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A B S T R A C T

The Colombian Ministry of Agriculture Colombia, an international research center and a national farmers’ or-
ganization developed a data-driven agricultural program that: (i) compiles information from multiple sources;
(ii) interprets that data; and (iii) presents the knowledge to farmers through the local advisory services. Data was
collected from multiple sources, including small-scale farmers. Machine learning algorithms combined with
expert opinion defined how variation in weather, soils and management practices interact and affect maize yield
of small-scale farmers. This knowledge was then used to provide guidelines on management practices likely to
produce high, stable yields. The effectiveness of the practices was confirmed in on-farm trials. The principles
established can be applied to rainfed crops produced by small-scale farmers to better manage their crops with
less risk of failure.

1. Introduction

Climate variability accounts for 39% of the year to year yield
variability of maize (Ray et al., 2015). Mitigating the effects of this
climatic variation is an important element for food security where
maize is a food staple. Eighty two percent of the global maize pro-
duction area is rainfed (Rosegrant et al., 2002), and outside the major
maize growing areas of the world, most of the maize is produced by
small-scale farmers. Around one-quarter of the world's food is produced
on farms under 2 ha (Herrero et al., 2017; Ricciardi et al., 2018). Small-
scale farms in developing countries often face severe financial and in-
frastructural constraints, and only a small fraction have access to new
commercially available advances in digital agricultural technologies,
and most farms remain without internet access (Mehrabi et al., 2018).
Furthermore, small-scale farmers in developing countries neither rou-
tinely keep farm records nor do they have ready access to information
on the weather conditions (Howland et al., 2015). Hence, they are not
normally able to analyze what happened in the past and make data-
based decisions for the future. Within this context, many small-scale
farmers obtain knowledge on which crops to grow and how to manage
them from other farmers and from extension services (Howland et al.,
2015; Kiptot and Franzel, 2015; Landini, 2016). This farmer to farmer
exchange of information is a cost effective alternative to conventional

farmer training approaches (Nakano et al., 2018).
Farmers supported by strong growers' organizations with well-es-

tablished research programs are frequently given a take it or leave it
technological package based on results from experimental plots man-
aged by researchers (Lacy, 2011; O'Neil, 2016; Steinke et al., 2017).
Nevertheless, farmers, in general, prefer to discuss recommendations
and make their own decisions, suited to their particular conditions,
rather than being told what to do (Ingram, 2008). The packages,
transmitted by extension agents, are often top-down with little oppor-
tunity for farmers to discuss how they should be adapted to their spe-
cific conditions in both space and time (Landini, 2016; Rosenheim and
Gratton, 2017; Van Asten et al., 2011). There is an opportunity to use
modern data management and communications technologies to provide
small-scale farmers with data-driven guidelines to better manage their
crops and, hence, to reduce the large year to year yield variation and
increase food security.

We used the case of maize (Zea mays) in Cordoba, Colombia to
develop a data-driven agricultural methodology in which farmers
contribute information on their own experiences and combine this with
information from multiple sources to provide the basis for improved
crop management decisions. The basic premise is that farmers or
growers are constantly producing crops under a wide range of man-
agement practices and varied growing conditions, and that a structured
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interrogation of their observations can lead to improved management
(Cook et al., 2013; Cock et al., 2011). We believe this approach, which
we describe in this paper, can be readily adapted and applied to other
crops and other regions of the world. This paper describes how we
developed the data-driven program based on a coordinated multi-dis-
ciplinary and multi-institutional team. We hope that our experiences,
successes and failures, which we present as a case study, will be helpful
for others who wish to provide data-driven insights that help farmers
make better decisions on crop management that will increase food se-
curity in the context of climatic variation.

Farmers in Colombia were concerned about their crops losses in
2010–2011 due to cold phases of El Niño Southern Oscillation (ENSO),
also known as “la Niña”, which are associated with greater than normal
precipitation in certain parts of the country. Economic losses were an
estimated US $7.8 billion in the country in 2010 (Esquivel et al., 2018;
Hoyos et al., 2013). Countrywide, growers' associations, including the
National Cereals and Legumes Federation (FENALCE), asked the Min-
istry of Agriculture and Rural Development of Colombia (MADR) to
help them deal better with extreme weather effects. The International
Center for Tropical Agriculture (CIAT) was developing new means of
using information from multiple sources, including the growers, to help
farmers make better decisions suited to their local conditions. At that
time, a former minister of agriculture, who was also a member of the
CIAT board of directors, saw the opportunity to bring various agencies
together to face their common concerns. In 2013, after a series of
meetings promoted by the former minister of agriculture, various
growers’ federations, including FENALCE, and CIAT signed an umbrella
agreement with the MADR to strengthen the Colombian agricultural
sector with emphasis on the capacity to adapt to both weather varia-
bility and climate change. (We use the term weather for shorter term
variation in meteorological conditions according to the axiom of Robert
A. Heinlein “Farmers get weather, not climate”. We reserve climate for
averages of precipitation and other measures of the weather that occur
over a long period in a particular place). Distinct roles were defined for
the agencies involved. The MADR role was to provide funding, de-
termine priority crops and regions and designate major responsibilities.
Within this framework, CIAT would provide scientific knowledge,
propose and develop technological digital agricultural tools, including a
web-based system, machine learning algorithms and training the staff
of collaborating agencies in the use of these tools.

The MADR decided that maize in Cordoba was high priority, which
led to the establishment of the Cordoba Maize Program described here.
The MADR invited FENALCE, a member of the original umbrella
agreement, to work with CIAT to develop a program to support maize
growers in Cordoba in their efforts to obtain not only higher, but cri-
tically, more stable yields.

