.
A typical one would be the availability of sufficient quantities of
training data to sample the predictive space. It could be harmful
for extrapolative predictions if the training data are clustered
around one or several particular regions of the design space.
However, unfortunately, experimental data are usually clustered
due to the constraints of practical manufacturing. This situation
can be overcome by employing atomistic simulations such as
molecular dynamics (MD) and molecular statics (MS) simulations,
which were proved to be able to accurately compute the elastic
moduli of many glassy systems5,7,27. Particularly, the MD simula-
tions offer a promise of being able to predict the elastic moduli for
the glass compositions that have not been experimentally
synthesized20,28. As a result, one can achieve a compositionally
homogenous sampling for any glass system of interest without
the need of concerning the practical manufacturing constraints.
However, even though the MD simulation is an effective and
efficient tool, with current and near-term computing techniques, it
can only access a limited fraction of discrete compositions in a
practical design space that contains several (~5) oxide-
components using tens of millions of CPU hours. Therefore, from
the practical view, it is expected that the developed ML model is
capable of giving reliable predictions over a large and even the
entire compositional space despite the training is based on a limit
set of data of lower-order systems (e.g., binary and ternary SiO2-
based systems). To achieve this goal, the model cannot be purely
empirical. A subtle set of descriptors should be constructed to
include not only the information of glass composition but also the
physical information related to the chemical characteristic of the
components28, such as the parameters associated with atomic
bond energies. In fact, several recently developed physic-based
topological models have demonstrated quantitative connections
between glass elasticity and the free energies associated with
breaking different bond constraints between cations and
anions25,26,29,30.
In this work, through merging ML approaches with high-

throughput MD simulations, we aimed to develop a quantitatively
accurate model to predict densities and elastic moduli of SiO2-
based glasses according to the glass composition but across a
complex compositional space. The effects of 13 types of additive
oxides were investigated, namely Li2O, Na2O, K2O, CaO, SrO, Al2O3,
Y2O3, La2O3, Ce2O3, Eu2O3, Er2O3, B2O3, and ZrO2. The training set
was generated using MD simulations to homogenously sample
the density and elastic properties of a part of the constituent
binary and ternary systems. A set of descriptors was carefully

constructed from the force-field potentials used for MD simula-
tions and elemental mole fractions to include both physical and
compositional information. Sequentially, enlightened by the
previous work17, a statistical learning/predicting model was
developed by implementing the least absolute shrinkage and
selection operator31 with a gradient boost machine32 (GBM-
LASSO). As a comparison, a traditional decision tree-based model
(M5P)33,34 was also employed. By validating with a large amount
(≫1000) of both simulation and experimental data, the GBM-
LASSO model was demonstrated to have promising prediction
capabilities on both densities and elastic moduli for the SiO2-
based glasses not only within the composition range of the
training set but also the high-dimension compositional spaces
beyond the training set. The developed ML model could be useful
for rapid glass composition-property screening that allows for a
fruitful estimation and overview on the density and elastic
properties of the general multi-component glass systems,
especially the unexplored composition regions.

RESULTS
Physics-informed descriptors
The successful application of ML approaches on the modeling of
material properties requires the selection of an appropriate set of
modeling variables or, namely, the descriptors for the property
of interest. In general, the descriptors are expected to be capable
of both sufficiently distinguishing each of the modeled com-
pounds/materials and determining the targeted property. In this
context, chemical compositions are straightforwardly used as one
type of the most common descriptors as they are usually unique
for each modeled material, and many material properties are
eventually compositional dependent. In fact, several recent works
have shown that using chemical compositions only as descriptors
can describe the glass properties through the artificial neural
network based ML algorithm20–22,35. However, only using compo-
sitional descriptors could make the model have limited extra-
polative ability13,24,28.
Alternatively, one can construct the descriptors using a group of

material feature parameters that have physical correlations with
the targeted property. In this way, the resulting model could
potentially capture the underlying physical mechanisms after
training, and thus offer reliable predictions for the chemistries
beyond the training set. These material quantities are generally
classified into two categories, namely the chemical and structural
feature parameters15,17. Chemical feature parameters are usually
elemental properties, such as the effective ionic charge, atomic
radius and weight, and electronegativity, which can be obtained
by requiring the knowledge of the material chemistry only.
Structural feature parameters, such as the atomic coordination
number and bonding distances, and radial distribution function,
require knowledge of the specific atomistic structures of the
material (in addition to the chemistry), and they need to be
determined experimentally or from atomistic simulations, such as
MD simulations in the present work.
For fast mapping the glass properties in a complex computa-

tional space, it is not efficient to use both the chemical and
structural feature parameters to construct descriptors. Densities
and elastic moduli of the SiO2-based glasses are indeed strongly
correlated with or determined by many of the glass structural
features, such as atomic packing density, coordination numbers
and ring sizes of network formers5,7,36–41. These structural feature
parameters, however, are unknown for a given glass composition
in the present work unless the MD simulations have been
performed to obtain the corresponding atomistic structure. On the
other hand, if the atomistic structure of a glass material is already
known, there is no need to perform any ML-based predictions as
the elastic moduli and density can be easily and quickly calculated

Y.-J. Hu et al.

2

npj Computational Materials (2020)    25 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



via a MS simulation using the strain-stress method described in
Methods Section. In fact, obtaining the glassy structure via MD
simulations is the most time-consuming step when computing the
density and elastic moduli of a SiO2-based glass. Thus, only the
chemical quantities are considered for the construction of the
descriptors for the ML model in the present work. As a result, the
developed ML model is able to predict the properties by only
requiring the information of the glass chemistry and without the
need to run any additional MD simulations.
The construction of the descriptors should always start with the

ones that are physically relevant to the material property of
interest. In the MD and MS simulations, the interatomic
interactions are determined by the force-field potentials. The
calculated density and elastic moduli are actually derived
quantities from many multilevel and intricate MD and MS runs.
Therefore, the parameters of the force-field potentials can be a set
of suitable candidates to construct the ML descriptors due to their
intrinsic characteristics to describe the physical features of
interatomic bonds.
In the present work, a set of self-consistent force-field

potentials27,42–51 are employed to perform the MD and MS
simulations. The potential consists of long-range Coulomb
interactions and short-range interactions described in the Buck-
ingham form52, which can be expressed as,

Ui;j ri;j
� � ¼ qiqj

4πε0ri;j
þ Ai;jexp � ri;j

Bi;j

� �
� Ci;j

r6i;j
(1)

