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Introduction: Deep learning neural networks are especially potent at dealing
with structured data, such as images and volumes. Both modified LiviaNET and
HyperDense-Net performed well at a prior competition segmenting 6-month-old
infant magnetic resonance images, but neonatal cerebral tissue type identification
is challenging given its uniquely inverted tissue contrasts. The current study aims
to evaluate the two architectures to segment neonatal brain tissue types at term
equivalent age.

Methods: Both networks were retrained over 24 pairs of neonatal T1 and T2 data from
the Developing Human Connectome Project public data set and validated on another
eight pairs against ground truth. We then reported the best-performing model from
training and its performance by computing the Dice similarity coefficient (DSC) for each
tissue type against eight test subjects.

Results: During the testing phase, among the segmentation approaches tested, the
dual-modality HyperDense-Net achieved the best statistically significantly test mean
DSC values, obtaining 0.94/0.95/0.92 for the tissue types and took 80 h to train and
10 min to segment, including preprocessing. The single-modality LiviaNET was better at
processing T2-weighted images than processing T1-weighted images across all tissue
types, achieving mean DSC values of 0.90/0.90/0.88 for gray matter, white matter, and
cerebrospinal fluid, respectively, while requiring 30 h to train and 8 min to segment each
brain, including preprocessing.

Discussion: Our evaluation demonstrates that both neural networks can segment
neonatal brains, achieving previously reported performance. Both networks will be
continuously retrained over an increasingly larger repertoire of neonatal brain data and
be made available through the Canadian Neonatal Brain Platform to better serve the
neonatal brain imaging research community.

Keywords: neonatal brain, brain segmentation, machine learning (artificial intelligence), convolutional neural
network, T2-weighed MRI
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INTRODUCTION

The magnetic resonance imaging (MRI) study of brain
development since birth represents one of the crucial modern
techniques to improve our understanding of developmental
neuroscience and help identify the long-term links between brain
injuries and respective developmental consequences. However,
despite mature analytical methods to process adult human brain
MRIs, analyses of brains during development and especially
at the neonatal stage remain difficult as a result of isolated
tools development and difficulty with data acquisition. The most
important step before performing quantitative brain analyses is
the tissue class segmentation of the brain. Neonatal brain medical
imaging tissue type identification is especially challenging given
its typically inverted T1/T2 tissue contrast compared to adults
(Shroff et al., 2010). Moreover, the amount of high-quality public
neonatal research neural MRI data sets is far rarer in comparison
to adult neural MRI data, making training, development, and
adoption of neonatal-specific brain segmentation approaches
challenging. From our experience in attempting to implement
majority of the open-source neonatal segmentation approaches
at the Canadian Neonatal Brain Platform (CNBP)1, many existing
computer-vision-based solutions failed to generalize beyond the
respective niche of privately held training data set. As part of
our organizational mandates, CNBP aims to validate and provide
a large variety of neonatal brain MRI processing approaches.
In this article, we focused primarily on public-data-based open-
source deep learning approaches in the context of neonatal brain
tissue segmentation.

Recent years have witnessed an explosive growth in the
number of deep learning methods – especially convolutional
neural network (CNNs) – for many vision problems, such as
classification (Krizhevsky et al., 2012), detection (Ren et al., 2015),
and semantic segmentation (Long et al., 2015). These models are
capable of learning highly complex patterns by stacking multiple
layers of convolutions and non-linear operations, presenting
impressive capabilities to learn abstract representations from raw
structured data in a data-driven manner. Particularly, the medical
field has greatly benefited from these deep models, which have
become the de facto solution for many of these tasks in highly
important fields, such as radiology, oncology, or neuroimaging
(Litjens et al., 2017).

Despite the fast adoption of these models in medical imaging,
there have been relatively few large-scale efforts to find the top
performer in pediatric brain segmentation using standardized
open data sets (Akkus et al., 2017). Two particularly large-
scale relevant competitions are known to date: the 2012
Neonatal Brains Segmentation Challenge2 and the 2017 iSeg 6-
month Infant Brain Magnetic Resonance Imaging Segmentation
Challenge3, both hosted as part of the respective Medical
Image Computing and Computer Assisted Intervention Society
(MICCAI) conferences. Out of the two competitions, the 2017
competition was particularly relevant as most contestants used

1www.cnbp.ca
2https://neobrains12.isi.uu.nl/
3http://iseg2017.web.unc.edu/

derivation of CNN architecture forgoing traditional computer
vision techniques, and some top performers openly shared their
network architecture designs and code bases.