FENALCE and CIAT decided that the focus would not be the tradi-
tional one, with a research to extension service to farmer approach
(Bänziger et al., 2006; Evans and Fischer, 1999; O'Neil, 2016). Rather,
the idea was to: (i) bring together information from multiple sources;
(ii) analyze and interpret the information; and (iii) present the knowl-
edge generated to decision makers at all levels in a format that they
could both understand and use. This approach complements traditional
research results by integrating information from multiple sources in-
cluding those of the farmers themselves (Araya et al., 2010; Lacy,
2011). Hence, the use of observational data to help farmers make better
decisions in no way negates the need for research based on carefully
controlled experiments: rather the two approaches are complementary.
Thus, for example, in modern agriculture farmers with observational
data will not produce a new cultivar, however, observational data can
provide major insights on how to manage a new variety once it is
produced (Cock et al., 2011; Sagarin and Pauchard, 2010). Further-
more, this method provides technology adapted to local conditions:
productivity is linked to practices, the weather and the characteristics
of individual farmers' fields at a precise moment in time. Aggregated
data would not provide the detail needed: Information is required from

individual harvests and how they were produced.
Multiple institutions and agencies with distinct roles and expertise

would have to collaborate to obtain data from individual farms over
several years, analyze the data and provide actionable information to
farmers and other decision makers. The roles of the MADR and CIAT
continued to be those foreseen in the umbrella agreement. The role of
FENALCE was to bridge the gap between scientists and practitioners; to
facilitate communication with farmers; to learn how to use the digital
tools and methods and make them available to others; and to interpret
and share the results of analyses with a view to helping farmers make
better management decisions.

Early in the discussions between MADR, CIAT and FENALCE, two
aspects of climatic variation were distinguished: stochastic variation in
weather patterns and long-term trends in climate change. The MADR
identified stochastic variation as the immediate problem, while being
aware that the approaches could be adapted for long-term climate
change trends. Thus, the program emphasized the short-term stochastic
variation without forgetting longer-term trends (CIAT-MADR, 2015;
Esquivel et al., 2018; Loboguerrero et al., 2018). The aim was to obtain
as much information as possible from farmers and associate the varia-
tion in yield with management, weather, and soil and topographic
characteristics. From these associations, improved management options
tailored to the specific weather, soil and topographic conditions of a
given field or farm at a specific moment in time can be deduced (Cock
et al., 2011). As a first approximation we concentrated on the variation
at the field level rather than that within fields. (Cock et al., 2016;
Jiménez et al., 2016).

2. Methodology

The program was based on: the collection and compiling of basic
data on the crop and the factors that influence productivity; analysis
and interpretation of the data collected; and presentation of the
knowledge generated to the growers and their representatives in a
readily understandable and useable format.

2.1. Data collection and cleaning

Records kept by farmers or farmers’ organizations were a possible
source of data. FENALCE indicated that few farmers kept records.
FENALCE maintained aggregated information on estimates of area
planted and harvested, with estimates of mean yields and costs, but no
data on soils and weather. FENALCE decided to set up a modern web-
based system to collect and maintain data from individual farms. The
web-platform (later named SIRIA) would be the backbone of the whole
information system. The overall structure was designed to fit the needs
of FENALCE, but with a view to it being easily scaled to other similar
organization with other crops. Details of user profiles and management
are described in supplementary information section (S1.1). Variables to
be collected on the cropping events were chosen in an iterative process
with CIAT and FENALCE looking for a balance between precision, and
the time required to complete the forms for each cropping event (Table
S1). The criteria for the overall collection of data were that it would be
sufficiently detailed to characterize the environment and the manage-
ment of individual cropping events in such a manner that associations
between crop performance, the environment and crop management
could be established. Expert knowledge of the crop provided by agro-
nomists guided this process. A cropping event occurs in a site within a
given period (Cock et al., 2011). For maize this period is taken as
planting to harvest and the site is taken as an individual field. Details of
the variables collected are given in the supplementary information.
(S1.2).

In order to obtain soil characteristics of individual fields, we first
considered using the layers from the national geographic institute
Augustin Codazzi (https://www.igac.gov.co/). These were rejected as
the 40 km spatial resolution was too coarse. An in situ Rapid Soil and
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Terrain Assessment (RASTA), available on-line at https://cgspace.cgiar.
org/handle/10568/69682 was used. RASTA allows a farmer or tech-
nician to describe a soil and the topography in the field (Cock et al.,
2002).

Previous experiences with data collected on Paper Forms (PF) and
then digitalized highlighted the problem of increased errors and delays
in data being available for analysis (Jiménez, 2013). Looking to the
future we decided to co-design with FENALCE a smart-phone applica-
tion that could capture data off-line in the field and then retransmit the
information, when connected on-line, to the main database. In order to
have a universal tool, we developed the app using an intermediate
language that could be “translated” to Android and other operating
systems such as iOS.

The progress with the web-based application was slow and, hence, a
manual protocol was developed and technicians would visit each
farmer three times in the cropping cycle (sowing, middle, end of har-
vest). The local technicians would record the information on the PF and
would then load them onto their personal computers for uploading to
the web-platform. Local technicians from FENALCE were trained in
RASTA and the PF. Each field was georeferenced and given a unique
identification number so that all information from one field could be
accessed across years.

Weather information linked to individual fields during specific time
periods was required. The maize growers we worked with, typically
neither have weather stations nor regular weather reports they can
access. Since 2014, the National Institute of Hydrology, Meteorology,
and Environmental Studies (IDEAM) releases information from its

meteorology stations on request (Young and Verhulst, 2017). IDEAM
provided the full dataset of weather information from six weather sta-
tions in the study region. The daily weather station information was
then linked to each of the individual fields. Details of the process to link
weather information to each individual field are described in supple-
mentary information section (S1.3).

