Getting a Start in ML and Applied AI at Facebook

In episode five of season three we compare and contrast AI and data science, take a listener question about getting started in machine learning, and listen to an interview with Joaquin Quiñonero Candela.

For a great place to get started with foundational ideas in ML, take a look at Andrew Ng’s course on Coursera. Then check out Daphne Kohler’s course.

Talking Machines is now working with Midroll to source and organize sponsors for our show. In order find sponsors who are a good fit for us, and of worth to you, we’re surveying our listeners.

If you’d like to help us get a better idea of who makes up the Talking Machines community take the survey at http://podsurvey.com/MACHINES.

Bias Variance Dilemma for Humans and The Arm Farm

In episode four of season three Neil introduces us to the ideas behind the bias variance dilemma (and how how we can think about it in our daily lives). Plus, we answer a listener question about how to make sure your neural networks don't get fooled. Our guest for this episode is Jeff Dean,  Google Senior Fellow in the Research Group, where he leads the Google Brain project. We talk about a closet full of robot arms (the arm farm!), image recognition for diabetic retinopathy, and equality in data and the community.

 Fun Fact: Geoff Hinton’s distant relative invented the word tesseract. (How cool is that. Seriously.)

Computational Learning Theory and Machine Learning for Understanding Cells

In episode ten of season two, we talk about Computational Learning Theory and Probably Approximately Correct Learning originated by Professor Leslie Valiant of SEAS at Harvard, we take a listener question about generative systems, plus we talk with Aviv Regev, Chair of the Faculty and Director of the Klarman Cell Observatory and the Cell Circuits Program at the Broad Institute.

Machine Learning and Society

Episode seven of season two is a little different than our usual episodes, Ryan and Katherine just returned from a conference where they got to talk with Neil Lawrence of the University of Sheffield about some of the larger issues surrounding machine learning and society. They discuss anthropomorphic intelligence, data ownership, and the ability to empathize. The entire episode is given over to this conversation in hopes that it will spur more discussion of these important issues as the field continues to grow. 

Machine Learning in Healthcare and The AlphaGo Matches

In episode five of Season two Ryan walks us through variational inference, we put some listener questions about Go and how to play it to Andy Okun, president of the American Go Association (who is in Seoul South Korea watching the Lee Sedol/AlphaGo games). Plus we hear from Suchi Saria of Johns Hopkins about applying machine learning to understanding health care data.