Here ri,j is the interatomic distance between atom i and j; qi and qj
are the effective ionic charges of atom i and j, respectively; Ai,j, Bi,j,
and Ci,j are the energy parameters of the Buckingham form
between i and j. The values of the effective ionic charges and
Buckingham parameters for each element are summarized in
Table 1. Therefore, according to Eq. 1, the descriptors associated
with the Coulomb interactions for a given glass composition is

written as,

uCoulqm;qn ¼
X

i

cim � qm �
X

j

cjn � qn (2)

Here qm and qn denote the effective ionic charges listed in Table 1,
which have values among −1.2, +0.6, +1.2, +1.8, and +2.4 e; cim
and cjn denote the mole fractions of the constituent elements i
and j with effective ionic charge qm and qn, respectively. For
example, for a glass that containing Na, K, Ca, and Sr, as the
effective ionic charges are +0.6 e for Na/K and +1.2 e for Ca/Sr,
respectively, the descriptor that corresponds to the Coulomb
interactions between the ions with +0.6 and +1.2 e charges is
calculated as uCoulþ0:6;þ1:2 ¼ cNaþ0:6 þ cKþ0:6

� � � 0:6 � cCaþ1:2 þ cSrþ1:2

� ��
1:2, where cNaþ0:6 ; cKþ0:6 , cCaþ1:2 ; and cSrþ1:2 are the elemental mole
fractions of Na, K, Ca, and Sr, respectively. Because there are five
different types of charge valences assigned for the elements that
modeled in the present work, the total number of the Coulomb
interactions descriptors, uCoulqm;qn , is C

1
5 þ C2

5 = 15.
As shown in Eq. 1 and Table 1, the MD parameters associated

with the Buckingham term describe the short-range interactions
between each ion in a very complex way. Since we do not have a
priori knowledge of how to combine these parameters to result in
optimal modeling results, based on our previous experience17, the
corresponding descriptors are constructed as a series of weighted
Hölder means, from which the ML model selects the most useful
descriptors for modeling and predicting the glass properties of
interest. As shown in Table 1, there are three individual
Buckingham parameters (i.e., Ai,o, Bi,o, and Ci,o) for each element
to describe its short-range interactions with the O anions
(including the O–O self-interactions). Among these three para-
meters, the Bi,o term influences the short-range interaction energy
exponentially based on Eq. 1. Therefore, different from Ai,o and Ci,o,
Bi,o is not directly used as the feature parameter for the descriptor
construction. Instead, in order to accurately describe the
exponential effects of Bi,o, we proposed to use a parameter, B0i;O,
for the descriptor construction. The B0i;O parameter is calculated
from Bi,o,

B0i;O ¼ exp � r0i;O
Bi;O

 !

(3)

where r0i;O is the distance where the first derivative of the
Buckingham form becomes zero. Therefore, for each type of the
ions, r0i;O is actually calculated from the values of Ai,o, Bi,o, and Ci,o.
In addition, since Ci,o of Li has a zero value, extra procedures were
applied to obtain the value of the r0i;O term for Li, which is
described in detail in Supplementary Note 3. The calculated values
of the B0i;O term for all the elements studied in the present work
are summarized in Table 1, along with their MD parameters. Thus,
the descriptors associated with the short-range interactions are
eventually generated from Ai,o, B0i;O, and Ci,o based on the glass
composition (ci) as the following,

uxp ¼
P

i2Sele
cix

p
i;O

 !1
p

; p ¼ �4;�3;�2;�1; 1; 2; 3; 4;

uxp ¼ exp
P

i2Sele
ci lnðxi;OÞ

 !

; p ¼ 0;

(4)

where uxp denotes the descriptors generated from the feature
parameter xi,O associated with the Buckingham short-range
interactions between the element i and O. There are three types
of xi,O, Ai,o, B0i;O, and Ci,o. Let Sele ¼ Si;O; Li;Na; K¼f g be the set of
the elements contained in the glass. Different values of p results in
different Hölder means of x, which are the quartic-harmonic mean
(p=−4), cubic-harmonic mean (p=−3), quadratic-harmonic
mean (p=−2), harmonic mean (p=−1), geometric mean (p= 0),

Table 1. Effective ionic charge and Buckingham potential parameters
used for MD simulations27,35–44.

Element Effective
ionic charge

Buckingham potential parameters

qi (e) Ai,o (eV) Bi,o (Å) Ci,o (eV Å6) B0i;O

O37,38 −1.2 2029.22 0.343645 192.58 66.7013

Si37,38 +2.4 13702.91 0.193817 54.681 105.6045

Li39 +0.6 41051.94 0.15116 0 25.5680

Na37,38 +0.6 4383.756 0.243838 30.7 34.0818

K39 +0.6 20526.97 0.233708 51.489 17.8292

Ca27 +1.2 7747.183 0.252623 93.109 49.3250

Sr27 +1.2 14566.64 0.245015 81.773 26.8815

Al40 +1.8 12201.42 0.195628 31.997 50.0620

Y41 +1.8 29526.98 0.211377 50.477 20.9356

La40 +1.8 4369.39 0.2786 60.28 30.2441

Er42 +1.8 58934.85 0.195478 47.651 17.1005

Eu43 +1.8 5950.529 0.253669 27.818 19.5874

Ce44 +1.8 11476.95 0.242032 46.7604 21.8666

B47 +1.8 12362.78a 0.171271 28.500 164.7216a

Zr36 +2.4 17943.38 0.226627 127.65 58.3358

Here, Ai,o, Bi,o, and Ci,o are the short-range interaction parameters between
an ion element i and oxygen anion. The short-range interactions between
the cation elements are ignored in the present set of MD potentials. The
values of B0i;O , calculated based on Eq. 3, is also listed for each element.
aAi,o and B0i;O values for the boron ions are calculated for the glass
composition of 30% B2O3+ 70% SiO2.
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arithmetic mean (p= 1), Euclidean mean (p= 2), cubic mean (p= 3),
and the quartic mean (p= 4), respectively. In addition, in Eq. 4, ci is
the mole fraction of the glass constituent element i. Besides, we also
consider the standard deviation of the arithmetic means
(ux1) as a type of descriptors, which is calculated as,

ux�σ
1 ¼ 1

1�Pi2Selec
2
i

 !