Outside of the iSeg 2017 competition and its related
publications (Wang et al., 2019), which focus on 6-month-old
infants, there have been few other proposed deep-learning-
based segmentation approaches in neonates, despite numerous
applications in either older infants (Zhang et al., 2015) or adults
(Chen et al., 2018). The only applied neural network approach
to solve neonatal tissue segmentation to date is from Moeskops
et al. (2016). They proposed an integrated segmentation pipeline
that reportedly can handle data from neonates all the way
to 70-year-old adults using mini-patch-based 2D convolution
approaches while only requiring a single anatomical reference
MRI to achieve a respectable Dice score of at least 0.8 across five
different data sets.

The objective of the current study is to evaluate both
LiviaNET (Dolz et al., 2018b) and HyperDense-Net (Dolz et al.,
2018a) architectures for neonatal brain imaging data. While
both networks have demonstrated good performance on relevant
tasks, such as in subcortical brain segmentation and in 6-
month-old infant brain imaging data with diminished T1/T2
contrasts (Wang et al., 2012), their performance on neonatal-
specific data remains untested. We hypothesize with a high-
quality data set and ground truth, such as those from the publicly
available Developing Human Connectome Project (DHCP) first-
release neonatal data set (Hughes et al., 2017), we can achieve
performance comparable to what prior modified LiviaNET and
HyperDense-Net achieved in the adult and 6-month-old infant
brain challenges. We aim to retrain both networks using the
DHCP data set to validate the generalizability and the suitability
of these network architectures in segmenting MRI brain tissue
classes of neonatal brain images.

METHODS

Experimental Data: Participants
The participants were infants born at term from the publicly
available DHCP by Hughes et al. (2017). DHCP is the first open-
access data release of brain images of 40 healthy neonates born
at term who had an MRI shortly after birth (37–44 weeks of
gestational age). With these data, we had access to both raw
data and tissue segmentation ground truth, generated using
DrawEM and complemented further via manual correction,
for training and validations. Additional MRI data-acquisition-
related information is included in Supplementary Method as
well as the original publication.

Experimental Data: Preprocessing
The training input was preprocessed based on the source
image provided as part of the DHCP data made available
(Hughes et al., 2017), namely, magnetic resonance bias-field
correction with the N4 algorithm (Tustison et al., 2010) as
implemented in Slicer 4.10.1 on our computational platform (see
Implementation: Computation Platform section), launched
with the command “Slicer – launch N4ITKBiasFieldCorrection.”
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Then the brain was extracted using the Brain Extraction Tool
(BET2) with the default options (i.e., no additional customized
command flags) from FMRIB Software Library (Smith, 2002; see
Figure 1A). All T1-weighted images have been co-registered to
the T2-weighted volumes using rigid alignment as implemented
in SPM12 (Ashburner et al., 2014) in MATLAB (R2017b)
(MathWorks Inc., Natick, MA, United States) running on our
computational platform.

Experimental Data: Ground Truth
Segmentation
As part of the DHCP data release, these neonatal brain MRIs were
already segmented using the DHCP data pipeline built using the
DrawEM module from the Medical Image Registration ToolKit
(MIRTK) tool package (Makropoulos et al., 2014). DrawEM
is an atlas-based segmentation technique that segments the
volumes into 87 regions. Manually labeled atlases, annotated by
an expert neuroanatomist (Gousias et al., 2012), were registered
to the volume, and their labels were fused to the subject space
to provide structure priors. Segmentation was then performed
with an expectation–maximization scheme that combines the
structure priors and an intensity model of the volume. The 87
regions were further merged to provide nine tissue segmentation
labels provided with the DHCP release: (1) cerebrospinal fluid
(CSF), (2) cortical gray matter (GM), (3) white matter (WM),
(4) background, (5) ventricles, (6) cerebellum, (7) deep GM,
(8) brain stem, and (9) hippocampus and amygdala. Since both
LiviaNET and HyperDense-Net demonstrated their respective
previous performance when dealing with four class labels (i.e.,
GM, WM, CSF, and others), we used the image calculator
(ImCalc) function of SPM12 implemented in MATLAB R
(2017b) (MathWorks Inc., Natick, MA, United States) to
combine the existing nine DHCP class labels into the desired
classes. More specifically, we combined together the cortical
GM, cerebellum, deep GM, brainstem, and hippocampus and
amygdala into the class “GM” and the CSF and ventricles
into the class “CSF.” The WM class was used as it is
without change. What was originally left as the 10th class (i.e.,
unlabeled or outside) is considered as the fourth class (i.e.,
others). We included an illustration of an example subject in
Figure 1A (top right).

