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Accurate annotation of plant genomes remains complex due to
the presence of many pseudogenes arising from whole-genome
duplication-generated redundancy or the capture and movement
of gene fragments by transposable elements. Machine learning on
genome-wide epigenetic marks, informed by transcriptomic and
proteomic training data, could be used to improve annotations
through classification of all putative protein-coding genes as either
constitutively silent or able to be expressed. Expressed genes were
subclassified as able to express both mRNAs and proteins or only
RNAs, and CG gene body methylation was associated only with the
former subclass. More than 60,000 protein-coding genes have been
annotated in the reference genome of maize inbred B73. About
two-thirds of these genes are transcribed and are designated the
filtered gene set (FGS). Classification of genes by our trained
random forest algorithm was accurate and relied only on histone
modifications or DNA methylation patterns within the gene body;
promoter methylation was unimportant. Other inbred lines are
known to transcribe significantly different sets of genes, indicating
that the FGS is specific to B73. We accurately classified the sets of
transcribed genes in additional inbred lines, arising from inbred-
specific DNA methylation patterns. This approach highlights the
potential of using chromatin information to improve annotations of
functional genes.
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In maize, proteins are observed only from a subset of tran-
scribed genes: 87% of genes observed to make proteins have

syntenic orthologs in sorghum, even though syntenic genes ac-
count for only 23% of transcribed genes (1). This observation
explains why nearly all genes with known functions are syntenic
(2), and it raises a new question: How can the cell distinguish
between syntenic and species-specific genes such that both are
transcribed but only the former expresses proteins?
To begin to answer this question, we present a machine-learning-

based approach that provides genome-wide classifications of
annotated protein-coding genes as expressible or constitutively
silent based on patterns of DNA methylation or histone mod-
ifications. The classifiers are additionally able to distinguish be-
tween genes that can express proteins and genes that can only
express RNAs. Our findings address a long-standing challenge in
genome biology to discover the expressible gene set (EGS) which
comprises all protein-coding genes with the potential to be
expressed in an individual. Efforts to identify the EGS have been
based on surveys of expression and on comparative genomics.
While these criteria have been useful, surveys only sample some
of the conditions, cell types, and genetic diversity that affect gene
expression, leaving some functional genes without evidence for
expression. New methods are needed to identify the EGS. It is
equally important to identify the silent gene set because these
genes may or may not be expressed in other individuals with
different genetic backgrounds and epigenetic marks. Our EGS
for protein expression was contained within the larger EGS for
mRNA expression. Collectively, the EGS from all individuals
constitutes the expressome: all protein-coding genes in a species
with the potential to be expressed as proteins or only as RNAs.

Most researchers study the predicted genes that are derived
from whole-genome annotations. These annotation approaches
can be complicated by the presence of sequences with homology
to protein coding genes that may not be functional genes. These
false gene annotations can result from silenced paralogs fol-
lowing either whole-genome duplications or tandem duplica-
tions, or they may arise from capture of gene fragments by
transposable elements. Here we show that the analysis of DNA
methylation patterns can help identify annotated genes that are
not likely to be expressed or can be expressed only as RNAs.
We found that the most significant genome features used by

our random forest classifiers are well-known patterns of DNA
methylation and histone modification, indicating that these
patterns may play roles in establishing permissions for gene ex-
pression. Genes that expressed both mRNAs and proteins had
DNA methylation patterns that were distinct from genes that
only expressed RNAs. Silent gene patterns differed from both
expressible classes. Our models matched or outperformed expert
curation for the ability to differentiate between expressed and
silent genes. Extension of our method to other inbred lines with
differential DNA methylation patterns demonstrated that the
EGS differs between inbreds by thousands of genes that corre-
late with variations in the epigenome. A small but significant
difference in the EGS was observed between organs. Discovery
of the EGS for individuals and of the expressome for a species
will contribute to understanding and fully utilizing the genetic
potential of organisms. Our characterization of the EGS for the
widely used maize inbred, B73, provides a first step toward dis-
covery of the expressome for the world’s most valuable crop.