Weather data was assigned to the distinct stages of crop develop-
ment: vegetative 0–40 Days After Emergence (DAE), flower initiation to
cob formation (41–97 DAE), and ripening (98 DAE to harvest). These
time windows were estimated based on experiments conducted in
Cordoba as farmers had no record of the phenological stage dates.

The web-platform SIRIA (http://siria.fenalce.org/) was designed to
provide for safe data storage and reporting, with automatic validations
for the units, ranges and a pool of options for each question, in order to
reduce digitalization errors. The web-platform was initially developed
by CIAT in Java Open JDK version 7, the records were stored in a
MySQL database coupled with an Apache Tomcat, and they were ex-
ported to Excel via specific queries using the PhpMyAdmin interface.
Data can be retrieved from the database using a dedicated query. Data
were manually checked for common errors such as outliers, decimal
notation or text in numerical variables. The dataset was consolidated
with all variables involved (management practices, weather, soil, and
yield), but without personal information from the farmers such as tel-
ephone numbers, address or e-mail.

When the processed dataset had missing values, either because they
simply were not entered or because they were detected as outliers from
the filters, those variables with more than 30% missing data were

Table 1
List of the variables integrated into the models.

Variable name/predictor Meaning Type Unit

Sowing_Method Sowing method Categorical
Sowing_Seeds_Number Seeding rate Discrete Freq.
Seeds_Treatment Seeds Treatment (Yes/No) Categorical
Seeds_Per_Site Number of seed per site Discrete Freq.
Cultivar Name of cultivar Categorical
Former_Crop Former crop Categorical
Field_Drainage Field Drainage (Yes/No) Categorical
Plant_Density_20_days Plan density in 20 day after the sowing date Continuous plants/mts2

Harvest_Method Harvest method Categorical
Cultivar_Type Cultivar type Categorical
Chemical_Treat_Disease Number of chemical controls to treat diseases Discrete Freq.
Chemical_Treat_Weeds Number of chemical controls to treat weeds Discrete Freq.
Chemical_Treat_Pests Number of chemical controls to treat pests Discrete Freq.
Total_N Amount of nitrogenous applied Continuous t/ha
Total_P Amount of phosphorus applied Continuous t/ha
Total_K Amount of potassium applied Continuous t/ha
Number_Chemical_Ferti Number of chemical fertilizations Discrete Freq.
pH pH Continuous
Soil_Structure Soil Structure Categorical
Efective_Depth Effective soil depth Continuous cm
Runoff Run-off Categorical
Soil_Texture Soil Texture Categorical
Organic_Matter_Content Organic Matter Content Continuous %
TM_Avg_VEG Average minimum temperature. Continuous °C
TA_Avg_VEG Average temperature. Continuous °C
TA_Avg_CF Calculated separately on each growth stage
DR_Avg_VEG Average diurnal range. Continuous °C
DR_Avg_CF Calculated separately on each growth stage
DR_Avg_MAT
TX_34_Freq_MAT frequency of days with maximum temperature above 34 °C: Continuous N.A.
P_Accu_VEG Accumulated precipitation. Continuous mm
P_Accu_CF Calculated separately on each growth stage
P_10_Freq_VEG Frequency of days with more than 10mm precipitation (considered as significant rainfall) Continuous N.A.
P_10_Freq_MAT Calculated separately on each growth stage
RH_Avg_MAT Average relative humidity Continuous %
RH_Avg_CF Calculated separately on each growth stage
SR_Accu_VEG Accumulated solar energy. Continuous Cal. cm-2
SR_Accu_MAT Calculated separately on each growth stage
SR_Accu_CF
Yield Crop productivity Continuous t/ha

D. Jiménez, et al. Global Food Security 23 (2019) 256–266

258

https://cgspace.cgiar.org/handle/10568/69682
https://cgspace.cgiar.org/handle/10568/69682
http://siria.fenalce.org/


discarded. We noted few cases where the yield was extremely low due
to crop failure: these extreme cases were removed. For the remaining
variables, missing data were estimated with data imputation based on
Random Forest (RF). This methodology estimates new values through a
proximity matrix to other observations which are not missing (Breiman
and Cutler, 2003).

2.2. Analysis and interpretation

Each and every time a farmer prepares a field, plants and manages a
crop, he or she observes and experiments with a unique set of condi-
tions (Cock et al., 2011). The analysis and interpretation are based on
looking for associations between yield and the multiple variables in
these individual experiments. Hence, there is no formal experimental
design as is the case with, for example, randomized control trials which
are particularly suited to evaluating the effects of a small number of
variables. As we were attempting to discern the associations and in-
teractions of multiple variables, the analysis of many individual events
was essential. To analyze cropping events the dataset can be divided
into subsets corresponding to homogeneous environmental conditions
when there is considerable environmental variation (Jiménez et al.,
2016, ) but when environmental variation is limited the dataset can be
analyzed as a whole (Jiménez et al., 2009). In the case of the depart-
ment of Cordoba, agronomists suggested that variation in both climate
and soil factors was limited in the periods when data was collected and
the dataset was initially analyzed as a whole. We first performed a
feature selection process to retain the most informative predictors from
the set of variables integrated into the models (Table 1). A Random
Forest algorithm (Breiman, 1999) was used to relate the yield to the
various inputs and then determine which of those predictors are the
most important drivers of variation in yield (Archer, 2008; Delerce,
2016; Strobl, 2008) . For more details see supplementary information
(S1.4). As the results were analyzed and interpreted by agronomists,
further analyses were made according to their insights in an iterative
process.