Implementation: Network Architectures
In terms of network architectures, we evaluated two state-
of-the-art networks that have shown outstanding performance
for different brain segmentation tasks. The first network,
referred to as LiviaNET (Dolz et al., 2018b), is a single-
modality 3-D fully convolutional network which was proposed
in the context of subcortical brain segmentation on MRI.
At the time, standard segmentation convolutional neural
networks performed slice-by-slice analyses of volumetric data.
Nevertheless, an important limitation of this strategy is that the
3-D context orthogonal to the 2-D axial plane was completely
discarded, resulting in segmentations without 3-D consistency.
To address the computational and memory requirements of 3-
D convolutions, LiviaNET adopted small kernels (273 voxels,

Figure 1A, bounding box with green tab markers), resulting in
deeper architectures with less complexity than their large-kernel
counterparts. Furthermore, global and local contexts – important
for both location and fine-grained details – were modeled by
embedding intermediate-layer outputs in the final prediction.
Figure 1B depicts the high-level architecture of LiviaNET.

The second network considered was HyperDense-Net (Dolz
et al., 2018a), ranked among the top three methods in terms
of performance in two different public data sets for adult
(MRBRainS’13)4 and isointense infant brain tissue segmentation
(iSeg 2017)5. HyperDense-Net extends the previous network,
LiviaNET, by leveraging dense connectivity in the context of
multimodal image segmentation. Particularly, in this network,
each image modality is processed in a different path, and dense
connections occur between the pairs of layers within the same
path, as well as across different paths. An example of this
hyperdense connectivity is shown in Figure 1C.

Network parameters of both networks were optimized via a
root mean square (RMS) optimizer (Hinton et al., 2014), using
cross-entropy as a cost function to measure training error. This
error was tracked throughout the training process and further
elaborated in Supplementary Method along with additional
network initialization parameters and hyperparameters.

Implementation: Experiment Design
There were 40 participants in total from DHCP data sets; they
were split into three distinct groups: 60% of the subjects were
for training (24 subjects), 20% were for validation to provide
feedback on the neural network parameter tuning during training
(eight subjects), and 20% were held out independently as the final
test on the best-trained network to evaluate its generalization
performance (eight subjects).

All subjects were randomly assigned to one of the three
groups. The composition of the groups remains consistent
throughout all experiments in both LiviaNET and HyperDense-
Net network architectures.

Both networks were trained for a duration of 30 epochs
composed of 20 subepoch each. At each subepoch, a total
of 1,000 training subsamples (each composed of 273 voxel
cubes, averaging about 41 samples per subject per setting)
were randomly selected and given to the network, with a
batch size of two.

At the end of the 30 epochs of training, the best-performing
model as indicated by the validation data sets was evaluated on
the holdout test data set in order to report the final test Dice
similarity coefficient (DSC) values.

Implementation: Computation Platform
All training and testing were done using an Ubuntu 18.04 LTS
running on a Xeon CPU E5-2600 Processor with 12 cores running
at 2.0 GHz with 32 GB CPU DDR3 1,600 MHz RAM with
a GeForce 1070 GPU with 8 GB of GDDR5 memory. Both
HyperDense-Net and LiviaNET were implemented in Python

4https://mrbrains13.isi.uu.nl/
5http://iseg2017.web.unc.edu/
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FIGURE 1 | (A) Illustration of a 3D convolution regional input (27 pixels3) to both neural networks in relation to T2, T1 and Ground truth. Bounding box with green
tab: input volume to the network (B) architecture of the LiviaNET illustrating major layer wise connections along with key parameters (C) architecture of
HyperDense-Net neural network architecture including key parameters.
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2.7 with Theano 1.0.0 library as per their source repositories
at GitHub6,7.