Significance

Our new method uses only epigenomic patterns to classify the
expression potential of annotated genes and identifies pseu-
dogenes that are difficult to classify based solely on sequence.
Genes were divided into those with protein expression, those
with mRNA expression, and those that are silent. A large
fraction of annotated genes are constitutively silent in one
lineage but can be transcribed in others. We refer to the
species-wide set of transcribed genes as the expressome and
show that it is much larger than the expressible gene set in any
individual. Additionally, we find that DNA methylation patterns
within the gene body can differentiate between genes that
express proteins and genes that express only RNAs.
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Results and Discussion
Genic DNA Methylation Can Classify Expression Potential. Syntenic
genes are hypomethylated relative to their nonsyntenic coun-
terparts, suggesting that epigenomic features may enable robust
gene classifications (3, 4). To further explore the relationship
between DNA methylation and gene expression, we used the
random forest algorithm (5) to build classifiers for all genes of
the maize inbred line B73. Two classifiers were built based solely
on genic DNA methylation features. Both used a combination of
proteome and transcriptome data for training from 23 different
tissues or times of development (1). For the expressible protein
classifier (EPC), the silent class consisted of annotated genes
with no observed mRNAs or proteins (NR_NP). The expressible
class consisted of genes with high levels of mRNAs [fragments
per kilobase per million reads (FPKM) > 1, defined by (1)] and
observed proteins (HR_OP). The training classes of the second
classifier (expressible mRNA classifier, ERC) were defined using

all genes with no detectable mRNAs (NR) vs. all genes with high
mRNA levels (HR), and it did not use protein data (Fig. 1).
Several DNA methylation features were tested. The impor-

tance of features was determined using the mean decrease in
accuracy upon random permutation of each individual variable
(5). Three methylation sequence contexts (CHG, CG, and CHH)
were quantified separately and summarized within gene regions
(Fig. 1A), including the promoter (2 kilobases upstream of the
transcription start site [TSS], split into 4 bins), the TSS, 5′ UTR,
3′ UTR, introns, exons, and a summed value encompassing the
gene model. The summarized random forest feature importance
is shown for each methylation context and genomic region (SI
Appendix, Fig. S1). Based on these scores, multiple features with
low importance were deleted from the models. Features retained
were CHG and CG methylation in exons and introns, plus the
aggregation of all retained features (labeled “Gene”). To account
for variable distributions of CG and CHG methylation along the
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Fig. 1. Overview of model features and training set definitions. (A) The various genomic regions where DNA methylation levels were quantified and used as
features for classification. Features with gray labels were discarded after initial testing. Each gene was also split into 5 equivalent regions, called bins, and
features were quantified separately in each bin. (B) The distribution of detected mRNA abundance is bimodal. The 2 mRNA populations can be roughly
separated using an FPKM of 1. Here the nondetected mRNA (No mRNA) is represented as a separate population and given an artificial value of −12. Each
population can be further refined into observed vs. nonobserved protein (No Protein) to yield 6 different groups of genes indicated by the different colors.
LR_OP refers to all annotated genes that were observed to express low levels of mRNAs and detectable levels of proteins. (C) Three separate random forest
models were built. Colored blocks correspond to the gene sets (from B) used for each training class. Blocks on the left indicate the positive (true) training
instances vs. blocks on the right that indicate the negative (false) training instances. Numbers in parentheses indicate the number of genes in each
training class.
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gene body (4, 6, 7), we divided each gene into 5 equal-proportion
bins; methylation features were summarized separately for each
bin (Fig. 1A and SI Appendix, Figs. S2 and S3). Classification
accuracies were determined using random forest out-of-bag
cross-validation on the training set genes (Fig. 2A and SI Ap-
pendix, Fig. S4A). Both classifiers had high accuracy with areas
under the curve (AUCs) of 0.94 or higher for receiver operating
characteristic (ROC) curves and precision vs. recall (PR) curves.
The EPC achieved a near-perfect AUC of 0.99.

CHG and CG Methylation Are Negatively Associated with Expression.
To determine whether silent genes were associated with high
or low methylation levels, each feature was given a positive
or negative sign (Fig. 2 D and E and SI Appendix, Materials and
Methods and Fig. S5). The structures of the EPC and ERC
models were very similar based on feature importance (Fig. 2 D
and E and SI Appendix, Fig. S4D). Methylation of CHG and CG
at the 5′ ends of genes (bin 1) was most strongly associated with
silent genes; CHG methylation at the 3′ ends of genes (bin 5) was
also significant. In vitro methylation of CG sites in the 5′ region
of the gene is a potent inhibitor of transgene expression (8).