�
X

i¼i2Sele
ci xi;O � ux1
� �2

 ! !1
2

(5)

Based on Eqs. 4 and 5, thirty distinct descriptors are generated
in total from Ai,o, B0i;O, and Ci,o (27 from Eq. 4, and 3 from Eq. 5). In
addition, we include the multiplications between any two of the
thirty descriptors as interaction terms to consider the non-linear
relations among these descriptors. Finally, we also include the
arithmetic mean of the atomic mass as an individual descriptor. As
a result, overall 511 input descriptors are generated for the ML
models, in which there are fifteen descriptors associated with
long-range Coulomb interactions, thirty descriptors generated
from the MD parameters of the Buckingham term and 465
corresponding interaction terms (including self-interactions, thus
C1
30 þ C2

30 = 465), and one descriptor representing the mean
atomic mass.

Regressions accuracy of training data
In the present work, the training dataset was generated by high-
throughput MD simulations, which contains the densities, bulk
and shear moduli (i.e., K and G) of 498 individual glass
compositions in 11 binary and 20 ternary SiO2-based systems as
summarized in Supplementary Table 5. In all, 11 types of additive
oxides were considered, namely Li2O, Na2O, K2O, CaO, SrO, Al2O3,
Y2O3, La2O3, Ce2O3, Eu2O3, and Er2O3. The ML models (i.e. GBM-
LASSO and M5P models) were applied to learn each of the glass
properties separately.
The densities from the MD-calculated training dataset are

plotted in Fig. 1 against the corresponding regression results from
the GBM-LASSO and M5P models. For the sake of a clear
representation, the data points are grouped into four categories,
which are pure amorphous SiO2, type-I glasses that only contain
alkali and alkaline earth oxides as additives, type-II glasses that
contain Al2O3 and other oxides, and type-III glasses that contain
rare-earth and other oxides. As shown in Fig. 1, the glass densities
produced from both GBM-LASSO and M5P models agree well with
the results from MD calculations with root-mean-squared-errors
(RMSE) as small as 0.0229 and 0.0325 g cm−3, respectively. It is also
found that the distributions of the prediction residuals are close to
norm distributions. Together with the histogram of residuals, Fig. 1
implies the ML models demonstrate the correlations of interests
very well without any abnormal performance. The regression
results of the two ML models on the bulk and shear moduli are
also illustrated as parity plots shown in Figs 2 and 3. Still, good
agreements are observed between the predictions from ML
models and those from MD simulations in the training set. The
residuals of the models also approximately follow normal
distributions. The regression RMSEs of K and G of the GBM-
LASSO model are 2.99 and 1.31 GPa, respectively, while 2.59 and
0.97 GPa for the M5P model. In addition, the GBM-LASSO model
seems to yield slight underestimations on the glass samples with
higher moduli, as shown in Figs 2a and 3a.
Here, to further evaluate the regression accuracy of the ML

models, we define the relative error as,

Relative error ¼ XML � XMDj j
XMD

X ¼ density; K or Gð Þ (6)

where XMD is the density or elastic modulus calculated from MD
simulation and XML is the prediction from the GBM-LASSO or M5P
model. As shown in Table 2, for both K and G, over 60% of the
predictions from both ML models have a relative error of <5%, and
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Fig. 1 Performances of the ML models on the glass densities of
the training set. a Performance of the GBM-LASSO model.
b Distribution of residuals between the GBM-LASSO predictions
and the MD results of the training set. c Performance of the M5P
model. d Distribution of residuals between the M5P predictions and
the MD results of the training set. The curved lines in b, d are normal
distributions constructed from the mean and the standard deviation
of the residuals. The data points are grouped into four categories
based on their glass chemistry, which are pure amorphous SiO2,
type-I glasses that only contain alkane and alkane earth oxides as
additives, type-II glasses that contain Al2O3 and other oxides, and
type-III glasses that contain rare-earth and other oxides.

20

40

60

80

100

20 40 60 80 100

K G
BM

-L
AS

SO
/G

Pa

KMD /GPa

pure SiO₂
Glass type I
Glass type II
Glass type III

-15 -10 -5 0 5 10 15
KGBM-LASSO - KMD /GPa

20

40

60

80

100

20 40 60 80 100

K M
5P

/G
Pa

KMD /GPa

pure SiO₂
Glass type I
Glass type II
Glass type III

-15 -10 -5 0 5 10 15
KM5P - KMD /GPa

a b

c d
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of the residuals. The data points are grouped into four categories
based on their glass chemistry by following the definitions Fig. 1.
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over 90% predictions are within a relative error of <10%,
indicating that excellent regression accuracy is achieved. Addi-
tionally, we find that the LASSO method has indeed significantly
shrunk the size of the descriptor set. Among the 511 input
descriptors, only 119, 127, and 87 descriptors are found to have
non-zero regression coefficients when the ML models predict the
glass density, K and G, respectively. It is also found that many of
these descriptors have been multiply used for the LASSO
regressions at different GBM iterative steps, indicating they are
indeed important and useful to describe these glass properties.

Prediction capability
Since the ML models are only trained with a small set of data from
MD simulations for the binary and ternary systems, providing
reliable predictions out of the domain of the training set is quite
crucial for the present models in terms of the future applications
in the practical glass design spaces. Here, we randomly choose 11
ternary, 30 quaternary, 30 quinary, and 30 senary glass composi-
tions that are not included in the training dataset to evaluate the
prediction capabilities of the ML models in the compositional
space beyond the training set. For each chosen composition, the
GBM-LASSO and M5P models are applied to predict its density, K
and G, and then MD simulations are correspondingly performed to
validate the ML predictions. The validation results are shown as
parity plots in Fig. 4. In addition, the prediction errors are analyzed
and summarized in Table 3 in the same way as the error analysis of
the training process (Table 2). On the one hand, it is found that the
M5P model seems to yield large uncertainties when extrapolating.
As shown in Table 3, the RMSEs of the predictions from the M5P
model with respect to MD validations are 0.1774 g cm−3, 5.24 and
2.27 GPa for density, K and G, respectively, which are much larger
compared to the RMSEs of the learning results listed in Table 2
(0.0325 g cm−3, 2.59 and 0.97 GPa for density, K and G). In
addition, as shown in Fig. 4a–c, the data points in the parity plots
of the extrapolative predictions are more scattered compared to
the results of the training process (Figs 1c, 2c, and 3c). Particularly,
as marked out in Fig. 4b, c, there are several predictions for the
bulk and shear moduli that largely deviated from the MD results.
Their relative errors are found to be over 20%. Moreover, it is
worth to note that the M5P model is also trained by further
decreasing the number of descriptors, which only resulted in a
further increase in the training RMSEs but no significant
improvements on the prediction RMSEs.
On the other hand, the developed GBM-LASSO model shows