Performance Evaluation
The DSC was used as the metric of final performance evaluation
and computed separately in GM, WM, and CSF. In the context
of tissue classification problem, it is an objective measure of both
correctly classifying voxels of tissue where it belongs and correctly
rejecting the voxels of incorrect tissue types.

The DSC is also known as the Sørensen–Dice coefficient or F1
score. DSC ranges between 0 and 1 with the perfect performance
scored as 1. Its derivation and references are further elaborated in
Supplementary Method.

Python 3.7 stats module was used to conduct pairwise
T-tests to compare performance metrics from the same
subjects during the prediction test against ground truth
across various combinations of network architecture and data.
Pairwise T-tests were also used for inter- and intra-architectural
comparisons across epochs. Bonferroni correction was applied
where appropriate to ensure the family-wise error rate is
constrained to below 0.05. Jupyter notebook 1.0.0 and Plotly 4.0.0
library (Plotly, Montreal, Canada) were used to plot all figures in
vector format before they were touched up in Adobe Illustrator
CC 2017 (Adobe Systems Incorporation, San Jose, United States)
for readability and DPI compliance formatting.

RESULTS

Training Performance
The final model of LiviaNET using T1 achieved a stable cross-
entropy cost error of about 0.47 after approximately three epochs
(Figure 2, row 1, left). When undergoing the same training
settings but using only the T2 acquisitions, we achieved a cross-
entropy cost error of 0.33 around a similar time point, which
then remained consistent until the end of the training (Figure 2,
row 1, middle). The final model weights of the HyperDense-
Net achieved a relatively stable cross-entropy cost error of 0.24
after almost half way into the training process and experienced
a much more gradual reduction of the standard deviation of
cross-entropy cost error than LiviaNET (Figure 2, row 1, right).
LiviaNET T2 and HyperDense-Net appear to have demonstrated
reduced standard deviation of DSC during training compared
to LiviaNET T1 across tissue types (Figure 2, rows 2–5). In
addition, the superimposed trace (without standard deviation for
clarity) of training cost error (Supplementary Figure S2) and of
average DSC (Supplementary Figure S3) over training epochs
was summarized in the same chart to facilitate comparisons
of performance across architectures sharing both time and
performance axes.

Test Performance
At the end of the training, the performance of the best model
was tested against previously unseen eight holdout subjects’ data

6https://github.com/josedolz/HyperDenseNet
7https://github.com/josedolz/LiviaNET

as shown in grouped boxplots in Figure 3. The combination
of LiviaNET and T1 data showed optimal performance at the
19th epoch and when tested resulted in prediction DSC values
(mean ± standard deviation) of 0.86 ± 0.02, 0.86 ± 0.04,
and 0.82 ± 0.04 for GM, WM, and CSF, respectively. Similarly,
the optimal epoch for LiviaNET with T2 data was the 25th
epoch and resulted in DSC values of 0.90 ± 0.02, 0.90 ± 0.01,
and 0.88 ± 0.03, respectively. After accounting for multiple
comparison problems via Bonferroni correction, the results
demonstrate that LiviaNET using T2 data outperforms LiviaNET
using T1 data significantly in most tissue types except white
matter. For HyperDense-Net, the 29th epoch reported the
optimal performance DSC at 0.94 ± 0.01, 0.95 ± 0.01, and
0.92 ± 0.03 for each tissue type compare to all LiviaNET
results. Detailed statistical pairwise comparison results of the test
performance are also included (Supplementary Table S1).

Time Benchmark
Using the aforementioned computational platform with NVIDIA
GTX1070 GPU, LiviaNET took nearly 30 h to train for T1 input
data and about 31 h for T2 while requiring 8 min on average
(including preprocessing time) to segment a novel neonatal
brain T1 or T2 scan. On the other hand, HyperDense-Net took
about 86 h to train with both T2 and T1 data. In this case,
segmentation of new neonatal data set was performed in nearly
10 min (including preprocessing time).