Gene Classification Is Not Associated with Patterns or Levels of
Expression. To test whether genic DNA methylation is associ-
ated with the patterns or levels of expression, random forest
models were run using the same methylation training data but
replacing the binary class vector with quantitative mRNA and pro-
tein abundance for the ERC and EPC, respectively. This produced
the protein expression-level predictor and the mRNA expression-
level predictor; both failed to accurately predict expression levels.
When examining the full set of predictions (SI Appendix, Fig. S4

B and C), we observed good R2 values but observed low R2

values when considering only genes with detectable expression
(Fig. 2 B and C). Therefore, the good R2 values observed on the
full set of predictions may be mostly due to the ability of the
model to discriminate between observed and nonobserved products
of expression.

Genome-Wide Classifications. The ERC and EPC were used to
reclassify all protein-coding genes based solely on DNA meth-
ylation patterns, including the 98,296 members of the working
gene set for which we had methylation coverage. The ERC
classified 41,056 genes as able to express mRNAs, but only
32,979 genes were classified by the EPC as able to express pro-
teins; 55% of the EPC expressible genes were absent from the
training set (SI Appendix, Fig. S6A). This highlights the power
of classification models to learn from a high-confidence subset of
genes and then provide accurate genome-wide classifications.
Comparison of results from the ERC and EPC identified 2 groups
of genes that are expressed as RNAs only (8,078) or as mRNAs plus
proteins (32,978) (Dataset S1).
We compared our classifications to the most recent (RefGen

version 4 [v4]) and the previous (RefGen v2) curated classifi-
cations. Maize RefGen v2 was the last version where a full gene
set was annotated (5a working gene set [WGS]), yielding over
110,000 gene models at distinct loci. The maize filtered gene set
(FGS) is a subset of high-confidence protein-coding genes from
the RefGen v2 WGS (see SI Appendix, Materials and Methods for
description). For the newest assembly, RefGen v4 (9), only a fil-
tered gene set has been annotated. We cross-referenced the
RefGen v4 FGS to the RefGen v2 accessions (Dataset S1) so that
our classifications could be compared to both versions of the maize
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Fig. 2. Results for random forest models. (A) Receiver operating characteristic (ROC) curves showing classification accuracy of the EPC, ERC, and PFI models.
(B and C) Binned scatterplot showing prediction accuracy for quantitative abundance models considering only genes with observed expression for mRNA
abundance (B) and protein abundance (C). (D–F) Signed feature importance measures for 3 different models. The values reflect the random forest “mean
decrease in accuracy” measure of feature importance. The sign is based on the relationship of the feature values to the training class assignments. Positive
values indicate a positive correlation between the feature and either protein observation (EPC and PFI) or high mRNA (ERC).
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genome. Only ∼77% of the RefGen v4 FGS can be converted to
RefGen v2 accessions, which constrained our ability to make
comparisons.
Our ERC differs from the curated FGS by 17,684 genes and

18,019 genes for RefGen v2 and RefGen v4, respectively (SI
Appendix, Fig. S7A). We classified the remaining genes (57,239)
as silent in B73. However, epialleles of silent genes can be tran-
scribed in other genetic backgrounds as described below.
The EPC and ERC classified as silent 33 and 23% of the

RefGen v2 FGS and 16 and 12% of the RefGen v4 FGS (SI
Appendix, Fig. S7A); these proportions rose to 66 and 58% for all
potential genes (RefGen v2 WGS). The Maize Genetics and
Genomics Database (MaizeGDB) curation project (10) anno-
tates a biotype to each gene model. The biotype can be used to
filter out all likely transposable elements (TEs) and pseudogenes to
yield 63,331 probable protein-coding genes in the WGS. Of these,
60,295 have coverage in our DNA methylation data. Using the
higher-confidence EPC classifier, 48% were classified as silent (SI
Appendix, Fig. S8), and nearly all of the TEs (97%) and pseudo-
genes (94%) in the WGS were classified as silent.