very promising prediction capabilities for multicomponent glass
systems beyond the training set. As shown in Fig. 4d–f, the
density, K and G predicted from the GBM-LASSO model are in very
good agreement with the MD results. Nearly 85% of the
predictions for K and over 90% for G have relative errors <10%.
Moreover, as shown in Table 3, the RMSEs of the predictions from
the GBM-LASSO model with respect to MD validations are
0.0536 g cm−3, 3.69 and 1.34 GPa for density, K and G, respectively,
agreeing well to the training uncertainties of the model listed in
Table 2. The results suggest that, after training with a small set of
data for only binary and ternary systems, the developed GBM-
LASSO model shows promising abilities to give reliable predictions
for multicomponent k-nary glasses as long as their constituent
oxides are included in the training set.
Moreover, we find the prediction range of the GBM-LASSO

model can be possibly extended to cover more types of additive
oxides by adding a small amount of related binary and ternary MD
data to the training set. Here we use B2O3 and ZrO2 as examples,
as the Buckingham potentials for boron and Zr have been recently
developed by Du et al.43,53, which are also compatible with the set
of MD potentials used in the present work. The original training
set is slightly modified by adding a few new binary and ternary
data with glass compositions containing B2O3 or ZrO2. Specifically,
7 binary and 21 ternary data are added with compositions from
the xB2O3-(100-x)SiO2 (x= 5, 10, 15, 20, 25, 30, and 35) and xB2O3-
yNa2O-(100-x-y)SiO2 systems (x, y= 5, 10, 15, 20, 25, and 30, and
x+ y ≤ 35), respectively. Also, for ZrO2, 13 new data are added to
the training dataset, which are xZrO2-(100-x)SiO2 (x= 5, 10, 15, 20,
25, 30, 35) and xZrO2-(35-x)Na2O-65SiO2 (x= 5, 10, 15, 20, 25, 30).
The GBM-LASSO model is re-trained with the corresponding new
training set. Notably, the density, K and G of the newly added
glass compositions are well reproduced by the new training
dataset, and the overall RMSEs are just slightly varied (0.012 g
cm−3 for density, 0.26 GPa for K and 0.30 GPa for G) from the
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Fig. 3 Performances of the ML models on the shear moduli (G) of
the training set. a Performance of the GBM-LASSO model.
b Distribution of residuals between the GBM-LASSO predictions
and the MD results of the training set. c Performance of the M5P
model. d Distribution of residuals between the M5P predictions and
the MD results of the training set. The curved lines in b, d are normal
distributions constructed from the mean and the standard deviation
of the residuals. The data points are grouped into four categories
based on their glass chemistry by following the definitions in Fig. 1.

Table 2. Regression results of the GBM-LASSO and M5P machine
learning models on the training set, including root mean squared error
(RMSE), and the percentage of predictions within 5%, 10%, 20%, and
30% relative errors according to Eq. 6, respectively.

Property Model RMSE Percent of predictions within
relative error of

2.5% 5% 10% 20%

Density GBM-LASSO 0.0229 98.8 100.0 100.0 100.0

M5P 0.0325 96.6 100.0 100.0 100.0

K GBM-LASSO 2.99 33.9 61.8 91.0 99.6

M5P 2.59 40.6 70.1 94.6 99.6

G GBM-LASSO 1.31 47.4 76.3 96.0 100.0

M5P 0.97 57.6 89.8 99.4 100.0

The units of RMSE are g/cm3 and GPa for density and elastic moduli,
respectively.
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values listed in Table 2. As shown in Fig. 5a, b, the non-linear
effects of B2O3 on the bulk and shear moduli are accurately
described for the xB2O3-(100-x)SiO2 and xB2O3-(30-x)Na2O-70SiO2

glasses after training. Moreover, the newly trained model can then
be expanded to the multicomponent glasses that contain B2O3

and ZrO2. As shown in Fig. 5c, the ML predictions for several B2O3-
containing compositions, which are not in the training set, are well
confirmed by MD validations. Similar results are also observed for
the ZrO2-containing glasses as shown in Supplementary Fig. 4.
These results suggest that the developed GBM-LASSO has great
potentials to be further expanded to cover more types of additive
oxides in the future. To achieve such expansions, we only need a

few of MD simulations to generate the binary and ternary data
containing new types of oxides for the training set.
We believe the outstanding prediction capability of the GBM-

LASSO model may benefit from two aspects: the method of
descriptor construction and the advantages of the regression
algorithms employed in the model. As described in Eqs. 2–5,
instead of directly using the chemical composition as descriptors,
the present model constructs descriptors from the compositional
averages of the MD potential parameters. As a result, these
descriptors can not only smoothly map the entire design space as
they are continuous functions of the glass compositions but also
contain the information to reflect the intrinsic physical features of
each component element, which are compositionally discrete.
More importantly, the construction method ensures that the total
number of the descriptors is invariant to the arity of the glass
chemistry. In other words, it generates the same number of
descriptors for any given glass composition, no matter how many
types of additive oxides it contains, as long as the interatomic
potentials based on Eq. 1 is used for MD simulations. In addition,
most of the descriptors still have non-zero values even when the
investigated glass contains only one or two types of additive
oxides. As a result, this would allow the ML models to transform
the extrapolation problems in the chemical compositional space
into interpolation-like problems in the constructed descriptor
space based on both glass composition and MD force-field
parameters.
Furthermore, the GBM-LASSO model may also benefit from

some unique features of the regression algorithms employed in
the model. In principle, a good prediction ability means a model
should avoid over-fitting performance and still achieve a
regression accuracy as high as possible. In the present work,
due to a relatively small size of the train set, the number of
descriptors is almost the same as the number of training data. This
results in a potential risk of over-fitting if all the descriptors are
considered equally strong and used for regression. The LASSO
regression method could be particularly useful to resolve this issue
as it screens out the nonsignificant descriptors by setting their
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Fig. 4 Prediction performances of the ML models on glass compositions beyond the training set. The predictions from the M5P and GBM-
LASSO model are plotted versus the validation results from MD simulations. a–c Density, bulk and shear moduli predicted by the M5P model.
d–f Density, bulk and shear moduli predicted by the GBM-LASSO model. The glass compositions used for the testing are from 101 randomly
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be found in Supplementary Table 6. The data points within the region between two black dot-dashed lines have relative errors less than 10%.