In order to evaluate effectiveness of data-driven management re-
commendations, a low-cost participatory research experiment was es-
tablished in farmers’ fields. Six fields, which farmers were about to
plant, were chosen. Each farmer reserved half a hectare to evaluate the
data-driven management guidelines. FENALCE paid for any extra costs
related to the recommended management practices. The practices for
the data-driven subplots, were generated from the first round of ana-
lysis combined with advisory services recommendations.

2.3. Presentation of results to farmers

The results of the initial analysis and interpretation, developed and
loaded on SIRIA, were discussed with the FENALCE agronomists. From
these discussions the agronomists developed a series of guidelines for

obtaining stable, high yields. A report called FENALCHECK (Fig. S6B),
derived from SIRIA, was developed to indicate which factors were as-
sociated with high yields and to provide a checklist which farmers
could use to rapidly see which improved practices they were not using.
In addition, simple reports on the soil analysis were automatically
produced by the SIRIA platform (Fig. S6A). Currently, farmers are not
directly feeding their data into FENALCHECK. FENALCE technicians
transferred the data from the PF to SIRIA which then automatically
developed the FENALCHECK reports.

3. Results

3.1. Data collection and cleaning

The users of the app for data capture with an Android phone
deemed it to be inefficient and difficult to use. The app was slow with
inconsistent behavior and frequently froze. The targeted users did not
adopt it. The CIAT-FENALCE team did not have the technical expertise
to solve the problems. Later diagnosis attributed the difficulties that led
to lack of adoption to the use of the intermediate language. The on-farm
data was all collected using the specially developed PF. FENALCE
personnel visited farmers three times during the growth cycle to fill in
the PF. On the first visit to a field, farmers and the FENALCE personnel
characterized the soil with the RASTA tool. The farmers trusted
FENACLE and readily shared their data with FENALCE personnel. By
mid-2015, with data collected over three years by FENALCE, about 400
cropping events were available for analysis in the department of
Cordoba. (Fig. 1.).

Professional staff from FENALCE were trained in the use of SIRIA.
The georeferenced information from the cropping events was digita-
lized and entered. This platform was used to manage information about
farmers, farms, and fields within the farm. The original source-code for
the web-platform was made available to FENALCE, which contracted
specialized personnel to maintain, improve and administer SIRIA. At
the time of writing SIRIA continues to be used by FENALCE. (S1.7). The
data was cleaned with the automatic filters and validations reducing the
number of errors. From the first 400 cropping events only 238 were
suitable for analysis after cleaning the data and estimating missing
values. Details of the processes for cleaning data are given in supple-
mentary information (S1.5).

3.2. Analysis and interpretation

The observed farmers’ yields ranged from total crop failure to more
than 7 t ha-1. The initial analysis of 238 cropping events and the RF
model gave an R-squared of 46%. The main drivers of the yield in-
cluded: the amount of phosphorus applied, the plant density 20 DAE,
the run-off capacity of the field, total precipitation in the cob formation
stage, and the seeding rate (sowing seeds number) (Fig. 2A.). The fac-
tors that can be easily managed by the farmer and that were most re-
levant for the model were: the amount of phosphorus applied, plant
density 20 DAE, seeding rate, harvest method and cultivar.

The FENALCE extension agents saw how the information generated
could be used to guide farmers in their management decisions. The
FENALCE personnel combined the information generated by the ana-
lysis with previous knowledge to develop a comprehensive set of
guidelines. In this process, the following guidelines were added: op-
timum range of seeding rates (distance between rows and plants within
the row) and other practices needed to reach the optimum plant density
at 20 DAE; practices to improve run-off; and more precise re-
commendations for fertilizer use.

From the initial analysis, FENALCE personnel developed five man-
agement practices to be evaluated in the on-farm trials. These were: (i)
apply more than 0.015 t ha-1 of phosphorus, (ii) aim for a plant density
(20 DAE) between 65,000 and 75,000 plants ha-1, (iii) use mechanical
harvest (iv) plant cultivar: Pioneer P3966, 30F35HRR or Pioneer

Fig. 1. Cumulative number of cropping events registered in the data base over
time.
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30F35H and (v) when intense rain is expected ensure that surface
drainage canals and ditches are clean and in good condition. (Fig. 3.).
FENALCE agents complemented these data-driven management prac-
tices with several mainstream recommendations: apply a minimum of
0.1 t ha-1 of nitrogen and use a series of practices including treated
seeds to ensure an adequate plant population. Furthermore, the FE-
NALCE personnel made several site-specific recommendations.

The on-farm trials faced several problems. One of the fields in the
municipality of Cotorra flooded and the crop lodged as the crop was
maturing. The farmer harvested manually, and did not separate data
taken on the Data-Driven Technology (DDTech) plots from the controls.
The plots from municipality el Tajo 1 also lodged, with heavier lodging in
the demonstration plot. The plots were harvested manually and the
DDTech plot yield, at 7.4 t ha-1, was slightly greater than the control at
7.2 t ha-1. In the remaining demonstration plots the yields ranged from
4.2 to 8.3 t ha-1 with the control plots consistently yielding less (Table 2).

The farmers from the first round of analysis were grouped into a Full
group (F) who applied all the practices that were identified as advanta-
geous by the analysis, None (N) for those who did not implement any of
the practices, and Partial (P) were those that used some of the practices.
Growers that used all five advantageous practices produced on average
2.5 t ha-1 more maize than those who did not use any (Fig. 4).