The Accuracy of Random Forest Models Matches or Exceeds That of
Expert Curation. We compared the abilities of the curated RefGen
v2 and v4 filtered gene sets and the EPC and ERC classifiers to
identify the set of expressible genes in B73. ROC and PR curves
were created to evaluate each set (SI Appendix, Fig. S7 F and G).
Each set represents a 2-category classification (expressible or si-
lent). The ROC curve (SI Appendix, Fig. S7F) shows that the EPC
classifier achieves the highest accuracy (solid yellow line). The
RefGen v2 set achieves a similar true-positive rate but with a
higher false-positive rate, meaning that the RefGen v2 FGS, being
the largest set, includes nearly all observed proteins but has more
false positives. Precision (SI Appendix, Fig. S7G) represents the
proportion of the corresponding set that is correctly called and
should be insensitive to incomplete data assuming this subset is
random. Looking at precision, we see the EPC and ERC (solid
lines) outperform the RefGen v2 FGS (dashed lines). The RefGen
v4 FGS performed well, with higher precision than the ERC for
expressible mRNAs, but the EPC is still the top performer,
indicating that the addition of protein data substantially improves
classifications. The observed graphs of bimodal mRNA abundance
could be more or less reconstructed from the 4 classified gene sets
by plotting the average mRNA abundance for each silent and
expressed gene (SI Appendix, Fig. S7 B–E). This indicates that
DNA methylation patterns are sufficient to explain the observed
bimodal component in the distributions of gene expression.

Hypermethylation of Transposable Elements Does Not Affect the
Prediction Accuracy of Protein Coding Genes. The correlation be-
tween DNA methylation and gene expression was established
first in studies of the maize autonomous TEs Ac, Spm, andMuDR.
Using combinations of restriction enzymes, investigators found
that the methylation of TEs was associated with their ability to
transpose and to cause transposition of additional members of
their TE family (11). TE methylation was negatively associated
with mRNA and protein expression and with cycling between
active and inactive states. High levels of CHG and CG methyl-
ation repress expression of TEs and repetitive elements (4, 7, 12,
13). Subsequent work has shown that plant TEs are silenced by
RNA-dependent DNA methylation in the CHH context (14).
Because these elements are so abundant in the genome, many
gene models in the WGS are TEs that have escaped sequence
masking. Of the 110,028 RefGen v2 gene models, 29,082 have
been categorized as likely TEs. In addition, we identified 7,612
gene models that have a high basic local alignment search tool
(BLAST) hit to one or more reference TE sequences in the
maize TE database (15) and may be protein-coding genes with
TEs inserted into their gene body. To determine the extent to

which these previously characterized, highly methylated elements
are affecting our classifiers and conclusions, we rebuilt all of the
classification models after filtering out all 36,694 TEs and TE-
containing gene models. The new classifier is nearly identical to
the original both in classification accuracy (SI Appendix, Fig. S9
A and B) and in feature importance (SI Appendix, Fig. S9 C–E).
We have left the TEs in the final models because our goal is to
examine the relationship between genic methylation and ex-
pression potential. A subset of these 36,694 TEs and TE-
containing genes was observed as proteins (2,423) or as highly
expressed RNAs (5,065).

Inbred-Specific Expressible Gene Sets. To determine whether
inbred-specific DNA methylation is associated with an inbred-
specific EGS, the ERC was remade using data from multiple
maize inbreds. The third leaf from the genetically diverse inbreds
Mo17, CML322, Oh43, Tx303, and B73 was used to produce
DNA methylation data (16) and RNA sequencing (RNA-seq)
data (17). The methylation data were processed by quantifying
weighted methylation levels for consecutive 100 base pair (bp) tiles
along each chromosome. A new classifier, ERC-2, was constructed
using the same class definitions as the ERC (summarized expres-
sion from many tissues). The model was trained using these class
definitions plus the 100 bp tile DNA methylation data from the
third leaf B73 sample. Genes of the remaining 4 inbreds were
classified using their DNA methylation and the ERC-2 model (Fig.
3 A, C, and E).
The ERC-2 was also used to determine whether develop-

mentally regulated differences in genic methylation are associ-
ated with tissue-specific gene expression potentials (Fig. 3 B, D,
and F). Three previously published B73 tissue data sets were
examined (anther, developing ear, and shoot apical meristem
[SAM]). For each sample, both DNA methylation and RNA-seq
data were collected (18). We observed much greater variability in
classification scores between inbreds than we did between tissues
(Fig. 3 C and D; blue dots). On average, 2,160 genes have dif-
ferential classifications between 2 inbreds while only 140 genes
have differential classifications between 2 tissues.
The ERC-2 performed well for all of the inbred lines (Fig. 3A)