Table 3. Prediction errors of the GBM-LASSO and M5P machine
learning models for the glass compositions that are not included in
the training set, including root mean squared error (RMSE), and the
percentage of predictions within 5%, 10%, 20%, and 30% relative error
according to Eq. 6, respectively.

Property Model RMSE Percent of predictions within
relative error of

2.5% 5% 10% 20%

Density GBM-LASSO 0.0536 86.1 99.0 100.0 100.0

M5P 0.1774 62.4 80.2 93.1 97.0

K GBM-LASSO 3.69 34.7 51.5 83.2 100.0

M5P 5.24 28.7 48.5 78.2 96.0

G GBM-LASSO 1.34 41.6 76.2 98.0 100.0

M5P 2.27 36.6 57.4 90.1 97.0

The tested compositions are from 11 ternary, 30 quaternary, 30 quinary,
and 30 senary systems that are randomly chosen. The units of RMSE are
g/cm3 and GPa for density and elastic moduli, respectively.
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coefficient to zero. As a result, the risk of over-fitting could be
efficiently reduced as the regression is actually produced by a
much smaller number of descriptors.
Moreover, for a broader comparison, we also applied our

descriptors and training/testing data with other two typical ML
models, a frequently used GBM regression tree model (GBM-RT)
implemented in the XGboost package54 and a model using the
elastic net method55 under the GBM framework (GBM-EN). The
prediction performances of these two models are described in
detail in Supplementary Note 5. Comparing the prediction
performances of all the test ML models (i.e., GBM-LASSO, GBM-
EN, GBM-RT and M5P), it is noticed that GBM-LASSO/EN models
generally show better performance than the tree-based models
when predicting beyond the training set. One possible reason
could be that the GBM-LASSO/EN models conduct continuous
regression functions (LASSO and EN) by considering all the
observations/descriptors simultaneously at each GBM-iterative
step, and they do not perform data classification like the tree-
based model. As a result, the regression processes enforce more
smoothness than the tree-based models in the functions mapping
continuous descriptors to observations, especially when the size of
the training set is small and the targeted responses are continuous
functions of descriptors. On the other hand, tree-based methods
usually require hard thresholds on the classification boundary. This
requirement could result in large prediction uncertainties for the
untrained sample if one or several input descriptors have values
very close to the classification boundary, especially when the
model itself is trained with a small set of data but used for
extrapolative predictions. For this reason, the GBM-LASSO model
proposed in the present work could be advantageous for many of
materials problems. In these cases, the properties of interests (e.g.,
density and elastic moduli) are reasonably continuous and smooth
to the descriptors (e.g., compositions), but the training set is
relatively small and established from the studies of sparse regions.

Comparison between ML predictions and experimental
measurements
To further evaluate the model reliability, the predictions of the
present GBM-LASSO model are validated with a large amount of
experimental data across a multicomponent compositional space.
Specifically, we collected the experimentally measured density
and shear (G) and Young’s (E) moduli from the Sciglass 7.12
database, which in turn were gathered from academic literature
and patents published up to May 201456, for the SiO2-based
glasses containing the 12 additive oxides (i.e., Li2O, Na2O, K2O,
CaO, SrO, Al2O3, Y2O3, La2O3, Ce2O3, Eu2O3, Er2O3, and ZrO2) that
have been considered in the present work. When collecting the
data, we constrained the composition of SiO2 to be no <50mol%.
In comparison, it is worth to note all the glass compositions in our
MD training dataset have no <65mol% SiO2. Overall 550 data

points, including 142 binary, 303 ternary, 95 quaternary, and 10
higher-order data (oxide components more than four), were
collected for G; 1010 data points, including 231 binary, 464
ternary, 157 quaternary, and 158 higher-order data, were collected
for E; 4647 data points, including 1327 binary, 2483 ternary, 607
quaternary and 230 higher-order data, were collected for density.
Moreover, ~30% of the data have the SiO2 composition less than
65mol%, which can serve as a validation to test the extrapolation
capability of the present ML model in the compositional space. In
addition, among these collected data, some of them can
correspond to the same or very similar glass compositions, but
they are gathered from different literature sources, as the density
and elastic moduli for those compositions have been measured
multiple times previously.
For each of the collected experimental data point, we took the

corresponding glass composition to predict the G, E and density
using our GBM-LASSO ML model and compare them with the
experimental values. The predicted E is calculated from predicted
K and G as described by Eq. 10 in Methods Section. It is worth to
mention that the GBM-LASSO model is still only trained with the
MD training set, and the collected experimental data were not
used for training. As shown in Fig. 6, the validation results are
characterized as 2D-hexbin plots with the ML predicted results
versus the experimental values. It is found that the predictions
from the GBM-LASSO model generally agree well with the
experimental measurements. Compared to the experimental
values, over 50% of the model predictions have relative errors
<7%, and ~90% predictions are with relative errors <15% for both
G and E. In terms of density, the predictions from the ML model
yields even better agreement with experiments, where over 80%
of predictions have relative errors <3% and 96% of predictions are
with relative error <6%.
Besides the general agreement between the ML predictions and

experimental data, as shown in Fig. 6, it is noted that there are still
scattered ML predictions that are largely deviated from the
experimental values. After a careful analysis, we found that many
of these prediction outliers should result from the inconsistency
between the experimental data as they were gathered from
different sources. In other words, the predictions of the ML model
are in a good agreement with other sets of the experimental data
with the glass compositions that are equal or close to the outliers.
Here we show two typical examples as marked by the dashed-line
circles in Fig. 6a. One set of the data there corresponds to a
measurement on the Li2O-SiO2 binary glasses with Li2O contents
ranging from 26mol% to 40mol%, in which shear modulus of the
glasses were reported to range from 5.71 to 13.79 GPa57. In
contrast, at the corresponding compositions, the ML model
predicted that the shear moduli should be ~31–33 GPa, which
are actually in very good agreement with the results of
experimental measurements on similar glass compositions from
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other two studies58,59. Another set of data marked by the circle in
Fig. 6 corresponds to a measurement on the Al2O3-Y2O3-SiO2

glasses60, where the ML model yields conflict predictions.
However, in the meanwhile, the ML predictions on the Al2O3-
Y2O3-SiO2 glass systems are also confirmed by other experimental
measurements61–63 (More details are described in Supplementary
Note 6). In addition, we acknowledge that, for some of the
prediction outliers in Fig. 6, we still cannot have clear reasons as
there are no other data available for comparison. These outliers
can result from the inaccuracy of the MD simulations or the ML
model when predicting the elastic moduli and densities for some
specific glass chemistries. For example, it is found that the present
ML model generally underestimates the densities of ternary
glasses containing both Al2O3 and rare-earth oxides (i.e., Y2O3,
La2O3, Eu2O3 and Er2O3).
More importantly, after we remove these outliers (i.e. 15 out of