Up to the first analysis, and with the failure of the phone app, the
data collection process was limited by the personnel dedicated to col-
lecting data with the farmers. FENALCE realized that data-driven ana-
lysis of farmer's experiences could be used by its advisory services and
hired extra personnel to intensify data collection.

At the end of the 2017 cropping season, the dataset had grown to
more than 800 cropping events spanning four years (Fig. 1). A new
round of analysis was run with the RF model on this expanded dataset.
The R-squared increased to 66.5% with the weather-related predictors
gaining importance in the explanation of the yield (Fig. 2B.) The
management factors identified in the first round of analysis remained
important but several factors that were previously of little significance
were identified as important. The addition of more cropping events

with more years of weather data did not increase the coefficient of
variation of the weather variables (Table S2).

After identifying run-off and rainfall as relevant factors in the ana-
lysis, agronomists suggested that interactions between run-off and
rainfall were likely. Consequently, the overall dataset was split into
events with more and less than 400mm of rain over the crop cycle and
into sites with minimal external drainage (run-off) and those with
moderate external drainage. The yield was greater with higher rainfall
in the fields with moderate drainage (5.9 t ha-1) than with minimal
drainage (4.5 t ha-1). The opposite was true with lower rainfall with
higher yield (5 t ha-1) with minimal drainage and (4 t ha-1) with mod-
erate drainage (Fig. 5.).

The field technicians modified their means of understanding and
explaining variation in the field performance of maize as the program
progressed. Initially, they used tacit knowledge, based on average
performance in the area and general tendencies and trends over time, to
explain variation in crop behavior. Later, they became aware of the
importance of collecting data from individual plots and rigorous ana-
lysis to draw robust conclusions. The FENALCE technicians observed
that several factors, which they believed to be important in determining
yield, were not included in the data collected as they were difficult to
measure. Nevertheless, the technicians were impressed by the ability of
the analysis to explain yield variation.

3.3. Presentation of results to farmers

Originally, the program envisaged meetings of groups of farmers
with an extension agent providing access to the SIRIA platform so that
farmers would be able to discuss amongst themselves the best tech-
nology for their individual circumstances. This was not achieved. First,
the structure and organization of the FENALCE advisory service was
based on priority areas for each year. Hence, only a limited number of
farmers from the study area were attended directly by the advisory
service each year. The number of farmers reached each year directly by
the sole FENALCE agronomist was 60. Second, FENALCE, was

Fig. 2. A) Variable importance for the first model. B) Variable importance for the second model.
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concerned that farmers would derive mistaken conclusions from their
direct access to the web-platform and this could lead to poor crop
management or even failure. Third, the structure of the advisory service
is not set up for group discussions.

The agronomist managing the advisory service indicated that he and
those working with him had greater confidence in the trustworthiness
of their advice, which was now backed up by data from commercial
fields, and that this confidence was transmitted to farmers.
Nevertheless, they observed that farmers paid little attention to the
recommendations on improved drainage in the poorly drained areas.

4. Discussion and lessons learned

The United States Agency for International Development (USAID)
appraised the digital agriculture program of CIAT in 2018 (Manfre and
Laytham, 2018). We make considerable use of this independent eva-
luation in the following sections.

The approach of using information from multiple sources, including
farmers’ experiences, was demonstrated to be a useful means of pro-
viding extension agents and farmers with guidelines on how to improve
production of rainfed maize in northern Colombia within the context of
small-scale agriculture (Manfre and Laytham, 2018). The main features
of developing such an approach are: coordination and collaboration
between multiple institutions and individuals; data collection; data
analysis and interpretation; and presentation of the findings to exten-
sion agents and farmers in an actionable format.

4.1. Institutions and collaboration

The program, from its inception, had political support from a high
level in the main institutions involved in the program. The policy ma-
kers, principally in the MADR, provided a clear goal of strengthening
the capacity to face weather and climate variability. Furthermore, the
MADR designated the crop, the geographical area and the main in-
stitutions that were to develop the program. This clear definition of the
objectives and major responsibilities, added to the stable funding ex-
pected from the MADR once the program strategy had been developed,

Fig. 3. Partial dependence plots of the most relevant predictors. A) Amount of phosphorus applied. B) Plant density 20 DAE. C) Harvest method. D) Cultivar. E) Run-
off.

Table 2
Yield of the on farm-trial in Cordoba with farmer practices (control) and data
driven recommendations (DDTech).

Site Plot Yield (t ha −1) Comment

DDTech Control

Chima 5.7 4.4
Tajo 1 7.4 7.2 Lodged due to wind and heavy rain.

Heavier lodging in the DDTech plot.
Manual harvest.

Tajo 2 8.3 6.0
San Antonio 6.8 6.0
Carolina 4.2 3.7
Cotorra No data as farmer harvested fields by

hand due to flooding and took no records.
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from our point of view, was key to success.
The MADR clearly defined what the objectives of the program

should be, but they left FENALCE and CIAT with a relatively free hand
to determine the strategy and approach. The flexibility allowed us to
rapidly resolve difficulties when they arose. For example, the lack of a
rigidly imposed work plan allowed us to react to the failure of the
smartphone app for data collection with the development and use of the
PF forms, which, whilst not ideal was pragmatic.

The two lead agencies (FENALCE and CIAT) executing the program
had a clear alignment of interests. CIAT wished to further develop an
incipient methodology for helping small-scale farmers to better manage
their crops without going through the long-term traditional plot based
research agenda, while FENALCE wished to provide their growers and
extension agents with guidelines on how to better manage their crops to
obtain higher and more stable yields. The common interest of the two
agencies led to a harmonious working environment: when things went
wrong, the attitude was not to determine who was to blame, but rather

to find a solution. Thus, when the records kept by FENALCE were found
to be insufficiently detailed to provide a meaningful analysis, CIAT,
FENALCE and other agencies such as IDEAM all worked together to
obtain the required data.