and the tested tissues (Fig. 3B), with areas under ROC curves of
0.9 or greater. The test samples were compared to each other in
a pairwise fashion to give 6 comparisons among the 4 inbreds
and 3 comparisons among the 3 tissues. The ERC-2 classification
scores were plotted for each comparison, with the lower score
plotted on the x axis and the higher score plotted on the y axis
(Fig. 3 C and D). As expected, most genes receive the same
classification for the 2 samples in question (98 and 99.9% for
inbred and tissue comparisons, respectively), indicating that most
genes possess similar methylation patterns (Fig. 3 C and D; gray
dots). On average, 2,160 and 140 genes have a differential clas-
sification between 2 inbreds and tissues, respectively, resulting
from differential DNA methylation (Fig. 3 C and D; blue dots),
causing them to be classified as silent in one sample type and
expressible in another. We designated differential classifications
as a difference in score greater than 0.6. We plotted observed
mRNA abundance for the differentially classified genes (Fig.
3E). As with the prediction scores, each gene was plotted with
the expression of the lower-predicted sample on the x axis and
the higher-predicted sample on the y axis. We used fragments
per million (FPM) of 1 as a cutoff below which genes were
considered not expressed. A total of 1,466 genes was expressed in
at least one inbred. Of these, 1,004 (∼68%) were not expressed
when classified as silent, and 1,269 (∼87%) had lower expression
when classified as silent. This is similar to the average accuracy
of the expression models (AUC = 0.92; Fig. 3A). We compared
the different tissues, but only 17 genes were differentially
expressed with 65% above the diagonal in Fig. 3F. These results
indicate that the set of transcribed genes varies significantly
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between genotypes and much less so between tissues, consistent
with previous reports on differential DNA methylation (19).
Many of the silenced genes may arise from recently copied

gene fragments that have been captured inside of TEs (20). We
observed that as new inbreds are added to the analysis, the tran-
scribed gene set of the species is expanded (SI Appendix, Fig.
S10A). Thus, maize appears to have a panexpressible gene set of
significantly more genes than are transcribed in any individual
inbred. The inherited epigenomic patterns that we have associated
with permission for expression, along with cis and trans transcrip-
tional regulation, give rise to the pantranscriptome where the
phenomenon of inbred-specific expression has been character-
ized (21). The panexpressible gene set is distinct from the
pangenome which arises from structural variation (9). Differential
DNA methylation exhibits relatively stable transgenerational
inheritance (17), and therefore, our models predict that hybrids
will express a set of genes that is the sum of the sets expressed by
the 2 inbred parents. This prediction has been confirmed (22).
While DNA methylation is generally stable, it likely has a spon-
taneous rate of change greater than DNA sequence yet low
enough to maintain a long-term selection response (23). Therefore,

spontaneous mutations in DNA methylation will occasionally
cause expressible genes to become silent and silent genes to
become expressible.

Silenced Genes Have Distinct Attributes Compared to Expressible
Genes. The ERC-2 results allow us to compare attributes of ex-
pressible genes to those of silenced genes to characterize the
large set of silenced genes. The ERC-2 classifications predict
that 32,333 genes can be transcribed across all 5 inbreds. Of
these, 22,101 have syntenic orthologs with sorghum, and 10,232
are nonsyntenic. We refer to these groups as “all inbreds syn-
tenic” and “all inbreds nonsyntenic.” In addition, 18,289 genes
are transcribed in some subset of the 5 inbreds. We will call this
the “any inbred” group. Finally, 50,103 genes are predicted to be
silenced in all inbreds, the “no inbreds” group (SI Appendix, Fig.
S10 and Datasets S3 and S17). All potential TEs were discarded
from all 4 groups for this analysis (SI Appendix, Fig. S10B).
Categorical enrichment was carried out on each group (Dataset
S3, Tabs 2–5). Interestingly, we see significant enrichment for
“biotic stress” and “secondary metabolism” categories in the all
inbreds nonsyntenic group, indicating more recent selection for