Visual Comparison
The segmentation outputs were visually inspected for congruency
and obvious mistakes. We have uploaded the eight holdout test
subjects, including the preprocessed T1 and T2 volume and
ground truth labels to the accompanying GitLab repositories8.
The segmentation results as both binary classification masks and
tissue probability map for each subject are available for LiviaNET
T1, LiviaNET T2, and HyperDense-Net T2 and T1 weighted.
Figure 4 shows a representative view of the segmentation
output from one of the holdout test subjects. As illustrated,
LiviaNET T1 (Figure 4, fourth column) struggled to identify WM
properly especially near the deep GM regions. Across all three
rows of different view perspectives, LiviaNET T1 misclassified
multiple WM regions as GM, resulting the messiest view visually,
congruent with its lower DSC result. On the other hand, both
LiviaNET T2 and HyperDense-Net T2 and T1 segmentations
resulted in better tissue separation and provided a closer match
to the ground truth.

Comparison With Previously Reported
Performance
In Supplementary Table S2, the average DSCs across tissue types
of the best results obtained from the present experiments, along
with the ones reported in the previous implementations of it,
were listed for illustrative purposes. Since only mean accuracy
was reported with no standard deviation or raw results available,
no statistical comparisons were made.

8https://gitlab.com/dyt811/M017-Results
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FIGURE 2 | Time series plot of over 30 training epochs measuring: training loss (top row) and Dice Similarity Coefficient (DSC) of Gray Matter (Row 2), White Matter
(Row 3), Cerebrospinal Fluid (CSF Row4) and Average (Row 5) across LiviaNET using T1 (Column 1), T2 (Column 2), Hyperdense-Net using both T2 and T1 (Column
3). Blue: Mean measure across all eight test subjects. Gray boundary: standard deviation across all eight test subjects.

DISCUSSION

Summary
In this current work, both LiviaNET and HyperDense-Net
architectures were evaluated using the publicly available DHCP
neonatal data set. We demonstrated for the first time that the
dual-modality HyperDense-Net performed significantly better in
the context of neonatal brain segmentation specifically across all
tissue types versus the single-modality LiviaNET. In addition,
LiviaNET segments the neonatal brain better with T2-weighted
images than with T1-weighted images.

Intramodel
LiviaNET has been primarily employed for single-modality
inputs (i.e., T1-weighted images or T2-weighted images). Our

current empirical results applying it for segmentation of neonatal
T1- and T2-weighted data showed that LiviaNET with T2
contrasts performed statistically better for segmentation in
neonates (Figure 3 and Supplementary Table S1). This is
likely due to improved tissue contrast in neonatal T2 versus
T1 and is not surprising given that neonates typically exhibit
such tissue characteristics prior to the reduced contrast phase
from 6 to 8 months from myelination over early development
(Wang et al., 2012). This can also be observed readily in T1
and T2 raw neonatal data (Figure 4), as well as the greater
high signal intensity regions observed in a simple histogram
of voxel intensity plot (see Supplementary Figure S1). Lastly,
visual inspection of the LiviaNET output for both T1 and
T2 shows that clearly there are some deep WM which was
misclassified as GM. We suspect this may be sites of early
myelination (Deoni et al., 2012), resulting in altered contrasts
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FIGURE 3 | Grouped box plot showing the Dice similarity coefficient (y axis) obtained during the testing phase across eight holdout subjects for each tissue type
(color) and network types (x axis groups). Horizontal red lines denote family-wise error corrected statistically significant differences measured across the DSC in the
same tissue using pairwise T statistical tests.

in comparison with surrounding tissues, which resulted in
misclassification.

In terms of multimodal performance, HyperDense-Net
was initially envisioned as a dual-/multi-modality version of
LiviaNET, which derived its name from the extensive and dense
connections between the T1 and T2 streams of successive
convolutional layers. In this experiment, HyperDense-Net took
longer to stabilize the training error across the eight validation
(not test) subjects (Figure 2, row 1, right) and had also
less stable DSC which fluctuated during training (Figure 2,
rows 2–5) but eventually achieved relatively stable generalizable
performance (Figure 3) midway through the training. This
notably stronger variation during training and validation, yet
still achieving excellent generalizable results, is likely attributed
to the more interconnected complexity of the architecture,
requiring more observations to fine-tune the model weights
through back-propagation. The observed local fluctuations in
validation accuracy is a common behavior when training deep
neural networks (such as those seen around epoch 8, Figure 2,
rows 2 and 3, right). During training, the network parameters
are updated to optimize a training objective, based on training
data, which does not guarantee that the parameter updates are
optimal for the validation samples. This, together with a higher
learning rate at the beginning of the training, increases the
chances of having these local perturbations in the validation

performance, particularly in an early stage of the training.
Nevertheless, as long as the validation curve converges, these
fluctuations are not considered as a problem. Indeed, there
exist many works, including the original HyperDense-Net (see
Figure 5 in the original HyperDense-Net paper Dolz et al.,
2018a), which show that these fluctuations do not hamper the
network performance.