The Colombian government has stressed the country's commitment
to open data, which favors the approach used in this program (Manfre
and Laytham, 2018; Paul et al., 2018; Young and Verhulst, 2017). A
striking example of this was the lack of weather data tied to individual
fields at the start of the program. With its open data policies, IDEAM,
the national meteorological agency, provided all the required data. In
the program as a whole the collaboration from multiple agencies was
critical (Esquivel et al., 2018; Manfre and Laytham, 2018; Ospina,
2018; Paul et al., 2018; Young and Verhulst, 2017). All collaborating
agencies demonstrated a service mentality with all efforts directed to
helping the maize growers to improve their crop management and
hence food security and their livelihoods.

Fig. 5. Yield distribution across sites with minimal and moderate external drainage with rainfall above and below 400mm during the cropping cycle.

Fig. 4. Observed yield distribution for the farmers using all (Full group), part (Partial group) or none (None group) of the data-driven guidelines.
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4.2. Data collection

The lack of adoption of the data collection app hindered the pro-
gress of the program. The initial idea of farmers inputting their data
directly on smart phones was not realized. In the future, we suggest,
programs that wish to develop data collection apps for farmers should
not develop apps from scratch, but should adapt existing apps to their
needs as was done with Geo-Farmer (Eitzinger et al., 2019). The fall-
back to filling in PFs enabled us to proceed, in a similar manner to past
experiences (Jiménez, 2013), nevertheless to reduce the costs of data
collection, avoid human errors in the collection, and to scale-up op-
erations, new methodologies are required. Eventually, apps that
farmers can use to input data, the Internet of Things (IoT) and auto-
mated collection of weather data and satellite imagery for crop devel-
opment are some of the tools that can be used to improve the data
collection process. Furthermore, low cost sensors are now available to
monitor field conditions, drones can be used to monitor crop develop-
ment, and combine harvesters with yield sensors can report yields of
individual fields to centralized databases. These are just a few examples
of the potential revolution in data collection in the coming years.

4.3. Analysis and interpretation

The yield on farmers’ fields was extremely variable with a few
farmers reaching more than 7 t ha-1. The top yields are considered by
extension agents to be good considering the resource base of soils, cli-
mate and infra-structure (e.g. drainage, irrigation) in the region. At the
same time, the large number of farmers with low yields due to lack of
good management of their crops indicates that there is a major op-
portunity to stabilize production at a higher level within the current
restrictions of the resource base, and hence to contribute to food se-
curity.

The first round of analysis with 238 cropping events using machine
learning algorithms identified topographical, management and weather
variables associated with variation in yield. The initial analysis sug-
gested that the yield could be increased by adopting five basic man-
agement practices. These findings led to two different opinions on how
to proceed. One group wished to go ahead and recommend to farmers
the practices identified and to combine them with their previous
knowledge on good practices. This group felt there was no need to
validate the practices as they had already been validated by the farmers
that used them. The other, more cautious, group felt it would be unwise
to go ahead with the recommendations without first testing their effi-
cacy. In the end a compromise was reached in which the advisory
service would use the information to make recommendations and trials
would be established to verify the validity of the recommendations.

The on-farm trials were first envisaged as carefully controlled ex-
periments, however, due to both budget restrictions and time limita-
tions, only six on-farm trials were established. The minimum plot size
was 0.5 ha, thus avoiding the problems of high yields associated with
small experimental plots.

Despite the difficulties with water logging, the five comparisons
between the recommended practices and farmers practices clearly
showed a yield advantage when farmers followed the guidelines
(Table 2). Farmers, unlike scientists, are normally more interested in
the absolute yield level they obtain than the differences between
treatments. The yields of the demonstration plots ranged from a low of
4.2 t ha-1 to 8.3 t ha-1. These yields compare favorably with the esti-
mated average yields for the zone of less than 4 t ha-1.

A striking result of these trials was that three of them suffered from
lodging or flooding. Lodging itself tend to be more severe when the soil
is waterlogged. As noted, run-off was identified as one of the most
important factors influencing yield (Fig. 3.) Furthermore, in the data
cleaning exercises, fields that yielded very little or failed were elimi-
nated from the analysis. Comments on the data collection PF indicated

that the main reasons for elimination were excess water, strong winds
and low rainfall. The elimination of events with low yields associated
with excess water could have distorted the subsequent guidelines by
underestimating the negative effects of low run-off. This then indicates
that care is needed to avoid data cleaning that may eliminate data
points as they may hold highly relevant data: other studies confirm the
danger of eliminating data points that appear as outliers (Jiménez,
2018; Paul et al., 2018). At the same time the extension agents pointed
out that the farmers did not pay attention to the guidelines related to
improving drainage or not planting on sites with poor drainage. The
trials highlighted the importance of these guidelines. Furthermore, we
suggest that if the data elimination had not been practiced it is likely
that the advisory service would have been more forceful in their ap-
praisal of the perils of planting in poorly drained fields.

In the second round of analysis more variables were found that had
a strong influence on yield and 66.5 % of the yield variation was ex-
plained by the variables used in the model. Weather variables increased
their explanatory power in this second round. This would be expected
as the addition of years may increase the overall variance of weather.
However, this was not the cases (Table S2). This suggests that the ex-
planatory power of the models used increases as more cropping events
are analyzed, even when the overall variance of the individual variables
used in the models does not increase. Hence, the greater the number of
cropping events that can be analyzed the more robust guidelines that
are generated. The crop management practices identified as important
in the second round of analysis were consistent with the first round.
Thus, generalized guidelines for management can be developed for use
within this local context when the year-to-year weather pattern does
not vary greatly.