A

D E F

B C

Fig. 3. A new version of the ERC was generated (called ERC-2) using the same training classes defined for ERC but with WGBS data from B73 third leaf tissue
that was summarized in 100 bp windows along the genome. This ERC-2 was then used to classify 2 test data sets of similar WGBS data. The first set (A, C, and
E) was sampled from the third leaf of 4 diverse maize inbred lines (CML322, Mo17, Oh43, and Tx303). The second set (B, D, and F) was sampled from 3
additional B73 tissues (anther, ear shoot, and shoot apical meristem). In addition, each of these test samples has corresponding transcript profiling via RNA-
seq available. (A) Receiver operating characteristic (ROC) curve showing prediction accuracies achieved by ERC-2 model on the B73 training genotype, using
cross validation and when the ERC-2 model is tested with new methylation data from different maize inbreds. (B) Receiver operating characteristic (ROC)
curve showing prediction accuracies achieved by the ERC-2 model on 3 additional B73 tissues. (C and D) Scatterplots showing the prediction scores between
pairwise comparisons of all 4 test inbreds (C) or all 3 test tissues of B73 (D). Each point represents one gene for one test inbred–to–test inbred or test tissue–to–
test tissue comparison. Upper left (blue) represent genes that are classified differently in one sample compared to another. (E and F) Scatterplots showing
comparison of mRNA abundance in test sample pairs for differentially classified genes (blue dots in C and D). The numbers in the corners represent gene
counts in each quadrant (quadrants are defined using cutoffs at log2[FPM] = 0). Quadrant 1 is further split into 2 via a diagonal gray line, with black numbers
representing corresponding gene counts.
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these functions in maize. We found half (51%) of the no inbred
group to be potential TEs, so they were removed, leaving 24,433
genes that are silenced in all examined inbreds but have been
annotated to potentially encode proteins. Compared to genes that
are expressible across all inbreds, non-TE genes in the no inbred
group tend to be shorter, contain fewer introns, contain fewer
known protein domains, and are less conserved in sorghum (SI
Appendix, Fig. S10 C–F). Many of these silent genes (32%) express
RNAs in B73 at very low levels (SI Appendix, Fig. S10 H and I).
Interestingly, 387 of them have detectable proteins expressed at
moderate levels (SI Appendix, Fig. S10 H and J). We clustered
genes based on protein sequence similarity. All inbreds genes tend
to be in larger clusters (SI Appendix, Fig. S10G). The network
clusters tend to form around protein domains and therefore rep-
resent known gene families (SI Appendix, Fig. S10K); we displayed
only the 15 largest clusters. Many of the silent genes cluster with
known protein domains. Several large gene families comprise
mostly silent genes, and these sequences have no known func-
tions (“unknown” cluster in SI Appendix, Fig. S10K).
Of the 50,103 silent (no inbreds) genes, 25,670 are likely to be

TEs. Of the remaining non-TE genes, 15,638 can be clustered with
other genes based on protein sequence similarity. Within this se-
quence similarity network, ∼54% of the connections are between
non-TE silent genes and expressible genes (SI Appendix, Fig.
S10L). These silent genes may be recently copied gene fragments
that have been captured by TEs (20). The remaining 46% of the
edges are with other silent genes, forming groups of what appear to
be protein domains of unknown function. This leaves 8,795 silent
genes with no significant sequence similarity to other maize genes.

CG Gene Body Methylation Is Associated with Protein Expression.
The protein-specific feature illuminator (PFI) was built to find
genic methylation patterns that distinguish between genes which
express high RNA levels without proteins and genes that have
high mRNA levels plus observed proteins (HR_NP vs. HR_OP).
Of the 33,696 genes with observed RNAs in the HR, less than
half (15,421) had observed proteins. The PFI was able to dif-
ferentiate between the HR_NP and HR_OP with good accuracy
(Fig. 2A and SI Appendix, Fig. S4A), achieving an area under the
ROC curve of 0.8. Comparison of the feature importance be-
tween the PFI and the EPC/ERC showed that most of the im-
portant features were shared. However, there was a key difference.
We observed a change in sign for midgene CG methylation (bins 2
to 4), indicating an association between protein expression and
high CG methylation in the middle of genes (Fig. 2F). This pattern
was previously described as gene body methylation (gbM); it is
specifically defined as CG hypermethylation that occurs in the
middle of the gene while both the 5′ and 3′ ends of the gene body
remain hypomethylated (24, 25).
We examined the association between gbM and protein ex-