550, 35 out of 1010, and 77 out of 4647 in total for G, E and
density, respectively) that can be confidently regarded as the
experimental inconsistency, the RMSEs of the predictions from the
present GBM-LASSO model are 2.51, 6.67, and 0.0700 g cm−3 for G,
E and D, respectively, which are reasonably small by considering
the possible uncertainties of the experimental measurements.
Such uncertainties are quite common in the Sciglass database due
to different experimental methods and sources (one example is
shown in Supplementary Fig. 2b). The general agreements
between the ML predictions and experimental data shown in
Fig. 6 further support the prediction reliability of the present GBM-
LASSO model in a complex compositional space.
In addition, when validating with the experimental data for the

B2O3-containing glasses from the Sciglass database, we found that
the present GBM-LASSO model could have relatively large
uncertainties in prediction accuracy. For example, the model
predictions on the Young’s moduli of the B2O3-Na2O-SiO2 ternary
glasses are found to agree with the experimental measurements
from some certain groups64–66 (RMSE: ~6.33 GPa) but largely
deviate from other experimental data in the Sciglass database
(RMSE: ~15.05 GPa)56. There are two possible reasons for such
fluctuations in prediction accuracy. First, the experimental data
from different studies already contain large fluctuations in elastic
moduli for glasses with similar chemical compositions67–69,
indicating potentially large errors in some experiments. Second,
the force-field potential of B2O3 employed in the present work can
be inaccurate in terms of describing the elastic moduli. As
reported by the developers of this B2O3 potential53, the MD
predicted bulk, shear and Young’s modulus can be much higher
than the experimental values in the B2O3-Na2O-SiO2 ternary
system (up to 50% depending on the concentrations), although
the variation trends with respect to the glass compositions are
reproduced. However, because of the consistency between the
MD results and our ML predictions (Fig. 5c), our developed GBM-

LASSO model still has the capability to provide more reliable and
accurate predictions for the B2O3-containing glasses, as long as
compatible interatomic potentials that are more accurate on
elastic properties are developed. Under that situation, one would
only need to use the new interatomic potential to calculate a small
amount of binary and ternary data and incorporate them into the
training set.
Furthermore, the prediction capability of the GBM-LASSO model

on elastic moduli is also evaluated by comparing it with a widely
used physics-based model developed by Makishima and Mack-
enzie70,71, hereafter referred to as MM model. Noteworthily, the
MM model requires the actual density of the glass as an extra
input, but the present GBM-LASSO model can make predictions
only according to glass compositions, which makes it more
suitable to be used as a fast screening tool before practical
syntheses. Additionally, in the MM model, the interactions
between atoms are assumed to be fully ionic so that Young’s
modulus can be derived from the Coulomb form of the
electrostatic energy71. Such an ionic assumption could be
problematic when it is applied for modeling the transition-metal
oxides since the partially covalent characteristics of the metal-
oxygen chemical bonds cannot be ignored. However, the covalent
characteristics can be well captured by the Buckingham short-
range interaction parameters in MD simulations, which are also
used as input features to construct ML descriptors in the
present work.
Indeed, compared to the MM model, it is found that the GBM-

LASSO model yields considerable improvements on the elastic
moduli predictions for the SiO2-based glasses containing
transition-metal oxides. By using an experimental validation
dataset collected from the Sciglass database, which is composed
of multicomponent SiO2-based glasses with Y2O3 as one of the
constituent components, the prediction RMSE of the GBM-LASSO
model is calculated to be 10.16 GPa. As a comparison, the
prediction RMSE of the MM model on the same dataset is as high
as 22.42 GPa if the density-inputs are taken from the predictions of
a widely used empirical regression model developed by Priven10,
and 13.39 GPa if experimental densities are used as inputs. Similar
results were also observed for the ZrO2-containing glasses, where
the prediction RMSE of the GBM-LASSO model is 6.69 GPa, much
smaller than that of the MM model, which is 10.55 GPa. More
detailed information is provided in Supplementary Note 7.
As a further demonstration, we also performed an investigation

in the Y2O3-SiO2 binary systems. Since there are no experimental
measurements for this binary system, we performed ab initio MD
simulations (AIMD) on bulk modulus (K) for several glass
compositions to validate the results of our classical MD simula-
tions. Due to the high computational costs, the AIMD simulations
were not performed for predicting Young’s modulus. The
calculation settings of the AIMD simulations are described in
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detail in Supplementary Note 8. As shown in Fig. 7, the bulk
modulus predicted from the GBM-LASSO model agree well with
both the classical MD and AIMD simulations. However, the
predictions from the MM model largely deviate from the results
of MD simulations using the glass densities no matter computed
from classical MD simulations or predicted from the widely used
empirical model developed by Priven10.

Rapid screening of glass density and elastic moduli
The GBM-LASSO model developed in the present work is able to
predict the density and elastic moduli of a given glass
composition in a negligible fraction of a second, making it
possible for a rapid and comprehensive screening on these
properties in a complex compositional space. As an illustration, we
apply the trained GBM-LASSO model to systematically map the
distributions and variations of the densities and elastic moduli of
Y2O3-doped soda-lime-alumina glasses. Specifically, a quinary
compositional space composed of Na2O, CaO, Al2O3, Y2O3, and
SiO2 is homogenously meshed with a compositional interval of
1.0 mol% and under a constraint that the concentration of SiO2 is
no less than 65.0 mol%. The GBM-LASSO model is employed to
predict the density, K and G for the glass composition at each
mesh point. Overall, 82,251 compositions were studied by running
the program on a regular personal computer (PC) in just a few
hours. In contrast, tremendous computational powers (108–109

CPU hours) will be burned if purely using the MD simulations to
generate the same amount of data.