The importance of weather-related predictors draws attention to the
need for caution. In the period analyzed the weather patterns varied
little from year to year as indicated by the similar coefficients of var-
iance when extra years were added (Table S2). More data is needed
from abnormal years to define which practices are optimum for distinct
weather conditions. For example, we speculate that in a dry Niño year
low run-off, which favors water conservation within a field, may be
associated with higher rather than lower yields of maize as occurred in
the years we analyzed. As more data becomes available, it may be ne-
cessary to separately analyze Niño, normal and Niña years with specific
management for each condition. With the current forecasts of the Niño-
ENSO farmers could plan their crop management according to the likely
scenarios, rather than use standard, generalized packages and hence
would be able to increase food security in those years with adverse
weather conditions.

A major limitation to the approach of analyzing how management
practices interact with weather conditions is the possibility, as was the
case in our experience, that during the period of observation there is
little annual variation in the weather with no strong Niño: this high-
lights the importance of continuous monitoring of the crop performance
over time so as to ensure that the effects of climatic variation can be
accounted for. At the same time, we point out that standard controlled
trials do not consider the yearly variation in weather patterns, so
farmers are frequently left with little information on how to vary their
management practices according to variable weather patterns. The
observational approach reported here ensures that farmers can have
access to information that covers a wider range of variation than pro-
vided by the top-down approach.

Although there was little variation within the annual rainfall pat-
terns, there was considerable variation in the weather conditions,
particularly rainfall, of the individual fields observed both within and
across years. The interaction between drainage and accumulated rain-
fall effects on yield demonstrates that the analysis can identify how
management practices may vary according to the soil and terrain of the
site and the weather conditions. In areas with lower rainfall, improving
drainage to reduce run-off will likely reduce yield, whereas in areas
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with heavier rainfall improved drainage will increase yields. Thus, site
specific guidelines, rather than blanket recommendations, can be de-
veloped.

In a somewhat similar exercise in sugarcane with larger farmers,
observational data was used to determine environment (defined by
climate and soils) by genotype interactions and hence to provide
guidelines on the most suitable variety for specific locations (Cock
et al., 2011; Isaacs et al., 2007). In addition, analysis of the observa-
tional data clearly indicated an interaction between fertilizer response,
weather conditions, soil characteristics and topography with oil palm
(Cock et al., 2016). Hence, we are optimistic that the proposed meth-
odology will detect the interactions between weather conditions and
management practices when there is a larger variation in weather
patterns than that which was encountered in the years reported in this
study.

Three basic pathways were used to move through the analysis and
interpretation of the data towards subsequent establishment of guide-
lines for farmers. The guidelines were developed: (i) directly from the
initial data analysis; (ii) through interpretation of the initial analysis by
experts; and (iii) confirmation of expert recommendations from the
data analysis. These three modes are illustrated by the following ex-
amples.

Previously FENALCE indicated the importance of balanced fertilizer
applications, but did not provide guidelines on the levels of fertilizers to
be applied. The initial data analysis indicated that to obtain good yields
a minimum application of P was necessary (Table 3.). Hence, FENALCE
now suggests a minimum dosage of 0.1 t ha-1 of P (Fig. 3.).

The initial analysis indicated a close negative relationship between
slope and yield. This, initially, surprised agronomists. However, after
discussions it appeared likely that the negative associations were due to
accumulation of water in low spots and poor drainage. Further analysis
using run-off as a variable, rather than slope, confirmed this hypothesis.
Agronomists, then suggested that there would likely be an interaction
between rainfall and run-off. This was then confirmed by further ana-
lysis. Thus, there is now an awareness of the importance of good
drainage, especially when rainfall is expected to be heavy.

One of the well-established guidelines for farmers was to aim for a
plant population of 65–75,000 plants ha-1 20 DAE. The analysis con-
firmed both the importance of crop establishment and confirmed that
the upper ranges suggested by FENALCE for plant population at 20 DAE
were appropriate (Fig. 3B.). The analysis also indicated that failure to
reach the required plant population was a major cause of low yields.
Thus, a more comprehensive series of guidelines based on both previous
knowledge and recommendations and the insights provided by the
analysis were developed (Table 3).

4.4. Knowledge management

A major challenge with data analytics in agriculture is commu-
nication of the results to the end users in a way that facilitates their
decision making. Initially our strategy was to use the web-platform,
with the farmers in groups accompanied by extension agents discussing
the results of the analyses and then drawing conclusions on how they
could better manage their crops. This would then lead to a virtuous
circle with farmers adopting new practices, analyzing their experiences
and adopting those that were beneficial. For users to get excited about
our approach and set this virtuous circle in motion, it was very im-
portant that the platform would offer valuable information to them in
the form of user-friendly formats and reports. The FENALCHECK report
(S1.6) was developed so that farmers could register which practices
they used and then associate their crop performance with their use: it is
based on the principles of CROPCHECK which has helped increase
yields in several crops in Chile (Araya et al., 2010). Systems, like
CropCheck, which continually monitor on-farm practices and output,
can be used to evaluate new technology, much of which is likely to
come from experimental stations and research institutes, as it is in-
troduced by farmers on their fields.