Intermodels
All networks, regardless of design and data input type, achieved a
reasonable test accuracy of higher than 80% in the independent
holdout data set, and all required at least 1 day of GPU
computation time to train effectively. As expected, both networks
appear to benefit from the inclusion of T2-weighted images,
potentially more so than from the inclusion of T1-weighted ones.
This is likely due to the higher contrast found on T2-weighted
images with respect to the T1-weighted ones for neonates
(Supplementary Figure S1). This phenomenon is especially
evident in LiviaNET-related experiments (Figure 2). Overall,
the current explorative results across network architectures
and data types suggest that HyperDense-Net utilizing both
T2 and T1 data achieved the best statistically significant
segmentation performance among all experiments (Figure 3
and Supplementary Figure S3) despite requiring a substantial
amount of training time (86 vs. 30 h).

Frontiers in Neuroscience | www.frontiersin.org 7 March 2020 | Volume 14 | Article 207

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00207 March 23, 2020 Time: 18:9 # 8

Ding et al. Deep CNN Neonatal Brain Segmentation

FIGURE 4 | Traverse (z = 35), coronal (y = 5) and sagittal (x = 5) slices of input data (T1-weighted, T2-weighted and ground truth tissue segmentation) registered to
the final binary segmentation output of various networks trained (LiviaNET T1, Livia NET T2, HyperDense-Net T2&T1) on a single subject from the Developing Human
Connectome Project (Subject CC00379XX17). Crosshair set at MNI coordinate of [5, 5, 35] and highlights the location of the respective slides from various views.

Compared to the modified LiviaNET version implemented
for iSeg 2017 incorporating both T1 and T2 (Dolz et al.,
2020), the current single-modality LiviaNET performance based
on T2 data appears to be weaker consistently in the CSF
classifications (Supplementary Table S2). Similarly, the current
trained HyperDense-Net potentially performs on par or even
slightly better in both GM and WM delineation while being
worse in the CSF. Upon gross visual evaluation, we could
not identify any major consistently common problems in
the CSF relation regions, save for minor encroachment from
the GM regions nearby. It might be necessary to conduct
a spatial statistical parametric mapping type of analyses to
truly evaluate the regions showing greater differences. However,
given that we are observing this type of issues across network
architectures and across data types, we suspect it might be
rooted in the fundamental neonatal tissue MRI properties
and should be further explored in more varied neonatal MRI
acquisitions in the future.

Compared to the original HyperDense-Net training accuracy
and mean DSC plot (see Figures 4, 5 from Dolz et al., 2018a),
our current experiments with HyperDense-Net show similar if
not slightly better and faster performance improvement from
the original paper. We suspect this is also due to the improved
tissue contrast at the neonatal stage versus 6-month infant
data sets where onset of myelination starts to reduce the tissue
contrast. Current neonatal data sets are all pre-myelination and
hence may provide more information for the neural network,
to better delineate tissue types, and result in faster learning and
earlier observance of the performance-plateauing phenomenon.
Another plausible explanation is related to the fact that for
DHCP data input and ground truth, the inputs have all been

preprocessed to remove non-brain-related tissues (via the Brain
Extraction Tool) and to correct for non-homogeneity (N4),
which could have substantially simplified the neural network’s
computation effort, as the bulk of the voxels within the 3-D
acquisition volumes is likely non-brain tissue.