pression. Genes with less than 50% methylation in bins 1 and 5
plus greater than 50% methylation in at least one of bins 2 to 4
were defined as having gbM. Of these 9,071 genes, 59% had
observed proteins, which is 3.5 times more than expected by
chance (P value = 0, based on a hypergeometric test using the
upper tail) (SI Appendix, Fig. S11A). High RNA and no protein
genes showed a lesser enrichment of 1.4-fold (P value = 1e-62),
while low mRNA and silent genes were underenriched at 0.4 and
0.1-fold, respectively (P values = 0 for both, based on a hyper-
geometric test using the lower tail). Of the 9,071 gbM genes, 88%
were classified by the EPC as able to express proteins (SI Appendix,
Fig. S11B). The results illustrate the increased sensitivity and ac-
curacy of machine learning for gene classifications compared to a
prospective approach using known DNA methylation patterns.
Gene body methylation has been described for both plants and

animals. The occurrence of gbM in plants appears to be specific
to angiosperms (26). However, within angiosperms, there are
several reports of species that do not have gbM (26, 27).

Although functions of gbM remain unknown, it is associated with
constitutive mRNA expression, and these mRNAs also tend to
have relatively high abundance (24, 25). One hypothesis is that
gbM acts to block TE insertion (7) and therefore prevents mu-
tagenesis of expressed genes. Our finding that gbM is associated
with protein expression was unexpected, and it will be interesting
to see whether this is true in other species.
Intronic regions have the highest feature importance in the PFI

model (Fig. 2F). Of the 110,028 genes in the WGS, only 55,558
(50%) contain introns; 70% of genes in the FGS contain introns. Of
the genes with observed proteins, 88% contain one or more introns,
while only 58% of genes with high RNA and no protein contain one
or more introns (SI Appendix, Fig. S12A). Therefore, the presence
of introns helps to distinguish protein-expressing genes from the
other members of the highly transcribed set. The link between in-
trons and gene expression was discovered using transgenes in maize
(28). We observed that 93% of genes with gbM contain introns (SI
Appendix, Fig. S12A) and methylation is localized to the middle of
intron-containing genes (SI Appendix, Fig. S12B) in contrast to
genes without introns (SI Appendix, Fig. S12C); this is consistent
with the hypothesis that gbM plays a role in RNA splicing (7, 29,
30). CG methylation specifically at intron–exon junctions may play
a role in splicing (31).
Gene synteny combined with gene length and transcript ex-

pression was previously used to curate high-confidence and low-
confidence gene models in sorghum (32). More than 73% of
high-confidence gene models were found to be associated with
CHG hypomethylation in the gene body, whereas the gene ends
displayed CG hypomethylation plus hypermethylation in the
midbody. Curated models were used to train a J48 decision tree
classifier to recognize high- and low-confidence gene models based
on expression, synteny, and DNA methylation patterns; all 3 data
types were required for the decision tree classifier to perform fully.

Histone Modifications Are Positively Associated with Expression. We
compared genes classified by the EPC and ERC models to
published patterns of histone modifications (33). Genes classi-
fied as expressible had high levels of H3K36me3, H3K9Ac, and
H3K4me3, whereas silent genes had low levels (SI Appendix, Fig.
S13 A and B). These modifications are associated with tran-
scriptional activation (34). To determine whether the distribu-
tion of these modifications could classify genes according to their
expressibility, we trained new EPC and ERC models using his-
tone modifications as features instead of DNA methylation. The
histone-based models performed well, with only slightly less ac-
curacy than using DNAmethylation (SI Appendix, Fig. S13C andD).
The addition of histone features to the EPC and ERC did not
improve the accuracy of the models. The important features
of the histone models were high levels of H3K36me3 and
H3K4me3, especially at the 5′ ends of expressible genes, and
high levels of H3K9Ac in the gene midbody (SI Appendix, Fig.
S13 G and H). Using similar models, H3K36me3 was previously
identified as the most important feature used to identify gene
bodies in human embryonic stem cells (35). Histone modifica-
tions did not predict the time, place, or levels of expression (SI
Appendix, Fig. S13 E and F).
Our findings may shed light on mechanisms of evolution and

domestication. DNA methylation and histone features that were
important in our classifiers may be part of a mechanism for se-
lectively silencing genes that arise through gene or whole-genome
duplication (36). This may enable retention of new genes without
immediate or extreme phenotypic effects. New genes may be purged
from the genome or persist as a reservoir of adaptive potential
that can be tapped through spontaneous, heritable changes in
DNA methylation or histone marks.
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