The prediction results are visualized in Fig. 8 as a 2D histogram
plot with respect to density and Young’s modulus, E, which is
calculated from predicted K and G. From a practical point of view,
one would expect a structural glass to have Young’s modulus as
high as possible, and meanwhile keep a relatively low density.
From Fig. 8 we can know that most of the glasses in the Na2O-
CaO-Al2O3-Y2O3-SiO2 system have Young’s moduli around 83 GPa
and densities around 2.6 g cm−3. From the screening, it is also
found that low Young’s moduli generally occur for the glasses
with high Na2O contents, while the large additions of Al2O3 and
Y2O3 result in a significant enhancement on Young’s moduli,
which is consistent with the previous experimental observation61.
As marked by the red-dashed-line circle in Fig. 8, one can achieve
a series of glasses with Young’s moduli higher than 100 GPa and
densities ranging from 2.5 to 3.1 g cm−3 by optimizing the
contents of the additive oxides. In addition, from the screening
results, one can also know that it is probably difficult to prepare
glasses with densities lower than 2.4 g cm−3 but Young’s moduli
larger than 80 GPa in this system. All in all, using the present
developed GBM-LASSO model, a compositional-property database
for any glass systems of interest can be rapidly generated as long
as the corresponding force-field potentials are available and
accurate enough to describe the structural and elastic properties.
These databases allow the designers to have a fruitful overview on
the density and elastic properties to enlighten their own design
before experimental syntheses.

DISCUSSION
In this work, we demonstrated a machine-learning framework to
efficiently learn and predict densities and elastic bulk and shear
moduli of SiO2-based glasses across a multicomponent composi-
tional space, including 13 types of additive oxides, namely Li2O,
Na2O, K2O, CaO, SrO, Al2O3, Y2O3, La2O3, Ce2O3, Eu2O3, Er2O3, B2O3,
and ZrO2. Our framework combines a learning/predicting
statistical model developed by implementing least absolute
shrinkage and selection operator with a gradient boost machine
(GBM-LASSO), high-throughput MD simulations to provide train-
ing data, and a diverse set of descriptors to generalize the
chemistries of k-nary SiO2-based glasses. Notably, the descriptors
are constructed from the force-field potential parameters used for
MD simulations so that they have the capability to bridge the
empirical statistical modeling with the underlying physical
mechanisms of interatomic bonding. Consequently, even training
with a simple dataset only composed of binary and ternary glass
samples, the developed GBM-LASSO model exhibits promising
prediction capability to allow for quick and accurate predictions
on the density and elastic moduli for any k-nary glasses within the
14-component composition space. The GBM-LASSO model also
has extendibility to cover new types of oxides through adding a
small amount of related binary and ternary MD data to the
training set.
The prediction reliability of the developed GBM-LASSO ML

model is evaluated by validating with a large amount (»1000) of
both simulation and experimental data. Furthermore, after
comparing with other frequently used ML models, we found that
the outstanding prediction capability of the GBM-LASSO model
may benefit from both the way of descriptor construction and the
advantages of the regression algorithms employed in the model.
In addition, it is found that the GBM-LASSO model also yields
considerable improvements on the elastic moduli predictions for
the SiO2-based glasses containing transition-metal/rare-earth
oxides compared to the widely used MM model70,71. Such
improvements originate from the capacity of our ML model to
accurately describe the partially covalent bonding characteristics
between the transition metal and oxygen atoms. Finally, as an
example of its the potential applications, we utilized the model to
perform a rapid screening on 82,251 compositions of a quinary
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glass system to construct a compositional-property database that
allows for a fruitful overview on the glass density and elastic
properties.
The present work is focused entirely on the modeling of glass

density and elastic moduli; however, our ML framework could also
be advantageous for the study of other glass physical properties
and structural features. Our future studies will be a ML modeling
on a few of fundamental glass structural properties, such as
bridge/non-bridge oxygen ratio and angle distribution, ring size
distributions of the network formers and average coordination
number and bond length of cations, which are well-known to be
essential to understand many of the physical and mechanical
behaves of the SiO2-based glasses. With the present work and
more future works, a composition-structure-property database that
sits nicely in the “Materials Genome Initiative” landscape28,72–75 is
desired to be developed via ML techniques and serve as powerful
tools for the practical design of new glasses in the future. More
generally, the methods of descriptor construction and the ML
framework introduced in the present work could also be
advantageous for many other materials science problems, where
the datasets are of modest size and extrapolative predictions in
high-dimensional space are required from the learning based on
the low-dimensional sparse regions.

METHODS
Details of MD and MS simulations
To establish the initial training set (without including the B2O3-containing
and ZrO2-containing glass data), high-throughput MD simulations followed
by MS energy minimizations were employed to calculate the density, bulk
and shear moduli over 498 different glass compositions. The compositions
were from 11 binary and 20 ternaries systems, which are specified in Fig. 9.
For each system, the mole fractions of the additive oxides species were
varied from 0mol% to 35mol% for every 5mol%, while the composition of
SiO2 in the systems was kept no less than 65mol%. For example, for binary
systems, calculations were performed at seven compositions, which are
xAnOm-(100-x)SiO2 with x= 0, 5, 10, 15, 20, 25, 30, and 35mol%,
respectively. For ternary systems, in addition to the compositions already
calculated in constituent binary systems, calculations were performed at
the compositions of xAnOm-yBkOl-(100-x-y)SiO2, where x, y= 5, 10, 15, 20,
25, and 30mol% and x+ y ≤ 35mol%. AnOm and BkOl represent the
additive oxides species.
In the present work, all the MD and MS simulations (including the

simulations for generating both training and validation data) were
performed using a set of interatomic potentials developed by Du and
Cormack27,42–51, which are found to yield reliable predictions on the
densities and elastic moduli of various SiO2-based glasses27,53,76–78.
Another advantage of this potential set is that it covers the common
oxides that include most of the industrial glass components. The potential

consists of long-range Coulomb interactions and short-range interactions
described in the Buckingham form52. The potential formula is expressed as
Eq. 1 in Results Section and the values of the potential parameters are
listed in Table 1 for each element. In this set of potential, the short-range
interactions between cations are not considered since it is assumed that
two cations cannot be the first-nearest neighbor ions/atoms. Moreover, it
should be noted that, by following the method developed by Deng and
Du53, one of the Buckingham parameters of the boron (B) ion, AB,O, was
varied with the glass composition in each MD simulation in order to
capture the changes in the partitioning between the BO3 and BO4 clusters
caused by different chemical environments.
All the MD simulations were performed using the LAMMPS package79.