Performance Comparison
In terms of prediction speed, HyperDense-Net segmentation
when applied to novel data was relatively fast. Although current
hardware platform during the testing phase required about
8 min per participant for this study, previous reports suggest
it can be even faster at 2–6 min with better-performing work-
station-level graphics card such as NVIDIA Tesla P100 (Dolz
et al., 2018a). Compared to other known neonatal segmentation
methods such as DHCP data analysis pipeline, which takes
around 7 h per participant (Makropoulos et al., 2014), or the
approximately 30 min run time required by the morphological
adaptive neonate tissue segmentation (MANTiS) toolbox (Beare
et al., 2016), the HyperDense-Net prediction time requirement
is well within reason. However, it is important to note that both
of the other two traditional pipelines also conduct more granular
regional identifications while both LiviaNET and HyperDense-
Net are mostly tested with 3–10 classes of segmentation goals
in the past, despite them being capable of conducting additional
class segmentation should the ground truth be available. Since
neither DHCP analyses pipeline nor MANTiS was ever officially
submitted to be validated against the iSeg 2017 challenge data
set, their unbiased accuracy can only be compared in neonatal
data sets such as DHCP. Such comparisons, although interesting,
are beyond the scope of this paper and will be the focus of our
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future work when we extend both neural networks to conduct
more anatomical regional labeling.

Limitation and Future Work
The fast-evolving field of computer vision has witnessed the
development of many deep segmentation architectures since
the seminal works such as FCN (Long et al., 2015) for
the segmentation of color scenes and UNet (Ronneberger
et al., 2015) for medical images. The choice of the networks
analyzed in the current study is based on the competitive
performance obtained in very related tasks and the public
availability of their implementations. The purpose of this paper,
however, is not to achieve the best performance on the task
at hand but to demonstrate their reproducibility and usability
for neonatal brain segmentation. We expect that this study
will have a positive impact on the neuroimaging community
toward the ever-widening adoption of these deep learning
models in neonatal brain segmentation. Thus, future work will
include more extensive evaluation of these and other state-of-
the-art segmentation neural networks, to assess the neonatal
brain segmentation problem. We aim to highlight efficient
networks which can produce accurate and reliable segmentations
while comparing them against existing traditional computer
vision approaches.

In the context of comparing with the earlier works in
neonatal brain segmentation, another important limitation to
be considered is the limited sample size of high-quality labeled
data. In the neonatal imaging world, high-quality labels coupled
with high-quality medical imaging data are exceptionally rare.
One of the other similar public neonatal data sets authors were
aware of only consists of 10 subjects (Alexander et al., 2017). We
also reviewed the subjects used in older studies in the neonatal
field and found, for instance, that most of the past highly cited
neonatal segmentation techniques applying traditional computer
vision had tested their performance on a similar if not fewer
number of subjects (Prastawa et al., 2005; Weisenfeld and
Warfield, 2009). This trend persists even in more recent work
as summarized in Moeskops et al. (2016, Tables 3, 4), with most
studies restricted to very few subjects with no more than 20.

Regardless of sample sizes and technical solution approaches,
generalization to new data is very important in the field
of image segmentation, especially given the wide array of
MRI contrasts possible and inter-scanner and inter-sequence
variations across institutions. Current results reported are
trained, validated, and tested on publicly available DHCP
neonatal data, which has identical acquisition condition, scanner
model, and manufacturer. Furthermore, deep-learning-based
models are well known for their poor generalization capabilities
on unseen data. This is particularly important in future
translation of research to practice, where (1) there exists a
shift between images acquired under different conditions and
(2) the model needs to be retrained as these images become
available. The most feasible solution to address this issue is to
adopt a continual learning strategy. This approach consists on
incrementally retraining deep models while avoiding any virtual
loss of memory on previous seen data sets, which may not be
available during retraining. This line of work will be further

explored in the near future by leveraging the infrastructure of
our Canadian Neonatal Brain Platform, which is currently in the
progress of acquiring neonatal brain imaging data with diverse
acquisition conditions from across Canada for researchers. Our
final goal is to leverage such infrastructure to continuously
improve the performance of networks through exposure to the
ever-increasing amount of neonatal data that become available
while allowing individual neonatal researchers without such
infrastructures to continuously benefit from our centralized effort
at retraining the neural networks to peak performance.

CONCLUSION

The current study compared how two related convolutional
neural network architectures addressed the automatic tissue
segmentation task on neonatal brain MRIs. Among all pathways
tested, HyperDense-Net showed the best performance in
neonatal MRI tissue classifications. A streamlined and
continuously retrained version of this will be deployed in
the Canadian Neonatal Brain Platform, and we will continuously
measure its performance against other competing segmentation
approaches and newer network architectures.
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