FENALCHECK functioned in the sense that it helped agronomists
and extension agents transfer successful management crop practices to
the farmers. Nevertheless, we did not achieve the discussion and in-
terpretation of the results by farmers groups with extension agents as
originally planned. This was at least partially due to the fear that
farmers might draw erroneous conclusions if they accessed the SIRIA
platform directly without the presence of a facilitator. Furthermore, the
FENALCE advisory system is not set up for group discussions with
farmers. We suggest that future programs should set up mechanisms in
their advisory services that allow farmers or farmers’ groups to obtain
information directly from the web-platform. These may include farmers'
groups access to the web-platform with discussions in the presence of a
facilitator, direct access to a user-friendly web portal or Interactive
Voice Response (IVR) systems. The Colombian Sugar Cane Research
Center, developed a portal through which growers can and do access
information, obtained from both research plots and commercial fields,
that helps them manage their crops better (Jiménez, 2013). Currently,
FENALCE is developing an IVR systems through which farmers will be
able to obtain advice based on the information available in SIRIA.

Despite some of the difficulties mentioned above, farmers expressed
their confidence in the information they received because it came via
FENALCE, which they trusted (Manfre and Laytham, 2018; Paul et al.,
2018). Farmers generally trust their peers more than outside experts
(Annan et al., 2016; Gray et al., 2018) and are more likely to believe in

Table 3
Original and modified guidelines used by FENALCE after the analyzing farmers’ results.

Original FENALCE Guidelines Additional guidelines added after analyzing famer's results.

-Ensure that there is no hardpan and that soil compaction is not severe. -When intense rain is expected ensure that surface drainage canals and ditches are clean and
in good condition.

-Only plant when the effective soil depth is greater than 30 cm.
-Plant in soils with pH>5.5 y< 6.5.
-Clean plots with herbicides before planting.
-Work the soil to a maximum of 30 cm.
-Inter-row spacing 0.75m y 0.85m, distance between plants in the row 0.17m y

0.2m.
-Apply N,P,K,Mg,S. Note: no information on levels. -Apply minimum of 0.015 t ha−1 of P at planting and 0.1 t ha−1 of N.
-Split N application at growth stage at planting (20%), V6 (40%) and V10 (40%). -Minimum application of 0.1 t ha−1 of N at planting (50%) and V6 (50%).
-Aim for a plant population of 50–70,000 plants ha−1 20 days after emergence. -Aim for a plant population between 65.000 y 75.000. To achieve this: use mechanical

control of weeds in the early growth period; use certified seed; calibrate seed drill; use
treated seed; plant when soil is moist at a depth of 3–4 cm.

-Monitor the crop for weed, disease and pest control at least 6 times with the first
monitoring within the first 20 days after planting.

-Apply herbicides between 8 days before planting and 2 days after planting.
-Control diseases 10 days before and at anthesis.
-Harvesting: No specific recommendation. -Whenever possible use a combine harvester.
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data generated on-farm than in experimental stations (Cock et al.,
2011). As the guidelines come from analysis of observational in-
formation, farmers are likely to trust them and act upon them. The
intermediaries provided cohesion and communication between farmers
and experts and facilitated the adoption of new technologies and
practices by farmers (Manfre and Laytham, 2018). The generally high
yields obtained with the on-farm trials, even when using apparently
traditional technology, strongly indicates that the knowledge gained by
the advisory service on how to improve crop management was being
transmitted to farmers effectively. This close relationship between
farmers and advisory services and the confidence generated by sharing
information and basing recommendations on the analysis of that shared
information, whilst intangible, may be a key factor in increased, more
stable yields.

Recent FAO and other agencies reports on digital agriculture in the
developing world indicate that while traditional extension is a pon-
derous process relying on poorly paid extension workers who travel
from farm to farm, digital technologies will speed up the transfer of
information while improving its quality and relevance (Annan et al.,
2016; FAO, 2019; Gray et al., 2018; Nayyar et al., 2018; Ramirez-
Villegas et al., 2018; Salemink et al., 2017). We suggest that these di-
gital technologies will make it possible to collect, analyze and return to
farmers' information pertinent to crop management.

5. Conclusions

The data-driven agricultural program: (i) brought together information
from multiple sources; (ii) analyzed and interpreted that data; and (iii)
presented the knowledge generated to decision makers in a format that
they could understand. The process of collecting data, interpreting the
data and using the knowledge generated to assist farmers in making de-
cisions requires collaboration between multiple agencies and individual
farmers. For rainfed maize in Cordoba, in northern Colombia, the data-
driven program demonstrated that much of the variation in yield was
associated with variation in both weather patterns and management
practices. Although the year-to-year variation in weather over the study
period was relatively small, the data-driven program has the capacity to
describe how the weather affects yield and how optimal management
varies as the weather patterns change. From this analysis guidelines for
farmers were developed following three pathways: (i) directly from the
initial data analysis; (ii) through interpretation of the initial analysis by
experts; and (iii) confirmation of expert recommendations from the data
analysis. On-farm-trials confirmed that productivity could be increased by
adopting good agricultural practices identified or confirmed by the pro-
gram. The work of advisory services is facilitated by the extra knowledge
they obtain from data-driven programs such as that described here. The
extension agents have more confidence in making their recommendations
and their discussions with farmers as the knowledge they share is backed
up by data obtained from farmers’ real-life experiences. We suggest that by
combining the knowledge generated by data-driven agriculture with long-
term weather forecasts associated with the El Niño phenomenon farmers
can better manage their crops with varying weather patterns. This will
contribute to both their prosperity and food security in the region. The
basic principles established in this case study can be applied to crops
produced by small-scale farmers in the developing world to increase their
productivity and manage their crops under varying weather conditions
with less risk of crop failure.
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