Coulomb interactions were evaluated by the Ewald summation method,
with a cutoff of 12 Å. The cutoff distance of the short-range interactions
was chosen to be 8.0 Å. Cubic simulation boxes were constructed to
consist of about 2100 atoms so that the mole fraction of each oxide
species of the samples in the training set can be achieved. Initial atomic
coordinates were randomly generated using the program PACKMOL80. The
simulation protocol was initiated with relatively equilibration runs of 0.5 ns
at 5000 K to remove the memory effects of the initial structure, followed by
a linear cooling procedure with a nominal cooling rate of 5 K/ps to 3000 K
in the canonical (NVT) ensemble. Then, the system was further equilibrated
for 0.5 ns at 3000 K in the isothermal–isobaric ensemble (NPT with zero
pressure) to allow a relaxation of the simulation box and atomic positions
simultaneously. After this, a MD run with the microcanonical ensemble
(NVE) was performed for another 0.5 ns to further equilibrate the system.
After the equilibration at 3000 K, the system was gradually cooled down to
300 K through steps of 2500, 2000, 1000, 300 K with a nominal cooling rate
of 0.5 K/ps under NPT condition. At each step temperature, the system was
equilibrated for 0.5 ns under NPT condition, and then run with an NVE
ensemble for another 0.5 ns. At 300 K, the system is equilibrated for 1 ns
under NPT condition, which is then followed by a 0.5 ns NVE run. During
the final 500,000 NVE steps, atomic configurations were recorded every
50 steps, and an average of the configurations was taken every 1000
records. Eventually, 10 (10= 500,000/1000/50) atomic configurations of
each glass composition were obtained and used for the further
calculations of densities and elastic moduli. Recording multiple atomic
configurations would allow us to avoid accidentally using a single
unreasonable configuration that can lead to large errors in the following
energy minimization calculations.
The elastic constants cij for a system are defined as the second derivative

of the potential energy U at the corresponding local minimum (the
curvature of the potential energy) with respect to small strain deforma-
tions, εi,

cij ¼ 1
V

∂2U
∂εi∂εj

� �
(7)

Based on the Voigt approximation81, which provides the upper bound of
elastic properties in terms of uniform strains, the bulk modulus (K) of the
system is calculated as,

K ¼ 1
9

c11 þ c22 þ c33 þ 2 c12 þ c13 þ c23ð Þð Þ (8)

and the shear modulus (G) is calculated as,

G ¼ 1
15

c11 þ c22 þ c33 þ 3 c44 þ c55 þ c66ð Þ � c12 � c13 � c23ð Þ (9)

Based on K and G, the Young’s modulus (E) is given by,

E ¼ 9KG=ð3K þ GÞ (10)

With the glassy structures collected from the MD simulations, the density
and elastic moduli were computed by means of the GULP code82. A
Newton-Raphson energy minimization was performed at zero pressure
and temperature to fully relax the output glassy structures from LAMMPS
simulations. Then, the density was calculated theoretically by dividing the
total system mass by the volume of the relaxed structure. For each glass
composition, the GULP calculations were performed for all the 10 atomic
structures obtained from the MD simulations, and then the average values
of the density and elasticity calculations were taken as the final results.
Most of the calculated elastic moduli and densities are well compared with
available experimental data. The results are summarized in Supplementary
Note 1 (Supplementary Figs 1–3). In addition, the effects of supercell size
and initial input structures on the final simulation results were also tested,
which is described in detail in Supplementary Note 2.
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Fig. 9 The SiO2-based binary and ternary systems in the initial
training dataset. High-throughput MD simulations were performed
to calculate the density and elastic moduli for the binary and ternary
systems marked in green color. The calculated results are used as a
training dataset for the ML models.
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Statistical models for ML
To leverage the training data as wisely as possible, two types of statistical
learning models, namely the GBM-LASSO and the M5P regression tree
model33,34, were implemented in the present work to mathematically link
the glass properties of interest (i.e., density, bulk and shear modulus) with
the constructed descriptors.
The GBM-LASSO model was developed using the gradient boosting

machine (GBM) technique32, which uses a gradient descent algorithm to
iteratively produce a prediction model in the form of an ensemble of weak
learning models. In the present work, the least absolute shrinkage and
selection operator (LASSO)31 method was employed to generate the weak
learning model at each GBM iterative step. The LASSO method is able to
select the important input descriptors by identifying the non-important
descriptors with zero regression coefficients and meanwhile keep
regresses regularly, especially when the simple linear regression model
such as ordinary least square (OLS) does not work due to a relatively small
sample size compared with the number of descriptors. As a result, the
high-dimension problem (with many potential input descriptors) is
simplified to a lower dimension or OLS problem. This method is particularly
useful to address the regression problem in the present work, since the
size of the training set is small so that the number of the input descriptors
is almost the same as the number of the training data (~500). At each GBM
iterative step, the LASSO method can both select the descriptors that are
most relevant to the glass property being learned and perform an ordinal
linear regression using the selected descriptors. In addition, a learning rate
of 5% was used to attenuate the LASSO regression term at each GBM
iterative step. Moreover, in order to avoid over-fitting the training data, our
GBM-LASSO model was also implemented with a 10-fold cross-validation
and a conservative risk criterion developed by de Jong et al17. to
determine the optimal number of the GBM iterations.
As a comparison to the developed GBM-LASSO model, we also applied a

widely used regression tree model, known as M5P and implemented in the
Caret/Weka data mining packages33,34, to the same training set. The M5P
model was combined with a conventional decision tree model with the
linear regression functions at the nodes. Specifically, the M5P model uses
all of the descriptors for the linear regression performed at the tree nodes
though it only uses partial descriptors for the tree establishment, which
could be a problem when the number of the potential descriptors and the
number of training data size are comparable. Therefore, in the present
work, we first employed the M5P model to rank the importance of all the
potential descriptors using the “varImp” function in the Caret package34.
Then, the M5P model, including the final linear regression at each node, is
run again with the top 100 descriptors that have been ranked from the first
step. As a result, the number of descriptors used for the M5P model is
comparable to the total number of the descriptors selected by the GBM-
LASSO model. The tree structure of the present M5P model is optimized
automatically using the prune function and 10-fold cross-validation
resampling implemented in the Caret package34. For our specific learning
problem, the M5P model has the advantage of being quickly trained.
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